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A B S T R A C T   

In women, cervical cancer (CC) is the fourth most common cancer around the world with average cases of 
604,000 and 342,000 deaths per year. Approximately 50% of high-grade CC are attributed to human papillo
mavirus (HPV) types 16 and 18. Chances of CC in HPV-positive patients are 6 times more than HPV-negative 
patients which demands timely and effective treatment. Repurposing of drugs is considered a viable approach 
to drug discovery which makes use of existing drugs, thus potentially reducing the time and costs associated with 
de-novo drug discovery. In this study, we present an integrative drug repurposing framework based on a systems 
biology-enabled network medicine platform. First, we built an HPV-induced CC protein interaction network 
named HPV2C following the CC signatures defined by the omics dataset, obtained from GEO database. Second, 
the drug target interaction (DTI) data obtained from DrugBank, and related databases was used to model the DTI 
network followed by drug target network proximity analysis of HPV-host associated key targets and DTIs in the 
human protein interactome. This analysis identified 142 potential anti-HPV repurposable drugs to target HPV 
induced CC pathways. Third, as per the literature survey 51 of the predicted drugs are already used for CC and 33 
of the remaining drugs have anti-viral activity. Gene set enrichment analysis of potential drugs in drug-gene 
signatures and in HPV-induced CC-specific transcriptomic data in human cell lines additionally validated the 
predictions. Finally, 13 drug combinations were found using a network based on overlapping exposure. To 
summarize, the study provides effective network-based technique to quickly identify suitable repurposable drugs 
and drug combinations that target HPV-associated CC.   

1. Introduction 

Cervical cancer (CC) remains a significant public health concern and 
is the fourth most common cancer affecting women globally. According 
to recent estimates, approximately 604,000 new cases of CC and 
342,000 related deaths occur each year. These alarming statistics 
highlight the need for increased efforts towards CC prevention and 
management, particularly in low- and middle-income countries, where 
over 90% of new cases and deaths occur. Human papillomavirus (HPV) 
is a significant risk factor for CC, with two HPV types (16 and 18) being 
responsible for almost 50% of high-grade cervical pre-cancers [1]. The 
virus is predominantly transmitted through sexual contact, and the 
majority of people become infected with HPV shortly after becoming 
sexually active [2]. However, it’s important to note that over 90% of 
HPV infections will eventually clear on their own without causing any 

harm [3,4]. Women living with HPV face a significantly increased risk of 
developing CC, with a six-fold higher likelihood compared to women 
without HPV [5]. Therefore, it’s crucial that healthcare providers pri
oritize CC screening and prevention measures for women living with 
HPV to reduce their risk of developing this type of cancer. Fortunately, 
CC can be prevented, and early diagnosis and treatment can lead to a 
high cure rate. A combination of primary and secondary prevention 
strategies such as HPV vaccination, screening, and treatment of 
pre-cancerous lesions have been shown to be effective in preventing CC 
at initial stages of disease [6]. However, the high death ratio to infected 
personnels demands the introduction of new and more effective thera
pies to be developed. In addition, current treatments for advanced CC 
are often ineffective and can cause serious side effects, underscoring the 
urgent need for more effective therapies. Given the high burden of dis
ease and limited treatment options, there is a critical need for continued 
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research to develop new, effective treatments for HPV-associated CC [7, 
8]. 

In this connection, drug discovery comes into picture where a new 
drug molecule is brought from idea to a market ready product. The 
process of drug discovery is a long and expensive journey that can take 
up to 12–17 years with an investment of $2-$3 billion [9–11]. In addi
tion, the success rate of drug discovery is relatively low, standing at less 
than 10%. To overcome issues with drug discovery, drug repurposing 
(DR) is increasingly being recognized as a promising alternative to 
traditional drug discovery. The approach involves identifying new 
therapeutic uses for existing drugs that have already been approved by 
regulatory authorities (FDA). This means that much of the 
time-consuming and costly preclinical work has already been done, 
allowing researchers to focus on repurposing existing drugs for new 
therapeutic purposes. It takes only 2–5 years and requires an investment 
of $200-$300 million, which is significantly lower than that of drug 
discovery. Moreover, DR has a higher success rate, standing at greater 
than 30% [12,13]. As a result, DR is becoming an attractive option for 
pharmaceutical companies and researchers looking to bring new treat
ments to patients more quickly and efficiently. Moreover, DR can also 
help to address the growing problem of drug resistance, as it can uncover 
new uses for drugs that are already available and have a known safety 
profile. These statistics highlight the significant advantages of DR over 
drug discovery in terms of cost, time, and success rates. Many studies 
have found multiple potential drugs repurposable for CC including the 
anti-inflammatory drugs, immunomodulators, and DNA-damaging 
agents. Moreover, current treatment options for cervical cancer, 
including radiotherapy and chemotherapy, have limited efficacy and 
can cause significant side effects [14]. Platinum-based chemotherapy is 
the standard of care for advanced cervical cancer, but its efficacy is 
limited, and it can cause significant toxicity. There is a need for novel 
agents and treatment strategies to improve the therapeutic effect of 
current treatments and overcome the persistence of HPV [15]. 

Thus, several recent studies have explored the potential of drug 
repurposing for the treatment of various cancers using different ap
proaches, including machine learning, virtual screening, and network- 
based methods. Moreover, there are ongoing studies and clinical trials 
on the repurposing of approved drugs for cancer therapy, including 
cervical cancer [16–18]. Some of the drugs that have shown potential for 
repurposing in cervical cancer therapy include metformin [19], thalid
omide [20], and sonidegib [21]. Additionally, the US FDA has approved 
three PD-L1 inhibitors, namely Atezolimumab, Durvalumab, and Ave
lumab, that have been used in some solid tumors, including cervical 
cancer [22]. The use of immune checkpoint inhibitors, such as pem
brolizumab and dostarlimab, in combination with standard chemo
therapy has also shown promising results in recent clinical trials [23]. 
However, more research is needed to determine the effectiveness of 
these drugs for cervical cancer therapy. A study used a machine learning 
algorithm to identify drug candidates for the treatment of glioblastoma, 
a type of brain cancer [24]. The algorithm identified the 
anti-inflammatory drug celecoxib and the anti-psychotic drug fluphen
azine as potential candidates. Similarly, a study used a virtual screening 
method to identify potential drug candidates for the treatment of 
triple-negative breast cancer [25]. The screening process identified 
several FDA-approved drugs, including the anti-malarial drug chloro
quine, as potential candidates. While these approaches have shown 
promise, there are some drawbacks to machine learning and virtual 
screening, including the potential for false positives and a limited ability 
to identify novel targets [26–28]. In contrast, network-based approaches 
leverage existing knowledge of biological pathways and interactions to 
identify new drug targets, repurposable drugs, and potential drug 
combinations. In one study, a network-based approach was used to 
identify a combination of repurposed drugs that showed promising 
anti-cancer activity in preclinical models of triple-negative breast cancer 
[29]. Overall, while machine learning and virtual screening approaches 
have shown some success in identifying potential drug candidates, 

network-based approaches appear to be a more promising and robust 
approach for drug repurposing. Network-based drug repurposing studies 
have been utilized in the identification of potential antiviral drugs. For 
example, some recent study used network-based approaches to identify 
potential drugs for the treatment of COVID-19, including the repur
posing of the antiviral drugs remdesivir and favipiravir [30–32]. Addi
tionally, our recent review paper highlighted the use of these 
approaches for drug repurposing of viral cancers [33,34]. 

Here this research introduces and applies an integrative approach to 
drug repurposing, utilizing a network medicine platform enabled by 
systems biology. The study proposed the drug repurposing for HPV- 
associated CC (Fig. 1A). We established a protein interaction network 
of CC induced by HPV following the CC disease signatures determined 
by multi-omics data (Figure 1BC). The analysis of drug target network 
proximity based on HPV-host and drug target interactions in the human 
protein interactome identified 142 possible repurposable drugs for 
treating HPV-induced CC pathways (Fig. 1D). Among the predicted 
drugs, 51 have already been used for CC treatment and 33 possess anti- 
viral activity. The validity of the predictions was confirmed by literature 
survey and gene set enrichment analysis of potential drugs in drug-gene 
signatures and HPV-induced CC-specific transcriptomic data in human 
cell lines (Fig. 1E). Furthermore, 13 potential drug combinations were 
discovered using network-based overlapping exposure (Fig. 1D). Finally, 
this study provides a powerful network-based methodology to rapidly 
identify suitable repurposable drugs and drug combinations targeting 
HPV-associated CC. 

2. Materials and methods 

2.1. HPV host proteins & cervical cancer DEGs 

The data for HPV-host proteins and their interaction based on size
able efforts was obtained from literature. The host proteins of HPV type 
16 and 18 were mapped to Ensemble [35] and Uniprot IDs [36]. These 
proteins were either the direct targets of HPV proteins or were involved 
in critical pathways of HPV infection identified by multiple experi
mental sources [37,38], including high-throughput yeast-two-hybrid 
(Y2H) systems, viral protein pull-down assay, in vitro 
co-immunoprecipitation and RNA knock down experiment [39]. Finally, 
a total of 22 HPV-associated host proteins were identified (Table S1). 
Additionally, a transcriptomic dataset (GSE63514) of HPV associated CC 
was downloaded from Gene Expression Omnibus (GEO) database [40]. 
The dataset contains total of 128 samples, of which 24 are normal 
(non-cancerous) samples and remaining 104 are disease (cancerous) 
samples. Differential gene expression analysis resulted in 536 up and 
downregulated genes (Table S2) (Fig. 2). 

2.2. Functional enrichment analysis 

Followed by data collection, we conducted the enrichment analysis 
of Kyoto Encyclopedia of Genes and Genomes (KEGG) [41] and Gene 
Ontology (GO) [42] for the HPV-host proteins and DEGs using ShineyGo 
0.77 [43], DAVID [44], and gProfiler [45] tools respectively. Also, 
disease-enrichment was performed using DAVID functional annotation 
tool. 

2.3. Human PPI network construction 

For developing an exhaustive yet comprehensive set of PPIs, data 
from multiple bioinformatics and ontological databases was assembled 
such as STRING [46], SNAP [47], DisGeNET [48] etc. The constructed 
PPIs were screened to have three different types of supporting evidence. 
(i) high-throughput yeast-two-hybrid (Y2H) systems tested binary PPIs, 
(ii) analysis of binary physical PPIs obtained from protein 3D structures, 
and (iii) low-throughput experiments reported in the literature to 
construct a signaling network, inspired from a recent study mentioned in 
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[30]. All data obtained from gene expression, metabolic associations, 
and evolutionary analysis were disregarded. The genes were matched to 
their official gene symbols and Uniprot and Ensemble ID utilizing 
GeneCards. The human PPI network constructed [49] had a total of 
17516 proteins (nodes) and 893,876 edges linking the nodes (Fig. S1). 
The construction and procedure was also inspired from study done in 
[31] where 5 source types were used to finalize the high confidence PPIs 
to create human protein interactome. 

2.4. HPV-induced cervical cancer (HPV2C) subnetwork construction 

The constructed HPV2C network consisted of all the shortest paths 
between the HPV-host proteins and CC differentially expressed proteins 
(DEPs) in the human PPI network developed [31] using the STRING, 
SNAP, and DisGeNET protein interactions data. The key idea behind 
developing HPV2C network construction in this study was to come up 

with HPV related CV–associated proteins. The STRING database along 
with other databases was selected for a reason that selecting the STRING 
database as the PPI database is supported by prior research, which has 
shown that it offers a more extensive range of information on 
disease-associated protein sets than other databases. We only considered 
interactions with a confidence score greater than 0.4 [50], which is the 
default setting and represents the medium level of confidence for PPI 
searches in the STRING database. The Dijkstra algorithm [51] was 
employed to identify the shortest paths connecting every pair of proteins 
in the human PPI network between HPV-host and CC related DEPs. We 
utilized the NetworkX Python package [52] for carrying out the shortest 
path search. Gephi 0.9.2 [53] was used to visualize networks. Here 
network proximity [54] and RWR network algorithm [55] was used to 
find the HPV-host associated key proteins from the HPV2C network. To 
identify significant proteins for each of the network RWR algorithms, 
permutation tests were carried out 10,000 times. In each of the 10,000 

Fig. 1. Introductory figure showing network-based drug repurposing. A) Mechanism of HPV infection leading to cervical cancer. B) Data collection for HPV-hosts, 
cervical cancer, and Human protein-protein interactions. C) Construction of shortest path source (HPV-host) to target (Cervical cancer) network (HPV2C). D) 
Obtaining key proteins and performing drug repurposing using network proximity analysis. E) Validation of the prediction. 
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tests [56], a random network was generated while preserving the degree 
distribution of the original HPV2C network [30,31]. The random 
network was created by reconnecting edges in the main network and 
swapping nodes. The network algorithm was then applied in each per
mutation test to obtain the results. These results were used to calculate 
the empirical P value and Z-value of the network algorithm. Finally, the 
RWR permutation test results were analyzed to determine the final set of 
key proteins with an empirical P value of ≤ 0.05 [57]. 

Finally, to summarize for clarity, the key technical aspects of the 
HPV2C are Data Sources: Specify the version and sources of the data
bases used, such as STRING, SNAP, and DisGeNET, to ensure trans
parency and reproducibility. Algorithm Parameters: Provide details of 

specific parameters used in the Dijkstra algorithm, NetworkX Python 
package, and Gephi for network construction and visualization, such as 
distance metrics, scoring thresholds, and layout algorithms. Network 
Proximity and RWR: Explain the rationale for selecting network prox
imity and the Random Walk with Restart (RWR) algorithm, and describe 
any parameters or settings used in these algorithms, including restart 
probabilities or convergence criteria. Permutation Tests: Elaborate on 
the methodology for the permutation tests, including how random net
works were generated while preserving the degree distribution, and any 
specific tools or libraries used to perform these tests. Statistical Signifi
cance: Clarify the criteria for identifying statistically significant key 
proteins, such as the choice of an empirical p-value threshold (≤0.05) 

Fig. 2. Cervical cancer expression analysis results using GEO2R web-based tool. A-B) Expression results in log2(expression) and fold change respectively where red 
are upregulated, and blue are downregulated. C) UMAP grouping between controls and CIN3 samples followed by D) total control and CIN3 samples. E-G) shows the 
statistical analysis results. 
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and the interpretation of the results. 

2.5. Drug-target network construction 

To build drug-target interaction (DTI) network information of DTI 
was collected from databases including DrugBank [58], ChEMBL [59], 
PharmGKB [60], and Therapeutic Target Database (TTD) [61]. The DTI 
information was obtained from DrugBank. Interactions with binding 
affinities ≤ 10 μM, drug targets having status reviewed from Uniprot 
database, and having unique accession Uniprot IDs were kept as valid 
and used for developing DTI network. 

2.6. Network proximity analysis 

A DTI network using networkx library was constructed and visual
ized as shown in Fig. S2. To analyze key proteins from the HPV2C 
subnetwork, a network-based proximity analysis was conducted using 
networkx. This involved determining the network proximity inspired 
from [31] (using Eq. i) between a set of key proteins (K) and drug targets 
(T) for each approved drug. The shortest path length (d(k,t)) between 
nodes k ∈ K and t ∈ T in the human DTI network was used to calculate 
the distance between the drug targets and our key proteins in the HPV2C 
network. 

dc(K,T) =
1

||T| |

∑n

k∈T
minkKd(k, t) (i) 

To evaluate the importance of the gap between a crucial protein in 
the HPV2C network and a drug dc (K, T), the z score was obtained from 
the distance through permutation tests utilizing Eq. ii. The corre
sponding P value was calculated based on the permutation test results 
using python function. 

z(K, T) =
d(K,T) − μdd(K,T)

σd(K,T)
(ii)  

2.7. Gene set enrichment analysis 

For validation, we carried out gene set enrichment analysis (GSEA) 
[62]. Specifically, we obtained two distinct data sets showing differen
tial gene expression in individuals with HPV infection, which were 
retrieved from the GEO database. To conduct an analysis of differential 
expression, genes were considered differentially expressed if their 
adjusted P-value < 0.05. Data on the differential expression of genes in 
cells that were treated with different drugs were obtained from the 
Connectivity Map (CMAP) database [63]. The gene profiles of the drugs 
were utilized to calculate an enrichment score (ES) using CMAP Clue for 
each drug that was present in both the CMAP dataset and our drug-target 
network [9,64]. 

2.8. Literature validation 

To further confirm the indications, literature-based validation of the 
repurposable drugs is carried out. For each drug, original indication and 
its use for CC is searched in PubMed, patents, and databases [18,65,66]. 
As a result, a drug whose original indication is either CC or it is pre
clinically or clinically tried or under clinical trials for CC is labeled as 
validated. For the remaining drugs anti-viral activity is checked and 
those which possess antiviral activity are prioritized for preclinical 
validation. 

2.9. Network based drug combination prediction 

To ensure the success of this method of combining drugs based on 
their network, it is necessary to confirm whether the network relation
ship between two drug-target modules indicates their biological and 
pharmacological relevance and to measure the network relationship 

between drug targets and host proteins associated with HPV. To identify 
possible drug combinations [67], we integrated the top ranked drug 
lists. Our primary approach is based on the idea that a drug combination 
can be considered therapeutically effective only if it adheres to a 
particular relationship with the disease module. This relationship is 
identified by the Complementary Exposure or overlapping patterns 
observed in the target modules of both drugs (Eq. iii). 

Axy =
(
dxy

)
−
[dxx + dyy]

2
(iii) 

Finally, 14 drug pairs are suggested to be pre-clinically and clinically 
validated for potential application in HPV associated CC. 

3. Results 

3.1. HPV2C network construction 

Here, the HPV2C network was generated by connecting the shortest 
paths between HPV-hosts and CC-associated DEGs [68] in a human PPI 
network that was constructed from various sources, as described in the 
methods section. The primary objective of constructing the HPV2C 
network was to discover proteins that are linked to CC disease [16]. The 
STRING database was preferred for PPIs due to prior evidence suggest
ing that it offers more comprehensive information on diverse sets of 
disease-associated proteins. We used 22 HPV-human host proteins as 
source proteins and 536 CC related proteins (Expressed) from GEO 
Dataset (GSE63514) (Fig. 2) as target nodes. Degree, betweenness and 
closeness centralities values were calculated and were assigned to nodes 
as attributes followed by application of shortest path from source to 
target nodes traversing through human interactome which resulted in 
HPV2C network. The resulting network contained 1153 nodes including 
source, target, and intermediate or nodes from hidden network. Further 
analysis showed that, roughly 99% of the routes from HPV-associated 
proteins to CC-associated expressed proteins in HPV2C network are 
through multiple proteins. Moreover, the overlap between 
HPV-associated proteins and CC-associated proteins is merely 2%. These 
findings imply that the concealed stratum in our network holds signifi
cance in comprehending the routes that join HPV and CC. Further, dif
ferential expression analysis of GEO dataset (GSE63514) was performed 
using GEO2R web-based tool [9] with Padj< 0.05. The upregulated 
genes expression values are shown in Fig. 2A followed by fold change 
and UMAP values in Fig. 2 BC. The dataset contained samples for CIN1 
(a grade 1 pre-cancerous condition of the cervix), CIN2 (a grade 2pre-
cancerous condition of the cervix), and CIN3 a high-grade lesion and 
has a much higher risk of progressing to CC than CIN1 or CIN2 [69]. The 
sample count CIN3 are analyzed and used in this study (Fig. 2D) fol
lowed by mean variance trend, density of expression, and t-statistics are 
shown in Fig. 2E-G respectively [70]. The analysis results for the CIN1 
and CIN2 pre-cancerous conditions are given in Fig. S3 and Fig. S4 
respectively. 

3.2. Interrogation of HPV2C network to find key proteins and pathways 

HPV2C networks contain proteins that are crucial to a pathway and 
can be targeted by drugs since they can significantly affect the pathway’s 
function. To pinpoint the key proteins and disease pathways in the 
HPV2C network (Fig. 1C), various network algorithms like degree cen
trality, betweenness centrality, eigenvector centrality, and RWR were 
employed. To detect proteins that have statistical significance, we con
ducted 10,000 permutation tests for every network algorithm and 
picked proteins with empirical P values that were below 0.05. We 
combined the proteins selected by each network algorithm and classified 
them as key proteins (Mentioned in materials and methods). As a result, 
we identified 170 key common proteins against 22 HPV (Table S1 and 
Fig. S9) as shown in Fig. 3A. Identified key proteins are roughly 14.7% of 
the total proteins in the HPV2C network. HPV-host proteins are shown 
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Fig. 3. A) HPV-host to key protein interactions where HPV-host are shown using the blue colored nodes, targetable proteins are presented using light blue color, and 
non-targetable are shown using green color. B) Geno ontology (GO) enrichment analysis of the HPV-host proteins using gProfiler web-based tool. 
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interacting with key proteins found from network analysis. The target
able and non-targetable proteins are highlighted using light blue and 
green color. The criteria was, if the protein is known target of drug, then 
it is considered as targetable and vice versa. Biological pathway 
enrichment of the HPV-host proteins resulted in viral carcinogenesis 
(Fig. S5), other cancers (Fig. S6) and HPV infection leading to cancer 
(Fig. S7) [71]. To confirm the biological relevance of these proteins to 
the symptoms of CC, an analysis was conducted. The analysis involved a 
GO enrichment study of the HPV-proteins, which revealed that the top 
enriched molecular functions, biological processes, and pathways 
involved that were potentially associated with the HPV induced viral 
carcinogenesis and related cancers (Fig. 3B). Detailed description of the 
GO findings are provided in Fig. S8 (Padj<0.05) and information related 
HPV-host protein related pathways are given in Fig. 4C and in detail are 
provided in Table S4. 

3.3. In-silico network proximity analysis of drug-target network identifies 
drug candidates 

After the identification and analysis of key HPV2C proteins, we were 
inspired to seek approved drugs that could attach to many of these host 
proteins. This could enhance the efficacy of the drugs in preventing 
HPV-induced CC. We utilized an in-silico network-based proximity 
measure analysis to evaluate the key proteins in the HPV2C network. We 
gathered 1804 approved drugs from public databases, such as ChEMBL 
and DrugBank. Next drug-target interaction network was constructed 
followed by proximity analysis. The virtual screening process enabled us 
to predict 142 drugs (as shown in Table S3) that are likely to target the 
key proteins of the HPV2C network (P < 0.05). These network proximity 
analyses offer putative repurposable candidates for potential prevention 
and treatment of HPV associated CC. Moreover, the predicted drugs are 
roughly 7.8% of the total drugs in network. Anatomical Therapeutic 
Chemical (ATC) codes were then checked to find out the therapeutic 
areas for which these drugs have been approved. The top therapeutic 
areas included cancer, anti-viral or infectious disease, and immune 
system etc. The predicted drugs are plotted in the form of drug-target 
interaction network as shown in Fig. 4A. The green color nodes repre
sent the drugs whereas other nodes are targets. The interaction network 
is generated using Gephi 0.9.2 and is shaped based on degree connec
tivity. This helps us find the drugs which are connected to multiple 
targets and targets which are inhibited by multiple drugs. Such as 
“GABRQ” is obviously the protein target with high number of drugs 
followed by “Zinc acetate” and “copper” with high number of targets in 
the number. Additionally, pathway enrichment analysis is performed for 
the druggable targets using ShinyGo web-based tools which show their 
involvement in cancers and HPV-infection (Fig. 4B). The detailed anal
ysis for GO enrichment of HPV2C key proteins is provided in Fig. S10. 
Different GO processes such as molecular function (MF), biological 
processes (BP), and KEGG pathways are mentioned [72]. Additionally, 
pathway enrichment analysis of key proteins shows the significant 
enrichment in various cancer signaling pathways (Fig. S11) playing 
crucial role in cancer progression. Similarly, pathway enrichment 
analysis of HPV-host proteins is also given in Fig. 4C, and details are 
provided in Fig. S8. The pathway enrichment results for key proteins and 
HPV-host proteins coincide and thus it shows that key proteins and 
HPV-host proteins lies in close vicinity, and it further strengthen the 
hypothesis that similar targets can by targeted by similar drugs. 

3.4. Validation of repurposable drugs 

Here we used literature based and GSEA based validation of the 
repurposed drugs. Initially, a literature survey was performed to 
confirmed if the predicted drugs have been used already for CC or not. 
Surprisingly, 51 of 142 (35.9%) were found to have been already used in 
the CC (Table 1). Additionally, from the remaining 91 drugs, 33 of were 
found to possess the anti-viral activity (Table 2) but have not been used 

in CC and could be possible repurposable drug candidates for HPV- 
associated CC. Antivirals account for 26.05% of the total predicted 
drugs and 40.65% of remaining 91 drugs. Moreover, among the 
remaining 58 drugs, 17 (29.3% of 58% and 11.9% of 142 drugs) were 
anti-cancer drugs used for variety of cancer followed by remaining 43 
drugs which were neither anti-cancer nor anti-viral as shown in Fig. 5A. 
Additionally, our integrated computational approaches were found to be 
effective in prioritizing compounds, as demonstrated by a hypergeo
metric test indicating a probability of 35.9% for our 142 drugs being in 
preclinical or clinical trials, with a resulting P value of 2.3 × 10 − 3 
[31]. 

Moreover, in order to validate 142 drugs that can be repurposed 
against HPV-induced cervical cancer (CC) [73], we conducted GSEA on 
the transcriptome data of host cells infected with HPV-associated CC. We 
obtained two transcriptomics datasets, identified as GSE9750 and 
GSE26511, from GEO. These transcriptome data served as gene signa
tures for HPV-induced CC. Among the selected datasets, GSE9750 con
tained a total of 66 samples. These include 33 primary tumors, 9 cell 
lines, and 24 normal cervical epitheliums. Similarly, GSE26511 con
sisted of 20 negative samples and 19 positive CC samples making a total 
of 39 samples in dataset. Both datasets were analyzed using GEO2R and 
DEGs were calculated manually. Next, GSEA was performed for 
GSE9750 (Fig. S12) which provided useful information of the enriched 
pathways and biological process. Additionally, we downloaded the gene 
expression data of drug-treated human cell lines from the CMAP data
base to obtain drug–gene signatures followed by using clue database to 
perform drug repurposing against the mentioned datasets [74]. The 
results obtained from CLUE for both datasets were compared with ob
tained from our approach as shown in Fig. 5B. Surprisingly, 72 drugs 
were shared between all three datasets which testifies the significance of 
this study. 

Although our work used methodologies such as GSEA and literature- 
based validation, there are a number of limitations that must be recog
nized. Incomplete or biased results could result from literature-based 
validation since it depends on data availability, publication bias, and 
data quality. We conducted a thorough literature search and used 
several sources (PubMed, patents, and databases) to find medications 
used for CC to overcome these constraints. Despite these attempts, it is 
important to recognize that certain crucial data may still be missed or 
distorted because of publication trends. Subjectivity and inter-observer 
variation may be introduced during the manual estimation of differen
tially expressed genes in GSEA. The findings’ generalizability can be 
restricted because they are unique to the datasets and methodologies 
used. The effects of integration might be impacted by complexity. The 
choice of the dataset also creates potential bias. These restrictions point 
out areas that need thought and additional investigation in the domain 
of medication repurposing for HPV-induced cervical cancer. 

3.5. Network-based location of potential drug combinations for HPV-led 
CC 

To enhance therapeutic effectiveness and minimize toxicity, drug 
combinations are frequently employed in the treatment of different viral 
infections. Nevertheless, identifying and verifying potent drug combi
nations is constrained by the vast number of possible drug pairs and 
dosage combinations, leading to a combinatorial explosion. Considering 
this challenge, we drew inspiration from a study [67] that suggested a 
novel network-based approach for identifying clinically effective drug 
combinations. To achieve this, we employed approved drug combina
tions. We used network based “overlapping exposure” pattern approach 
to find the drug combinations that may create synergistic effect. After 
obtaining the possible drug combinations, additional criteria of having 
minimum of 3 shared targets. As a result, 13 potential drug combina
tions are obtained as shown in Table 3. Among the mentioned combi
nations, Belinostat and Vorinostat are effectively tested as pan-HDAC 
inhibitors against HPV-18 and thus their combination is also found 

F. Ahmed et al.                                                                                                                                                                                                                                  



Computational and Structural Biotechnology Journal 21 (2023) 5186–5200

5193

Fig. 4. Repurposed drug information. A) Drug-target network of potentially repurposable drugs plotted based on node degree. B) ShinyGO 0.77 based pathway 
enrichment results of key proteins from HPV2C network, C) shows the pathway enrichment of HPV-host associated key targetable proteins using ShinyGO 0.77. 
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effective in various viral cancers such as CC [75]. 

4. Discussion 

Here, various computational techniques, including bespoke methods 
for integrating data, analyzing networks, and simulating computer 
models were utilized (Fig. 1B and D). The goal was to discover pathways 
caused by HPV that contribute to CC. These pathways could potentially 
be treated with currently available drugs by repurposing them for 
therapeutic purposes. While network analysis has become a popular 
method for analyzing genetic datasets to identify disease indicators, our 
approach, which involved creating the HPV2C network (Fig. 1C) and 
applications of network algorithms without any preconceived notions, 
was crucial in uncovering these novel targets. HPV2C was created by 
three types of protein nodes, first HPV-host proteins (obtained from 
literature), second CC associated expressed proteins (Fig. 2), and middle 
or human interactome proteins capturing key pathways and processes 
involved in HPV infection leading to CC. HPV2C analysis (Materials and 
Methods) provided 170 key proteins against 22 HPV-host proteins 
(Fig. 3A). David, ShinyGo, gProfiler based enrichment analysis of HPV- 
host proteins (Fig. 3B) and key proteins (Fig. 4B and Fig. S10) provided 
key information of the MP, BP, and enriched pathways. This was fol
lowed by DTI network construction of approved drugs from multiple 
databases and proximity analysis between created DTI network and key 
proteins from HPV2C led to perform drug repurposing for HPV induced 
CC (Fig. 1D). 

After conducting our analysis, we have identified 142 drugs that 

Table 1 
Literature based validated drugs, shown to have been tested for endometrial 
cancer.   

DrugBank 
ID 

Name Uniprot Name Uniprot 
ID 

1 DB00157 NADH Glyceraldehyde-3- 
phosphate 
dehydrogenase 

P04406 

2 DB00175 Pravastatin Glyceraldehyde-3- 
phosphate 
dehydrogenase, testis- 
specific 

O14556 

3 DB00184 Nicotine Histone deacetylase 2 Q92769 
4 DB00227 Lovastatin Neuronal acetylcholine 

receptor subunit alpha 
4 

P43681 

5 DB00281 Lidocaine Histone deacetylase 2 Q92769 
6 DB00313 Valproic acid Epidermal growth 

factor receptor 
P00533 

7 DB00317 Gefitinib Histone deacetylase 2 Q92769 
8 DB00333 Methadone Epidermal growth 

factor receptor 
P00533 

9 DB00451 Levothyroxine Neuronal acetylcholine 
receptor subunit alpha 
4 

P43681 

10 DB00475 Chlordiazepoxide Thyroid hormone 
receptor beta 

P10828 

11 DB00530 Erlotinib Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

12 DB00543 Amoxapine Epidermal growth 
factor receptor 

P00533 

13 DB00551 Acetohydroxamic acid Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

14 DB00594 Amiloride Macrophage 
metalloelastase 

P39900 

15 DB00599 Thiopental Amiloride-sensitive 
amine oxidase [copper- 
containing] 

P19801 

16 DB00603 Medroxyprogesterone 
acetate 

Neuronal acetylcholine 
receptor subunit alpha 
4 

P43681 

17 DB00641 Simvastatin Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

18 DB00690 Flurazepam Histone deacetylase 2 Q92769 
19 DB00741 Hydrocortisone Gamma-aminobutyric 

acid receptor subunit 
theta 

Q9UN88 

20 DB00753 Isoflurane Annexin A1 P04083 
21 DB00755 Tretinoin Gamma-aminobutyric 

acid receptor subunit 
theta 

Q9UN88 

22 DB00898 Ethanol [Pyruvate 
dehydrogenase (acetyl- 
transferring)] kinase 
isozyme 4, 
mitochondrial 

Q16654 

23 DB00915 Amantadine Neuronal acetylcholine 
receptor subunit alpha 
4 

P43681 

24 DB00959 Methylprednisolone Neuronal acetylcholine 
receptor subunit alpha 
4 

P43681 

25 DB01013 Clobetasol propionate Annexin A1 P04083 
26 DB01016 Glyburide Annexin A1 P04083 
27 DB01050 Ibuprofen Cystic fibrosis 

transmembrane 
conductance regulator 

P13569 

28 DB01076 Atorvastatin Cystic fibrosis 
transmembrane 
conductance regulator 

P13569 

29 DB01092 Ouabain Histone deacetylase 2 Q92769 
30 DB01095 Fluvastatin Sodium/potassium- 

transporting ATPase 
subunit alpha-3 

P13637  

Table 1 (continued )  

DrugBank 
ID 

Name Uniprot Name Uniprot 
ID 

31 DB01118 Amiodarone Histone deacetylase 2 Q92769 
32 DB01169 Arsenic trioxide Thyroid hormone 

receptor beta 
P10828 

33 DB01189 Desflurane G1/S-specific cyclin- 
D1 

P24385 

34 DB01236 Sevoflurane Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

35 DB01259 Lapatinib Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

36 DB01303 Oxtriphylline Epidermal growth 
factor receptor 

P00533 

37 DB01593 Zinc Histone deacetylase 2 Q92769 
38 DB01708 Prasterone Glyceraldehyde-3- 

phosphate 
dehydrogenase, testis- 
specific 

O14556 

39 DB01956 Taurine Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

40 DB02546 Vorinostat Gamma-aminobutyric 
acid receptor subunit 
theta 

Q9UN88 

41 DB05015 Belinostat Histone deacetylase 1 Q13547 
42 DB06176 Romidepsin Histone deacetylase 1 Q13547 
43 DB06603 Panobinostat Histone deacetylase 1 Q13547 
44 DB08916 Afatinib Histone deacetylase 1 Q13547 
45 DB09130 Copper Epidermal growth 

factor receptor 
P00533 

46 DB09213 Dexibuprofen Glyceraldehyde-3- 
phosphate 
dehydrogenase 

P04406 

47 DB09330 Osimertinib Cystic fibrosis 
transmembrane 
conductance regulator 

P13569 

48 DB11638 Artenimol Epidermal growth 
factor receptor 

P00533 

49 DB11828 Neratinib Actin, cytoplasmic 2 P63261 
50 DB14539 Hydrocortisone acetate Epidermal growth 

factor receptor 
P00533  

F. Ahmed et al.                                                                                                                                                                                                                                  



Computational and Structural Biotechnology Journal 21 (2023) 5186–5200

5195

Table 2 
Drugs having anti-viral activity.   

DrugBank ID Name Uniprot Name Structures Uniprot ID 

1 DB00231 Temazepam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

2 DB00277 Theophylline Histone deacetylase 2 Q92769 

3 DB00279 Liothyronine Thyroid hormone receptor beta P10828 

4 DB00349 Clobazam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

5 DB00404 Alprazolam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

6 DB00514 Dextromethorphan Neuronal acetylcholine receptor subunit alpha 4 P43681 

7 DB00572 Atropine Neuronal acetylcholine receptor subunit alpha 4 P43681 

8 DB00615 Rifabutin Heat shock protein HSP 90-alpha P07900 

9 DB00659 Acamprosate Gamma-aminobutyric acid receptor subunit theta Q9UN88 

10 DB00747 Scopolamine Neuronal acetylcholine receptor subunit alpha 4 P43681 

11 DB00842 Oxazepam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

12 DB00887 Bumetanide Cystic fibrosis transmembrane conductance regulator P13569 

13 DB00981 Physostigmine Neuronal acetylcholine receptor subunit alpha 4 P43681 

(continued on next page) 
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Table 2 (continued )  

DrugBank ID Name Uniprot Name Structures Uniprot ID 

14 DB01043 Memantine Gamma-aminobutyric acid receptor subunit theta Q9UN88 

15 DB01159 Halothane Gamma-aminobutyric acid receptor subunit theta Q9UN88 

16 DB01174 Phenobarbital Neuronal acetylcholine receptor subunit alpha 4 P43681 

17 DB01223 Aminophylline Histone deacetylase 2 Q92769 

18 DB01273 Varenicline Neuronal acetylcholine receptor subunit alpha 4 P43681 

19 DB01544 Flunitrazepam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

20 DB01587 Ketazolam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

21 DB01588 Prazepam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

22 DB01589 Quazepam Gamma-aminobutyric acid receptor subunit theta Q9UN88 

23 DB08868 Fingolimod Histone deacetylase 1 Q13547 

24 DB09280 Lumacaftor Cystic fibrosis transmembrane conductance regulator P13569 

25 DB09552 Thonzonium V-type proton ATPase subunit C 1 P21283 

(continued on next page) 
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Table 2 (continued )  

DrugBank ID Name Uniprot Name Structures Uniprot ID 

26 DB11157 Anthralin Keratin, type II cytoskeletal 2 epidermal P35908 

27 DB11901 Apalutamide Gamma-aminobutyric acid receptor subunit theta Q9UN88 

28 DB12010 Fostamatinib TGF-beta receptor type-1 P36897 

29 DB14487 Zinc acetate Glyceraldehyde-3-phosphate dehydrogenase, testis-specific O14556 

30 DB14533 Zinc chloride Glyceraldehyde-3-phosphate dehydrogenase, testis-specific O14556 

31 DB14548 Zinc sulfate, unspecified form Glyceraldehyde-3-phosphate dehydrogenase, testis-specific O14556 

32 DB14669 Betamethasone phosphate Annexin A1 P04083 

33 DB15035 Zanubrutinib Epidermal growth factor receptor P00533  

Fig. 5. Validation results. A) shows literature-based validation results of the predicted drugs and B) shows GSEA based validation results of the repurposable drugs.  
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have been approved for other uses but may also be effective in treating 
CC caused by HPV (refer to Table S3). Based on our findings, we believe 
that these drugs could be repurposed for CC treatment since 51 of 142 
(35.9%) were found to have been already used in the CC (Table 1). 
Additionally, from the remaining 91 drugs, 33 of were found to possess 
the anti-viral activity (Table 2) (Fig. 5A) but have not been used in CC 
and could be possible repurposable drug candidates for HPV-associated 
CC. Moreover, one important aspect of our analysis involves utilizing 
drugs that have already been approved for other uses. This approach 
enables us to quickly advance the remaining 91 drugs containing 33 
anti-viral that have not entered in clinical trials for CC as the most 
effective treatments for CC caused by HPV. 

Moreover, Avastin with brand name of bevacizumab has been used 
to treat advanced CC by inhibiting the Vascular endothelial growth 
factor (VEGF) [76]. Similarity our approach predicted the statins like 
Pravastatin and Lovastatin for CC supported by literature confirmation 
[77] (Fig. 4A). Pravastatin and Lovastatin are shown targeting HDAC-2 
(Fig. 4A) whereas it is suggested that HDAC inhibitors are promising 
therapeutic agents to treat benign HPV infections, abrogate progeny 
virus production [75]. This emphasizes to test the other predicted drugs 
and raises the exciting possibility of their potential use in CC. Other 
predicted drugs that were confirmed to have entered clinical trials for 
CC are Lidocaine [78], Methadone [79], and Levothyroxine [80] etc. 
Additionally, we performed GSEA using two datasets of transcriptomic 
signatures in CC and queried the Clue database to find the drugs that 
could possibly reverse the disease signatures. Upon comparison, we 
found that 72 drugs are common among these two datasets and our 
approach as shown in Fig. 5B. In addition, we utilized “overlapping 
exposure” pattern between the drug-targets and identified potential 
drug combinations which were latter further refined by setting criteria 
of significance (targets >= 3) (Table 3). 

A literature based complementary study queried the PubMed for the 
drugs available in ReDO_DB [81] and CDcervix_DB [21] and found that 
174/534 (33%) were having greater than or equal to one related ab
stract or registered trial history in CC. 94/534 (18%) drugs were having 
human data available, and 52/534 (10%) drugs had been assessed in 
registered trials [21]. The list of drugs significantly overlaps with our list 
with having 33 of 142 (23.2%) approved drugs being present in this list. 
The main reason is that 100% of our drugs are approved whereas the 
drug list in study [21] contains unapproved drugs as well. The statement 
points out a significant contrast between the two studies. Our research 
conducted in-silico has detected potential antiviral medicines that have 
already been approved and are therefore in an advanced stage of 
repurposing. On the other hand, the research cited in reference [21] has 
identified substances found in databases such as ReDO_DB and CDcer
vix_DB, which include both approved and unapproved compounds. 
Moreover, our study is based on computational methods that employ 
cutting-edge network-based techniques and algorithms to identify 

crucial proteins through network proximity analysis, which leads to 
drug repurposing in contrast to manual literature search. 

Several computational studies have been conducted to find potential 
cancer drugs through multi-stage analyses, including network proximity 
measure analysis that focuses on a specific target and its interactomes. In 
contrast, we have taken a more holistic approach, constructing the 
entire protein pathway that is significantly affected during HPV infec
tion. This was achieved by uncovering the hidden layer between HPV- 
host and CC-associated regulated genes, which were identified from 
literature and proteomic data obtained from gene expression analysis of 
laser-captured epithelium (GSE63514) from 128 cervical tissue. To 
identify the key proteins systematically, we used different network al
gorithms (as described in Materials and Methods). Our approach not 
only detected 142 drugs but also 13 drug combinations. However, like 
other studies, our study also has limitation of directionality in PPI 
network that brings additional information about the type of interaction 
that takes place such as activation or inhibition. Moreover, lack of 
experimental validation, limited coverage to chemical space, and lack of 
efficient integration of different network algorithms are also the major 
limitations to be addressed in future studies. To overcome these chal
lenges, Computational predictions need to be validated through robust 
in vitro and in vivo assays at each step of the pipeline. Additionally, 
expanding the screening of on-demand libraries by several orders of 
magnitude to billions and more of previously unexplored drug-like 
compounds, either physical or virtual, is expected to change the drug 
discovery model in several ways and finally, efficient algorithms need to 
be integrated properly to achieve the comprehensive study of biological 
processes at multiple scales. 

5. Conclusion 

Cervical cancer (CC) remains a significant public health concern and 
is the fourth most common cancer affecting women globally. According 
to recent estimates, approximately 604,000 new cases of CC and 
342,000 related deaths occur each year, which necessitates the devel
opment of more efficient treatments at a faster pace. Due to high cost 
and risk associated with development of de-novo drug discovery, drug 
repurposing emerges as an effective alternative and helps in the devel
opment of potential therapies for Cervical cancer (CC). The proposed 
network-based drug repurposing strategy presented in this study has 
identified 142 FDA-approved drugs as potentially repurposable for CC. 
The analysis utilized a set of HPV-host proteins and CC associated 
differentially expressed proteins to create a subnetwork of HPV induced 
CC (HPV2C) followed by the identification of key targets in HPV2C 
network. Next, with the help of proximity analysis of drug-target 
network and key proteins, drug repurposing of approved drugs was 
performed followed by drug combination prediction (13 potential drug 
combinations predicted). Additionally, literature-based validation 
confirmed that 51 of 142 drugs have already been used for CC and have 
shown inhibition potential. 33 of remaining 99 drugs have been 
confirmed to have anti-viral activity. Further validation was performed 
using GSEA where 72 drugs were found overlapped among all datasets. 
Since the drugs are validated by computational methods, these drugs 
should be first tried preclinically prior to use them in human or in 
clinical trials. This analysis creates new opportunities for the quick 
repurposing of FDA-approved drugs. Moreover, the limitations of cur
rent study are highlighted and acknowledged in discussion. Finally, by 
employing a data-driven unsupervised approach and biological valida
tion, our research has provided useful insights into the mechanisms of 
HPV-associated CC disease and has identified potential drug repurpos
ing opportunities for the treatment of HPV infection and CC. 
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prediction of drug combinations. 2019 101 Nat Commun 2019;vol. 10(1):1–11. 
https://doi.org/10.1038/s41467-019-09186-x. 

[68] Wei J, Wang Y, Shi K, Wang Y. Identification of core prognosis-related candidate 
genes in cervical cancer via integrated bioinformatical analysis. Biomed Res Int 
2020;vol. 2020:8959210. https://doi.org/10.1155/2020/8959210. 

[69] Allahqoli L, et al. Diagnosis of cervical cancer and pre-cancerous lesions by 
artificial intelligence: a systematic review. Diagn (Basel, Switz) 2022;vol. 12(11). 
https://doi.org/10.3390/diagnostics12112771. 

[70] Li Y, et al. GRAND: a large-scale dataset and benchmark for cervical intraepithelial 
Neoplasia grading with fine-grained lesion description. Med Image Anal 2021;vol. 
70:102006. https://doi.org/10.1016/j.media.2021.102006. 

[71] Bansal A, Singh MP, Rai B. Human papillomavirus-associated cancers: a growing 
global problem. Int J Appl Basic Med Res 2016;vol. 6(2):84. https://doi.org/ 
10.4103/2229-516X.179027. 

[72] Dai Z, Tang H, Pan Y, Chen J, Li Y, Zhu J. Gene expression profiles and pathway 
enrichment analysis of human osteosarcoma cells exposed to sorafenib. FEBS Open 
Bio 2018;vol. 8(5):860–7. https://doi.org/10.1002/2211-5463.12428. 

[73] Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human 
papillomavirus and cervical cancer. Lancet 2007;vol. 370(9590):890–907. https:// 
doi.org/10.1016/S0140-6736(07)61416-0. 

[74] Jiang P, et al. SNX10 and PTGDS are associated with the progression and prognosis 
of cervical squamous cell carcinoma. BMC Cancer 2021;vol. 21(1):694. https://doi. 
org/10.1186/s12885-021-08212-w. 

[75] Banerjee NS, Moore DW, Broker TR, Chow LT. Vorinostat, a pan-HDAC inhibitor, 
abrogates productive HPV-18 DNA amplification. Proc Natl Acad Sci 2018;vol. 115 
(47):E11138–47. https://doi.org/10.1073/pnas.1801156115. 

[76] Tewari KS, et al. Improved survival with bevacizumab in advanced cervical cancer. 
N Engl J Med 2014;vol. 370(8):734–43. https://doi.org/10.1056/ 
NEJMoa1309748. 

[77] Liu Y, Qin A, Li T, Qin X, Li S. Effect of statin on risk of gynecologic cancers: a 
meta-analysis of observational studies and randomized controlled trials. Gynecol 
Oncol 2014;vol. 133(3):647–55. https://doi.org/10.1016/j.ygyno.2014.04.007. 

[78] Li D, Zhang J, Yin L, Jin Z, Chen X, Meng X. Etomidate inhibits cell proliferation 
and induces apoptosis in A549 non-small cell lung cancer cells via downregulating 
WWP2. Exp Ther Med 2021;vol. 22(5):1254. https://doi.org/10.3892/ 
etm.2021.10689. 

[79] Palat G, Chary S. Practical guide for using methadone in pain and palliative care 
practice. Indian J Palliat Care 2018;vol. 24(Suppl 1):S21–9. https://doi.org/ 
10.4103/IJPC.IJPC_186_17. 

[80] Wu C-C, et al. Risk of cancer in long-term levothyroxine users: retrospective 
population-based study. Cancer Sci 2021;vol. 112(6):2533–41. https://doi.org/ 
10.1111/cas.14908. 

[81] Pantziarka P, et al. ReDO_DB: the repurposing drugs in oncology database. 
Ecancermedicalscience 2018;vol. 12:886. https://doi.org/10.3332/ 
ecancer.2018.886. 

F. Ahmed et al.                                                                                                                                                                                                                                  

https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1111/j.1468-2982.2003.00722.x
https://doi.org/10.1111/j.1468-2982.2003.00722.x
https://doi.org/10.1093/NAR/GKW943
https://doi.org/10.1038/s41598-019-41552-z
https://doi.org/10.1093/bioadv/vbac001
https://doi.org/10.1088/1742-6596/1530/1/012040
https://www.osti.gov/biblio/960616
https://doi.org/10.3389/FCELL.2020.545089/BIBTEX
https://doi.org/10.3389/fgene.2020.591461
https://doi.org/10.1016/j.socnet.2019.08.001
https://doi.org/10.1016/j.socnet.2019.08.001
https://doi.org/10.1186/1471-2105-15-255
https://doi.org/10.1093/NAR/GKJ067
https://doi.org/10.1093/NAR/GKJ067
https://doi.org/10.1093/NAR/GKR777
https://doi.org/10.1093/NAR/GKR777
https://doi.org/10.1186/S13040-015-0042-8
https://doi.org/10.1093/nar/gkab953
https://doi.org/10.1073/PNAS.0506580102/SUPPL_FILE/06580FIG7.JPG
https://doi.org/10.1073/PNAS.0506580102/SUPPL_FILE/06580FIG7.JPG
https://doi.org/10.1186/s12967-017-1302-9
https://doi.org/10.1038/NM.4306
https://doi.org/10.1038/NM.4306
https://doi.org/10.1088/1361-665X/AC6E15
https://doi.org/10.1007/S42235-022-00208-X
https://doi.org/10.1007/S42235-022-00208-X
https://doi.org/10.1038/s41467-019-09186-x
https://doi.org/10.1155/2020/8959210
https://doi.org/10.3390/diagnostics12112771
https://doi.org/10.1016/j.media.2021.102006
https://doi.org/10.4103/2229-516X.179027
https://doi.org/10.4103/2229-516X.179027
https://doi.org/10.1002/2211-5463.12428
https://doi.org/10.1016/S0140-6736(07)61416-0
https://doi.org/10.1016/S0140-6736(07)61416-0
https://doi.org/10.1186/s12885-021-08212-w
https://doi.org/10.1186/s12885-021-08212-w
https://doi.org/10.1073/pnas.1801156115
https://doi.org/10.1056/NEJMoa1309748
https://doi.org/10.1056/NEJMoa1309748
https://doi.org/10.1016/j.ygyno.2014.04.007
https://doi.org/10.3892/etm.2021.10689
https://doi.org/10.3892/etm.2021.10689
https://doi.org/10.4103/IJPC.IJPC_186_17
https://doi.org/10.4103/IJPC.IJPC_186_17
https://doi.org/10.1111/cas.14908
https://doi.org/10.1111/cas.14908
https://doi.org/10.3332/ecancer.2018.886
https://doi.org/10.3332/ecancer.2018.886

	Network-based drug repurposing for HPV-associated cervical cancer
	1 Introduction
	2 Materials and methods
	2.1 HPV host proteins & cervical cancer DEGs
	2.2 Functional enrichment analysis
	2.3 Human PPI network construction
	2.4 HPV-induced cervical cancer (HPV2C) subnetwork construction
	2.5 Drug-target network construction
	2.6 Network proximity analysis
	2.7 Gene set enrichment analysis
	2.8 Literature validation
	2.9 Network based drug combination prediction

	3 Results
	3.1 HPV2C network construction
	3.2 Interrogation of HPV2C network to find key proteins and pathways
	3.3 In-silico network proximity analysis of drug-target network identifies drug candidates
	3.4 Validation of repurposable drugs
	3.5 Network-based location of potential drug combinations for HPV-led CC

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Code
	Appendix A Supporting information
	References


