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Cochlear outer hair cells (OHCs) are among the fastest known
biological motors and are essential for high-frequency hearing in
mammals. It is commonly hypothesized that OHCs amplify vibra-
tions in the cochlea through cycle-by-cycle changes in length, but
recent data suggest OHCs are low-pass filtered and unable to fol-
low high-frequency signals. The fact that OHCs are required for
high-frequency hearing but appear to be throttled by slow electro-
motility is the “OHC speed paradox.” The present report resolves
this paradox and reveals origins of ultrafast OHC function and
power output in the context of the cochlear load. Results demon-
strate that the speed of electromotility reflects how fast the cell can
extend against the load, and does not reflect the intrinsic speed of
the motor element itself or the nearly instantaneous speed at which
the coulomb force is transmitted. OHC power output at auditory
frequencies is revealed by emergence of an imaginary nonlinear
capacitance reflecting the phase of electrical charge displacement
required for the motor to overcome the viscous cochlear load.
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The cochlea endows mammals with the ability to hear sounds
over a frequency range far surpassing the capability of other

vertebrate classes. Superior performance has primary origins in
the function of outer hair cells (OHCs), which are uniquely
electromotile and respond to a change in voltage with change in
length (1). OHCs are ultrafast under some conditions, capable of
generating forces at frequencies exceeding 80 kHz (2). The
motor mechanism requires expression of the protein prestin in
the lateral wall membrane (3), which imparts OHCs with prop-
erties similar to piezoelectric materials where the electric field
generates a coulomb force that drives charge displacement and
concomitant mechanical strain on a cycle-by-cycle basis (4, 5).
The idea of cycle-by-cycle amplification at auditory frequencies
has been challenged by recent experimental evidence that OHC
membranes exhibit low-pass characteristics (6, 7). Precisely how
OHCs circumvent low-pass characteristics and provide power to
the cochlea at high auditory frequencies is the primary subject of
the present report.
OHCs sense sound through mechano-electrical transduction

(MET) channels that open cycle-by-cycle in response to sound-
induced displacement of their apical stereocilia (8). The MET
current entering the cell is modulated at auditory frequencies
and drives changes in intracellular voltage. Like all cells, OHC
membranes have electrical capacitance, which reduces the volt-
age modulation as the sound frequency is increased above the
membrane RC corner frequency (RC: resistance times capaci-
tance). The RC corner is unusually high in OHCs owing to a
standing K+ conductance in the membrane (9). Ultrafast K+

channel gating might also play a role in extending the effective
RC (10). Evidence that OHCs can modulate voltage at auditory
frequencies is compelling, but whether or not the motor mech-
anism can be driven by voltage cycle-by-cycle is less clear. Direct
experimental measurement of electrical charge displacement and
motility in OHCs and membrane patches suggests prestin-
dependent electromotility is too slow to support cycle-by-cycle
amplification (6, 11–13).
The present report is focused on high-frequency power output

of OHCs and applies a thermodynamic approach to examine
whole-cell function. Results demonstrate the OHC speed paradox

arises in part from the misleading nature of conventional capaci-
tance recordings and the relationship between charge displace-
ment and OHC power output under load. The paradox is resolved
by accounting for the reversible interplay between charge dis-
placement, voltage, stress, and temperature using first principles
set forth by Maxwell, Seebeck, Currie, and Newton. Results ex-
plain high-frequency force generation in isolated OHCs (2), low-
pass nonlinear capacitance (NLC) in membrane patches (13), and
OHC power output in the cochlea across the frequency bandwidth
of hearing. Fundamental mechanisms are revealed through ex-
amination of load-dependent electrical charge displacement in the
piezoelectric membrane complex. The same principles are shown
to explain the origins of infrared laser-induced charge displace-
ment in hair cells, neurons, and model membranes (14, 15).

Results
Capacitance Susceptibility. Isolated OHCs exhibit a signature
voltage-dependent capacitance reflecting reversible electrome-
chanical charge displacement in the membrane. Examining the
origin of NLC provides insight into how OHCs function in the
cochlea. OHC membranes are complex inhomogeneous mixtures
of lipids, proteins, and charged macromolecules, bordered on each
side by ionic double layers and membrane-associated macromol-
ecules. From an experimental point of view, it is generally im-
possible to directly control or measure the nanoscale distribution
of charge associated with the membrane, but straightforward to
experimentally control the total voltage drop across the membrane
V , the temperature Θ, and the stress Ti (i = 1,2,3). For small
perturbations about the resting state (V0,Θ0,Ti0), the chain rule of
calculus provides the electrical displacement current ID across the
membrane in terms of the charge Q:
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ID = dQ
dt

= CE
∂V ′
∂t

+ CΘ
∂Θ′
∂t

+ CTi  
∂T ′

i

∂t
. [1]

The capacitance voltage susceptibility is CE =   ∂Q=∂V ′ (electric
Maxwell effect, farad, coulomb·volt−1), capacitance temperature
susceptibility is CΘ =   ∂Q=∂Θ′ (thermal Seebeck effect,
coulomb·°C−1), and the capacitance stress susceptibility is
CTi =   ∂Q=∂T ′

i (piezoelectric Currie effect, coulomb·meter2·new-
ton−1). Einstein’s summation convention applies for repeated
indices. Capacitance susceptibilities describe the charge displace-
ment driven by small perturbations in each of the three thermo-
dynamic state variables; they are thermodynamically
independent but related to each other by reciprocity, e.g.,
∂2Q=∂V ′∂Θ′ =   ∂2Q=∂Θ′∂V ′ requires ∂CE=∂Θ′ = ∂CΘ=∂V ′. The
term “susceptibility” is used here to distinguish values from ide-
alized capacitor theory (16). Measurements of cell membrane
capacitance often assume dQ=dt = Cm(∂V ′=∂t) and report Cm
as “electrical capacitance,” but this approach can be misleading
for piezo- or thermo-electric membranes because stress and/or
temperature can change with voltage, coupling multiple terms in
Eq. 1. The role OHCs in the cochlea is to convert electrical
power into mechanical power, requiring OHC membranes to
invoke capacitance voltage susceptibility CE and capacitance
stress susceptibility CTi at the same time. Results in the present
report demonstrate how these two terms interact to enable OHC
power output at auditory frequencies.
The capacitance susceptibilities in Eq. 1 arise from first prin-

ciples of thermodynamics, and can be described agnostic to the
specific molecular origins. All results in the present report are based
on general thermo-piezoelectric materials where the electro-
mechanical properties are determined from derivatives of the
Gibbs free energy. The standard second order theory is used to
describe thermo-electromechanics of nonexcitable membrane do-
mains (17, 18) and a nonlinear extension is used to describe
thermo-piezo-electromechanics of excitable domains (SI Appendix,
A). The two domains are configured in parallel electrically and in
series mechanically.

Capacitance Voltage Susceptibility in OHCs. The capacitance voltage
susceptibility CE in OHCs arises from the addition of voltage-
driven charge displacement in the passive membrane domains
(linear capacitance: CL

E), plus voltage-driven charge displace-
ment in piezoelectric domains [NLC: CP

E = Cpk
E f (ξ)]. Holding

stress and temperature constant, the total capacitance voltage
susceptibility is as follows:

CE = CL
E +   Cpk

E f (ξ). [2]

The standard electrostriction form CL
E ≈ C0

E(1 + a2(V + ψ)2)is
used for the passive domain (19) (SI Appendix, Eq. C4 and Fig.
S1), where C0

E = AL«=hL, « is the electrical permittivity, AL is the
area of the passive domain, and hL is the thickness. A small
voltage dependence arises from the electrostriction parameter
a2 and spontaneous polarization ψ. The increased linear capac-
itance present in OHCs at hyperpolarized voltages is not in-
cluded in the present analysis. The piezoelectric capacitance
susceptibility in Eq. 2 arising from the motor domains
Cp
E = Cpk

E f (ξ) is highly nonlinear (SI Appendix, Eq. A6). Cpk
E is

the peak NLC voltage susceptibility occurring at voltage Vpk

(at resting temperature and stress) arising from the piezoelectric
coefficients, the motor domain compliance tensor, and the area
of the motor domain. The nonlinearity f (ξ) describes strain-
dependent saturation of the piezoelectric charge displacement
as a function of thermodynamic state of the membrane
(V0,Ti0,Θ′

0). Saturation arises from prestin extending from its
fully contracted configuration to its fully extended configuration,
and hence is directly dependent on strain in the motor domain.

Dependence on strain makes Cp
Edependent on all three state

variables: voltage, force, and temperature. Specifically, the argu-
ment of f is proportional to strain and written
ξ = (V −   Vpk +   βFF′ + βΘΘ′)  λ−1, where βΘ is the temperature
sensitivity and βF is axial force sensitivity. (Note: the force term
βFF′ is a simplified one-dimensional version of βTiT

′
i and, by

Laplace’s law at low frequencies, can alternatively be written in
terms of intracellular pressure βPP′ and load.) The charge sen-
sitivity is λ = kBΘ=ze, where Θ is absolute temperature, kB is
Boltzmann’s constant, ze is the maximum charge movement be-
tween saturated extended and contracted states. In the present
report, f (ξ) is approximated using the first derivative of the Lan-
gevin function, so f (ξ) = 3f0((1=ξ2) − Csch(ξ)2), where the tem-
perature scaling factor is f0 = Θ=Θ0. A Langevin function is used
here with the recognition that prestin conformational changes
likely involve multiple transition states (20), resulting in broader
tails in the voltage-displacement curve than would be predicted
by a simple two-state Boltzmann, but use of an alternative func-
tional form does not change conclusions of the present report
related to the OHC speed paradox.
To establish confidence in the thermo-piezoelectric descrip-

tion, the capacitance voltage susceptibility CE from Eq. 2 is
compared to data from isolated OHCs in Fig. 1 (model param-
eters are listed in Table 1). Unlike most cells, piezoelectric ca-
pacitance voltage susceptibility CP

E introduces a strong voltage
dependence in OHCs that can double the capacitance at voltage
Vpk. Theoretical predictions (solid curves) are compared to data
from Kakehata and Santos-Sacchi (21) at two different intra-
cellular pressures in Fig. 1 A and B and to data from Santos-
Sacchi and Huang (22) at three different temperatures in
Fig. 1 C and D. It should be noted that the data in Fig. 1 C and D
(22) are shifted relative to OHCs in the cochlea where Vpk is
closer to the cell resting potential of −40 to −50 mV (9). An
increase in intracellular pressure shifts the nonlinear piezoelec-
tric capacitance to the right without a detectable change in f0 or
λ, while an increase in temperature shifts the NLC to the right
while increasing both f0 andλ. All curves in Fig. 1C use the same
value of Cpk

E , and the shift in magnitude and voltage dependence
arises naturally from temperature dependence of f (ξ), not from
any change in constitutive parameters.

Capacitance Stress Susceptibility in OHCs. The capacitance stress
susceptibility arises from the piezoelectric domains and deter-
mines the charge displacement for small perturbations in mem-
brane stress CTi(∂Ti=∂t), axial force CF(∂F=∂t), or intracellular
pressure CP(∂P=∂t) (SI Appendix, A). To facilitate comparison to
experimental data, the capacitance pressure susceptibility
CP = ∂QP=∂P is as follows:

CP = Cpk
E βPf (ξ), [3]

and is shown as a function of voltage in Fig. 1E. CP → 0 at highly
hyperpolarized and depolarized voltages, and peaks at Vpk. The
significance of CP is that it determines the electrical displace-
ment current evoked by a change in intracellular pressure,
IDP = CP(∂P=∂t) [which can be converted to displacement cur-
rent induced by a change in axial force IDF = CF(∂F=∂t) or mem-
brane stress IDT = CTi(∂Ti=∂t)]. Under dynamic load, the stress-
induced charge displacement interacts with the voltage-induced
change displacement on a cycle-by-cycle basis. This interaction
provides feedback, where the active piezoelectric element re-
sponds to both the load and voltage.

Capacitance Temperature Susceptibility. The capacitance temper-
ature susceptibility CΘ arises from both the passive and piezo-
electric domains, and determines the charge displacement for
small perturbations in membrane temperature. In OHCs,

Rabbitt PNAS | September 8, 2020 | vol. 117 | no. 36 | 21881

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

CE
LL

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003838117/-/DCSupplemental


CΘ = CL
Θ + Cpk

E βΘf (ξ). [4]

To first order, the contribution from the passive membrane is
CL
Θ ≈ C0

Ec1(V + ψ), where ψ is the spontaneous polarization aris-
ing from the ionic conditions, and c1 is the “thermostriction”
coefficient arising primarily from thinning of the membrane that
occurs with increases in temperature. Thermostriction, derived
here from thermo-piezoelectricity, is the thermal analog to elec-
trostriction in lipid bilayers (19) and explains the origins of capac-
itive currents induced by infrared laser pulses in passive
membranes (14) (SI Appendix, Fig. S2). The contribution from
the piezoelectric domains Cpk

E βΘf (ξ) is closely related to the capac-
itance voltage susceptibility and is found by taking the partial deriv-
ative of the charge displacement with respect to temperature.
Fig. 1F plots the capacitance temperature susceptibility CΘ for

OHCs. The dashed line in Fig. 1F is the contribution of the passive
membrane CL

Θ, while the solid curve is the total capacitive tem-
perature susceptibility including the contribution of piezoelectricity
(Eq. 4). It is important to note that CΘ cannot be completely

determined by temperature-dependent changes in electrical capac-
itance susceptibility alone. This is most clearly illustrated by the fact
that CΘ in Fig. 1F is negative for all voltages below the spontaneous
polarization and hence the heat-pulse–evoked current is always
inward and excitatory. The change in electrical capacitance
(Fig. 1D), in contrast, reverses sign, which would imply a change in
the direction of the capacitive current in models based simply on
variable capacitance (15). This distinction is illustrated for an OHC
in Fig. 1G where ΔCE is shown as a function of time in response to
an infrared (IR) laser pulse raising the temperature 1 °C in 500 μs
followed by slow thermal relaxation (inset i illustrates IR radiation
of the OHC). There is a very strong voltage dependence in the IR-
evoked change in electrical capacitance susceptibility that reverses
sign with voltage, quantitatively matching experimental results in
OHCs and SLC26a5-transfected cells (22, 23).

Speed and Load Dependence of OHC Charge Displacement. The
OHC motor residing in the membrane always operates against a
mechanical load, arising from the cell itself and the external

A

B

C

D

E

F

G

Fig. 1. NLC susceptibility of OHCs. (A) Capacitance voltage susceptibility CE measured at two different intracellular pressures by Kakehata and Santos-Sacchi
(21) (symbols) compared to the present piezoelectric theory (solid curves). Nonlinear piezoelectric capacitance is responsible for the bell curve, while the lipid
bilayer contributes only a very weak voltage dependence (SI Appendix, Fig. S1). (B) Change in CE evoked by a change in pressure. (C) Capacitance voltage
susceptibility CE measured at three temperatures by Santos-Sacchi and Huang (22) (symbols) compared to piezoelectric theory (solid curves). (D) Change in CE

evoked by a change in temperature. (E) Capacitance pressure susceptibility CP for the OHC in A. (F) Capacitance temperature susceptibility CΘ for the OHC in C
with Vpk shifted to resting potential of −47 mV. The bell-shaped curve arises from piezoelectricity while the straight dashed line arises from the lipid bilayer.
(G) Change in capacitance CE evoked by an infrared laser heat pulse (Inset, i) at different holding potentials (black curves). Results are for a 1 °C increase in
temperature occurring in 500 μs followed by relaxation to resting temperature over ∼1 s (Inset, red) (parameters for all figures are listed in Table 1).
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environment. As a result, OHCs invoke capacitance voltage sus-
ceptibility and stress susceptibility at the same time, with the
combination of the two providing the total electrical charge dis-
placement and mechanical strain in the membrane. To examine
how the load influences OHC function high frequencies, consti-
tutive equations for the passive membrane and the piezoelectric
domains were combined as a mixture composite and subjected to a

mechanical load imposed by the cell itself and the external envi-
ronment. Equations were simplified for small perturbations in
voltage and axial force, and converted to the frequency domain
(Methods and SI Appendix, A and B).
To examine intrinsic speed of the motor element, the cell was

clamped to a fixed length (strain = 0) and excited by sinusoidal voltage
clamp. Although the whole-cell strain was zero in the simulations, the

Table 1. Parameters

Symbol Value (SI units) Description Present estimation method Data source

a2 0.13  ðV�2Þ Electrostriction coefficient See SI Appendix, Fig. S1 Based on refs. 43 and 44
c1 0.0036  °C�1 ·V�1� �

Thermostriction coefficient See SI Appendix, Fig. S2 Based on ref. 14
CL
E Variable (F) Linear electrical capacitance

susceptibility. OHC size dependent
(∼1 μF·cm-2)

Curve fit Eq. 2 to low-frequency NLC
data (Fig. 1A)

E.g., refs. 21, 45, and 46

Cpk
E Variable (F) Peak piezoelectric electrical

capacitance susceptibility. Prestin
expression dependent

(nominal1.1  CL
E)

Curve fit Eq. 2 to low-frequency NLC
data (Fig. 1A)

E.g., refs. 21 and 46

lc Variable (m) Hair cell length. Cochlear place
dependent

Set by cochlear place SI Appendix and Fig. 3A, based
on ref. 41

n patch,
macropatch,
and cochlea

0.7 (−) Fractional derivative governing
relaxation spectrum

From power law frequency roll-off of
the real NLC

Data from Fig. 2 and ref. 24

n μ-chamber 0.8 (−) Fractional derivative governing
relaxation spectrum

Curve fit frequency dependence of
cell displacement

Data from Fig. 2 and ref. 2

Vpk −0.047 (V) Voltage of peak NLC Curve fit Eq. 2 to low-frequency NLC
data (Fig. 1A)

E.g., refs. 21 and 46

βP −0.054
(V−1·kPa−1)

Pressure sensitivity Curve fit Eqs. 2 and 3 to low-
frequency NLC data (Fig. 1 A and B)

Data from ref. 21

βΘ −0.0012 (V−1°·C−1) Temperature sensitivity Curve fit Eqs. 2 and 4 to the low-
frequency NLC (Fig. 1 C and D)

Data from ref. 22

δcf μ-chamber −0.118 (V−1) Effective OHC piezoelectric strain
coefficient times f in microchamber

experiments

Fit Eq. 5, with0< f <1 treated as
unknown, and compliance known

(Fig. 2B)

Data from Fig. 4 and in ref. 2

δc patch and
cochlea

−0.412 (V−1) Whole-cell OHC piezoelectric strain
coefficientat Vpk (note: δc'δpφf)

Fit Eq. 5. to low-frequency OHC strain
under zero load

Based on refs. 47 and 48

κc 3.5 × 106 (N−1) Low-frequency OHC compliance,
strain per Newton at Vpk

Low-frequency whole-cell compliance
converted to strain per Newton

Based on refs. 2 and 49

ðκc þ κLÞ=κL
isolated cell

1 (−) External load compliance κL →∞ for
an isolated cell

By definition

ðκc þ κLÞ=κL
cochlea

2 (−) Load compliance κLin the cochlea
comes from the internal OHC stiffness

and the external load stiffness

Stiffnesses matched Based on power efficiency,
e.g., ref. 30

κpφ=κc 0.8 (−) Ratio of compliance of the
piezoelectric domain κpφ to the

whole-cell κc

From frequency roll-off of real NLC
and magnitude of the imaginary NLC

relative to the real NLC

Based on refs. 13 and 27

λ 0.032 (V) Voltage sensitivity Curve fit Eq. 2 to low-frequency NLC
data (Fig. 1A)

Data from refs. 21 and 46

τp 2 × 10−7 (s) Relaxation time constant of
piezoelectric domain

Lack of corner in Bode force up to 80
kHz

Based on Fig. 4 from ref. 2

τc 2 × 10−7 (s) Relaxation time constant of
composite

Lack of corner in Bode force up to 80
kHz

Based on Fig. 4 from ref. 2

τRC Variable (s) Electrical time constant of the OHC.
OHC size and location dependent

From cochlear map SI Appendix and Fig. 3B, based
on refs. 9 and 42

ωn isolated cell ωiNvariable (s−1) Natural frequency of the isolated
OHC based on cell length

Frequency where OHC disp. phase
is −π/2 μ-chamber

SI Appendix and Fig. 3C, based
on Fig. 2 from ref. 2

ωn cochlea Variable (s−1) Natural frequency of the cochlear
load at the tonotopic place

Defined by cochlear place principle SI Appendix and Fig. 3 A and B
abscissa, refs. 41 and 42

ωζ isolated cell ωn=2 (s−1) Viscous corner frequency of the OHC
in media based on cell size. (damping

coefficient ζ'1)

Curve fit Bode plots in μ-chamber
configuration

From Fig. 2 and ref. 2

ωζ cochlea 1.4ωn (s−1) Damping corner frequency of the
combined OHC and cochlear load.

(damping coefficient ζ'0.36)

Underdamped based on passive
cochlear tuning

E.g., refs. 50 and 51
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motor domain was allowed to extend into the passive domain
based on their respective viscoelastic properties (Fig. 2A and SI
Appendix, Eqs. B1–B5). The force ~B required to prevent the
OHC from changing length in response to voltage ~V is (tildes
denote the frequency domain):

FV (ω) =
~B
~V
=   − ~δ

c

~κc
, [5]

where the composite piezoelectric coefficient is
~δ
c = δcf (ξ)=(1 + jωτp) and the composite compliance is
~κc = κc=(1 + jωτc). The material parameter and δc is the compos-
ite piezoelectric strain coefficient at ξ = 0 (f (ξ) = 1). Time con-
stants τp and τc govern the intrinsic speed(s) of piezoelectric
strain extension into the passive domain under zero whole-cell
strain. Elegant experiments by Frank et al. (2) measured FV (ω)
by inserting the basal pole of OHCs into a large pipette (μ-cham-
ber) to control the extracellular voltage acting on the basal re-
gion of the cell, and measuring the force generated in the
frequency domain using an atomic-force microscope. Experi-
ments were conducted under nearly constant cell length, with
results revealing a flat gain and phase of FV (ω) relative to the
μ-chamber voltage up to at least 80 kHz. The measured force did
not depend on the length of the cell extending outside of the
μ-chamber, consistent with Eq. 5. Although the precise intracel-
lular voltage was not known in the Frank et al. experiments
[i.e., f (ξ) and transmembrane V not known], a very broad fre-
quency response was clearly demonstrated. The Frank et al.
force data are compared to the present model in Fig. 2B. Simu-
lations required a reduced piezoelectric coefficient ~δ

c
relative to

voltage-clamp conditions to account for the difference in voltage
and f in the μ-chamber configuration (Table 1). The relatively
flat gain and phase (Fig. 2B) requires the time constants govern-
ing intrinsic speed of the motor to be less than ∼3 μs in OHCs.
This means the instantaneous coulomb force acting on the pie-
zoelectric charge (voltage sensor) is transferred to the whole cell
in less than 3 μs. These results show the isometric force gener-
ation is ultrafast, with changes in isometric force capable of
tracking the electric field cycle-by-cycle at all physiologically rel-
evant frequencies. The situation is quite different if the cell is
allowed to change length. The coulomb force is still instanta-
neous when the cell is allowed to deform, but it takes time for
cell to displace as the force drives against the viscosity and mass
of the load.
The whole-cell displacement was examined to determine how

the viscoelastic properties of the external load and the OHC
itself limit speed of electromotility. The displacement ~D in re-
sponse to sinusoidal voltage clamp is as follows:

DV = ~D
~V
= lc~δc

HL
, [6]

where lc is the length of cell and HL is the nondimensional me-
chanical impedance of the total mechanical load. Three specific
loads were considered: 1) OHC in isolation where HL arises from
intrinsic properties of the cell itself plus the fluid media, 2) a
membrane patch where HL arises from intrinsic properties of the
patch and fluid, and 3) OHC in the cochlea where HL arises from
the cell plus the extracellular cochlear load. In all three cases, the
load was modeled as a spring-mass-damper system. Specifically,
HL = ((~κc + ~κL)=~κL)(1 − (ω=ωn)2 + jn(ω=ωζ)n),where(~κc + ~κL)=~κL is the ratio of the total compliance divided by the
compliance of the load, ωn is the undamped natural frequency of
the load, and ωζ is the damping corner frequency (nondimen-
sional damping coefficient ζ ≈ ωn=2ωζ for n = 1). The fractional
derivative n models the relaxation spectrum arising from the
frequency-dependent viscous properties (SI Appendix, Eq. B5).

Parameters are provided in Table 1 for all loading conditions.
For an isolated OHC, the stiffness arises from the cell itself
[(~κc + ~κL)=~κL = 1, ~κL →∞], while mass and viscosity arise from
the OHC plus the extracellular media. Due to the high viscosity
and low mass, isolated OHCs do not show resonance or tuning in
their displacement evoked by voltage. Lack of displacement tuning
is demonstrated in Fig. 2C, which shows OHC voltage-evoked dis-
placement data from Frank et al. (2) in the μ-chamber configura-
tion. Like Fig. 2B, the precise amplitude of the transmembrane
voltage was not measured in the experiments, but the frequency
response is still revealing. Experimental data (symbols) are com-
pared to Eq. 6 (solid curves) for two different cell lengths extending
outside the μ-chamber. Model parameters (Table 1) are the same
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Fig. 2. Speed of OHC force and electromotility. (A) Schematic of an OHC
subject to intrinsic load arising from viscoelasticity and the fluid media. (B)
Force generated by controlling the voltage using an extracellular μ-chamber
enveloping the base of an OHC reported by Frank et al. (2) (symbols) com-
pared to piezoelectric theory linearized about a holding potential (black
curves). (C) Voltage-evoked OHC displacement reported by Frank et al.
(symbols) compared to piezoelectric theory for two cell lengths extending
beyond the μ-chamber (black, blue). The intrinsic natural frequency of the
extended portion of the cell is ωiN, which occurs when the load is dominated
by viscous drag and the phase is −π/2 radians. (D) Change in the real NLC
[black, Re(~Cp

m)] and imaginary NLC [blue, Im(~Cp
m)] as functions of frequency

associated with the black curve in C (relative to the peak as ω→ 0). The real
part of the NLC rolls off at corner frequency ωc as the viscous load begins to
draw power from the piezoelectric charge displacement. The imaginary NLC
(dashed) is tuned to a specific frequency ωI, which is near the frequency of
peak piezoelectric power output in the unloaded μ-chamber configuration.
(E) For an unloaded cell, the imaginary NLC and piezoelectric power output
to the viscous load is tuned to the intrinsic natural frequency of the cell itself
ωiN (shown in whole-cell voltage-clamp configuration).
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for all curves in Fig. 2 A–D, with the exception of length outside the
chamber in Fig. 2C (black, blue). Although the force generated
under zero strain is independent of frequency (Fig. 2B), the dis-
placement under zero force begins to roll off as the frequency is
increased (Fig. 2C). The roll-off arises from intrinsic viscosity and
mass of the cell. The frequency with a displacement phase of −π/2
defines the intrinsic natural frequency ωiN of the unloaded cell
(Fig. 2C, vertical dashed line) where mass and stiffness cancel
and OHC power output is dissipated by the intrinsic viscous load
(see SI Appendix and Fig. 3 for isolated OHC ωn based on cell
length). Although the displacement shows no frequency tuning,
the power output to the viscous load does.
Electromechanical behavior of the OHC, including power

output, can be determined from whole-cell capacitance record-
ings. When the OHC is under load, charge displacement arises
from both the capacitance voltage susceptibility and the capaci-
tance stress susceptibility. Under voltage-clamp conditions in the
frequency domain, the two terms provide the total electrical
displacement current as I∼D = jωC∼p

mV
∼, where the complex-

valued NLC is as follows (SI Appendix, Eq. B6):

~C
p
m = Cpk

E f (ξ)HC, [7a]

HC = 1 − ~κpφ

~κc
(HL − 1

HL
). [7b]

~C
p
m is the complex-valued analog to the real-valued NLC com-

monly discussed in the literature for OHCs. For consistency with
earlier reports, Re(~Cp

m) is termed the real NLC (Re NLC), and
Im(~Cp

m) is termed the imaginary NLC (Im NLC). Nonlinearity ap-
pears through f (ξ), while load dependence arises from HL. The
nondimensional ratio ~κpφ=~κc in Eq. 7 plays an important role and
is the compliance of the piezoelectric domain divided by the com-
pliance of the whole cell. If the piezoelectric domain had zero com-
pliance, it would not deform under load and Eq. 7 would predict
zero frequency dependence of Re NLC, which is known not to be
the case (13). The fact that ~C

p
m is frequency dependent means the

piezoelectric domain is compliant, and the magnitude of compli-
ance can be estimated from the frequency dependence of NLC.
The NLC described by Eq. 7 is reversible and no net charge is

lost, yet the piezoelectric capacitance has an imaginary component
that leads to what would be interpreted experimentally as an
electrical conduction current. Frequency-domain measurements
of whole-cell admittance include a load-dependent effect of pie-
zoelectric charge displacement in both the real and imaginary
components. Ignoring this effect can lead to incorrect conclusions
about OHC function on the basis of admittance measurements.
The conventional NLC measured experimentally corresponds

to the real part of the complex-valued capacitance in Eq. 7
Re(~Cp

m), which is the solid black curve in Fig. 2D for an OHC in
the μ-chamber configuration (Fig. 2C, black). The imaginary part
Im(~Cp

m) for the same cell is the blue dashed curve. Three major
conclusions can be drawn from Eq. 7 and results in Fig. 2D. First,
Re(~Cp

m) begins to roll off at a corner frequency ωc, which in the
μ-chamber experiments is aligned with roll-off in whole-cell cell dis-
placement (Fig. 2 C and D). Second, the roll-off simply reflects the
intrinsic load imposed by the media and the cell itself and does not
occur if the cell is held at zero strain (Fig. 2B). Third, Im(~Cp

m)
becomes negative as frequency is increased, and peaks at a frequency
well above the capacitive corner frequency ωI > >   ωc. In isolated
cells, the frequency ωI arises from the intrinsic natural frequency ωiN
of the cell itself (Fig. 2C). The influence of artificially changing the
intrinsic natural frequency of the cell itself is illustrated in Fig. 2E.
The frequency shift arises from the intrinsic load HL in Eq. 7—the
load shifts the corner frequency, but does not reflect the intrinsic
speed of the motor element itself.

The imaginary NLC is key to OHC function because it is di-
rectly related to the real power output by the following:

PWR = −1
2

ω  Im(~Cp
m)  ~V 2

. [8]

Appearance of frequency ω in Eq. 8 pushes the maximum power
output frequency even higher, above the peak Im(~Cp

m) frequency

A

B

C

D

Fig. 3. NLC and power output of an isolated OHC and membrane macro-
patch. (A) NLC of a 54-μm-long OHC in ideal whole-cell voltage clamp at six
different frequencies showing a reduction in real NLC [Re(~Cp

m)] and com-
mensurate increases in imaginary NLC [Im(~Cp

m) and real admittance] as the
frequency is increased from 0.1 to 10 kHz. (B) Frequency dependence of NLC at
four different voltages showing a corner frequency ωc where the real NLC
begins to roll off, a much higher frequency ωI where the imaginary NLC peaks,
and an even higher frequency ωiP where the power output and real-valued
admittance peaks. The real NLC corner frequency underestimates the best
operating frequency by more than an order of magnitude. For isolated OHCs,
the power output at frequency ωiP is dissipated by heat, and therefore OHCs in
the cochlea must operate at a frequency below the intrinsic ωiP. (C and D)
Isolated membrane patches are predicted to behave similar to whole cells
under ideal voltage clamp, with NLC magnitude reduced and intrinsic natural
frequency increased according to patch size. The real NLC predicted by the
present theory (solid black) overlies macropatch experimental recordings of
Santos-Sacchi and Tan (red, dashed) (24). The power law frequency depen-
dence of the real NLC arises in the theory from the broad relaxation spectrum
of the viscoelastic membrane (fractional derivative n = 0.7). The imaginary NLC
is small in macropatch experiments (∼40 fF), but when multiplied by frequency
results in significant power output (Eq. 8) peaking at a frequency more than an
order of magnitude higher than the real NLC corner frequency.
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ωI. The peak power output always occurs at a frequency well
above the conventional Re(~Cp

m) corner frequency ωc and corre-
sponds to the frequency ωP when the piezoelectric part of the
electrical admittance is peak.
Complex-valued capacitance and frequency-dependent power

output are illustrated in Fig. 3 for two voltage-clamp recording
conditions: ideal whole-cell voltage clamp of a 54-μm-length
OHC (Fig. 3 A and B), and ideal voltage clamp of an excised
membrane macropatch (Fig. 3 C and D). Fig. 3A shows the real
and imaginary components of the NLC and real admittance as
functions of whole-cell holding potential for six different fre-
quencies (0.1 to 100 kHz), while Fig. 3B shows the NLC and
admittance as functions of frequency at four different voltages.
Results are for an isolated cell subject to intrinsic mass, stiffness,
and viscosity arising from the cell itself and the fluid media load.
The magnitude of Re(~Cp

m) begins rolling off immediately with
frequency, while the magnitude of Im(~Cp

m) builds up (with no
change in voltage dependence if n is held constant with voltage).
Frequency dependence under whole-cell voltage clamp is most
clearly shown in Fig. 3B. Of course, current voltage-clamp
technology has a limited frequency bandwidth, but it is still
useful to examine what would be expected based on Eqs. 7 and 8
for an isolated cell. The key point is that the imaginary NLC
builds up reaching a peak negative value at a frequency ωI. The
maximum power output is determined by the real part of the
piezoelectric admittance (bottom panel) and peaks at frequency
ωP > >   ωc. This occurs because Re(~Cp

m) reflects the piezoelectric
charge displacement working against reversible elasticity of the
cell and the load, while Im(~Cp

m) reflects the piezoelectric charge
displacement working against the dissipative viscous load.
The NLC of an excised macropatch of membrane (Fig. 3 C

and D) is predicted to follow trends similar to the whole cell
(Fig. 3 A and B), but reduced in magnitude and shifted in frequency
because of size and mechanical constraints on the patch. Results in
Fig. 3D are the most revealing, and directly compare experimental
real NLC from Santos-Sacchi and Tan (red dashed curve) (24) to
Eq. 7. Re(~Cp

m) measured experimentally exhibits a power-law fre-
quency dependence (red dashed), captured in the model by the
broad relaxation spectrum (fractional derivative n = 0.7). The
imaginary component was not reported, but present results suggest
Im(~Cp

m) peaks near 30 kHz at −40 fF. Most importantly, peak
power output is predicted to occur near 50 kHz in the macropatch
configuration, a frequency where the real NLC is almost zero.
Hence, the corner frequency of Re(~Cp

m) underestimates the best
power output frequency ωP by more than an order of magnitude
both in the whole-cell and macropatch configurations. Simulations
in Fig. 3 assumed the patch did not induce static stress
(i.e., f (ξ) = 1) and the relaxation spectrum was constant (n = 0.7).
To explore how OHCs function in the cochlea, cells were

loaded with a spring-mass-damper system to simulate the tono-
topic cochlear load. The natural frequency of the loaded system and
the length of the cell were set by a model tonotopic map with
(Table 1 and SI Appendix, Fig. S3). The complex-valued NLC for a
30-μmOHC under the idealized cochlear load are shown in Fig. 4 A
and B using the same format as Fig. 3. The effect of the cochlear
load is to align the best power output frequency of the OHC to the
tonotopic place of 2.5 kHz, a frequency well below the intrinsic
natural frequency ωiN of the 30-μm-long cell. Results demonstrate
capacitance voltage and capacitance stress susceptibility both play a
role, providing a feedback mechanism that tunes the real power
output of OHCs based on the properties of the load. As noted in
Discussion, the ability of OHCs to sense and react to the load might
be an important factor contributing to the correlation between
OHC length and tonotopic location in the cochlea.
Power output of a 30-μm OHC under simulated cochlear load

is shown in Fig. 4C for an ideal 1-mV voltage-clamp command

(blue) and a low-pass-filtered voltage command (black). Results
predict OHC power output is tuned to a narrow frequency band
even though isolated OHCs show no tuning in Re(~Cp

m) under
patch-clamp conditions in the dish (e.g., Fig. 3B). The peak
power output for the OHC in Fig. 4C would be ∼10 fW for a
5-mV voltage modulation, similar to the estimate by Wang et al.
(25) for OHCs under physiological load in the cochlea. Power
output for a 1-mV voltage modulation per

̅̅̅̅̅̅
Hz

√
is shown in

Fig. 4D for OHCs of five different lengths corresponding to five
different locations in the cochlea. Results in Fig. 4D are for in-
dividual OHCs under low-pass-filtered voltage-clamp conditions,
yet the tuning curves show similarity to traveling waves in the
cochlea. OHC length, linear capacitance, and membrane con-
ductance were set by the specific location in the cochlea (9, 26)
with the voltage rolling off above a passive RC corner in the

A

B

C

D

E

Fig. 4. NLC and power output of OHCs in the cochlea. (A and B) Real and
imaginary parts of the NLC of a 30-μm-long hair cell under simulated load in
the cochlea (same format as Fig. 3 for isolated cells and membrane patches).
When subject to the cochlear load, the frequency of peak imaginary capacitance
is determined by the tonotopic place principle rather than intrinsic mass and
stiffness of the cell itself, which requires the OHC to be sufficiently short to allow
useful power output at its specific location in the cochlea. (C and D) Power de-
livered to the cochlear load based on cell size and tonotopic location under
voltage-clamp conditions. (C) Power output of a 30-μm-long OHC located at the
2.5-kHz location subject to an underdamped cochlear load as a function of
frequency (1-mV voltage-clamp command, blue; 1-mV low-pass-filtered com-
mand, black). (D) Power output per

ffiffiffiffiffiffi
Hz

√
in response to 1-mV low-pass-filtered

voltage command for OHCs of different lengths. (E) Schematic illustrating peak
power output (*) occurs at a load between the isometric force (zero strain)
condition and the maximum velocity (zero force) condition.
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simulations (e.g., Fig. 4C, black dashed). Power output shown in
Fig. 4D supports the hypothesis that individual OHCs contribute
power to cochlear amplification primarily at frequencies near
their location in the tonotopic cochlea.

Discussion
The present report is focused primarily on resolving the OHC
speed paradox, a paradox most clearly exemplified by disparity
between the ultrafast cycle-by-cycle isometric force generated by
OHCs (2) vs. the slow low-pass-filtered characteristics of electrical
charge displacement in OHC membranes (13). The paradox is
resolved using first principles to show how the piezoelectric be-
havior of OHCs explains both results. High-frequency experi-
mental results of Frank et al. (2) are reproduced in Fig. 2 A and B,
and low-frequency roll-off of NLC reported by Santos-Sacchi and
Tan (13) are reproduced in Fig. 3D using exactly the same physics.
Three major factors were taken into account to resolve the par-
adox and describe how OHCs function at high frequencies.
The first factor involves interpretation of OHC NLC. The

problem with the traditional approach in OHCs is that voltage
induces load-dependent stress and strain, and the strain alters the
charge displacement. Therefore, the capacitance recorded using
conventional methods changes with conditions of the experiment.
To describe the charge displacement in the frequency domain
requires a load-dependent complex-valued NLC ~C

p
m (Eq. 7). The

traditional approach is adequate for low frequencies where the
coulomb force is resisted by an elastic load, but fails when the
force is resisted by viscous or inertial loads, which is always the
case at high auditory frequencies. Viscous drag shifts the phase
by −90° and introduces a negative-valued imaginary NLC Im(~Cp

m),
which appears in electrical admittance measurements as a fre-
quency- and voltage-dependent, positive, real-valued admittance.
Im(~Cp

m) reflects a reversible charge displacement but, as described
previously, can be incorrectly interpreted as a conduction current
based on traditional interpretation of electrical admittance (27).
The second factor involves the relationship between charge

displacement and power output of the OHC. In the frequency
domain, the imaginary NLC times frequency −ωIm(~Cp

m) is pro-
portional to the power delivered to mechanical load (Eq. 9). If
Im(~Cp

m) = 0, the OHC power output is zero. Although the real
component of NLC Re(~Cp

m) is revealing because it reflects a
component of charge displacement, it is not a measure of power
output or function of the OHC as a motor. The OHC peak
power output frequency ωP arising from the imaginary NLC is
above the corner frequency of the real NLC by more than an
order of magnitude, demonstrating why ωc is a poor indicator of
the frequency response or speed of OHCs. Given the thermo-
dynamic origin of complex-valued NLC, this finding likely ap-
plies to all conditions: isolated OHCs, membrane patches, and
OHCs in the cochlea (Figs. 3 and 4).
The third factor involves how OHCs are loaded in the cochlea vs.

loaded in experiments. Experiments in the dish, especially at low
frequencies, often result in very small Im(~Cp

m) because the OHC is
working against an elastic load that does not absorb significant
power. In the cochlea, OHCs work against a mechanical load con-
sisting of elasticity, viscosity, and mass. Each location along the
tonotopic map has a characteristic best frequency where the elastic
force nearly balances the inertial force and the load becomes domi-
nated by viscous drag. Present results indicate OHC power output is
just before the traveling wave peak (28), with OHCs basal to the peak
contributing to amplification (29) but at lower levels (Fig. 3E).
For efficient operation in the cochlea, OHCs must be suffi-

ciently short to operate below their own intrinsic natural frequency,
but sufficiently long to generate the required velocity. The re-
lationship between power output and velocity (for frequencies
near ωP) is illustrated schematically in Fig. 4D as the load

changes from high drag (zero velocity, maximum force) to low
drag (maximum velocity, zero force). Similar to skeletal muscle
(30), OHC power output is maximized between the two extreme
loading conditions. These two factors likely combine with elec-
trical factors and channel expression to determine optimum
OHC length as a function of best frequency in the cochlea.
The present report demonstrates how OHCs deliver

cycle-by-cycle power to the cochlear amplifier at high frequencies
well above the corner frequency defined by the real NLC. The
analysis is agnostic to the specific molecules responsible for piezo-
electricity but places constraints on what is thermodynamically fea-
sible. It is known that OHC electromotility requires expression of the
transmembrane protein prestin, a member of the SLC26 family of
anion transporters (3, 31, 32). There is strong evidence that Cl− is
essential and is electrostatically bound in the central core region of
the protein (33–35). In the absence of Cl−, piezoelectric NLC is lost
in OHCs but can be restored by inserting a charged residue near the
putative Cl− binding site in the core domain (36). These data support
the hypothesis that the charge responsible for the piezoelectric cou-
lomb force in wt OHCs is likely to be electrostatically bound Cl−

located in the prestin core. A force-driven conformational change in
prestin could underlie piezoelectric behavior, but the present analysis
is thermodynamic in nature and cannot distinguish between molec-
ular mechanisms involving a single transition, “N” intermediate
transition states, continuous transitions, or other hypothetical mech-
anisms that may involve interplay between charge, lipid, and protein.
Differences on the molecular scale are subtle on the thermodynamic
scale. For example, replacing the high-dimensional Langevin non-
linearity f with a two-state Boltzmann function (37) or a multistate
model (20) introduces a small change in the shape of the nonlinear
voltage distribution but does not change any conclusions of the pre-
sent report. The direct coupling between piezoelectric charge dis-
placement and strain in OHCs (6) contrasts voltage-gated ion
channels where the gating charge displacement precedes conforma-
tional changes responsible for channel open probability (38). Hence,
the term charge displacement is used here to avoid confusion with the
term gating charge, which is traditionally associated with displacement
of specific residues preceding a protein-scale conformational change.
The present analysis further implies the piezoelectric coulomb force is
always present within the membrane electric field, and that voltage-
dependence arises from the saturating compliance of the piezoelectric
element rather than charge shielding or charge movement outside the
electric field (SI Appendix, Eqs. A5–A7). Consistent with this, force
generation is ultrafast, reflecting the instantaneous coulomb force,
while the speed of charge displacement is slower reflecting the speed
of deformation against the intrinsic and external load.
The present analysis uses a simple piezoelectric model to

demonstrate the importance of the load on OHC motor function,
how the complex-valued NLC is related to power output by the cell,
and why OHC power output is highest at frequencies well above the
real NLC corner. All results were driven by voltage-clamp com-
mands, which differs from the cochlea where OHCs are driven by
MET currents and mechanical forces. Power tuning curves in
Fig. 3 D and E partially account for the OHC electrical corner
frequency by driving the cell with a low-pass-filtered voltage, but no
attempt was made to address the influence of MET kinetics (39), ion
channel gating and expression (9, 10), prestin expression (31), hair
bundle electromotility (40), inhomogeneous expression and defor-
mation, or mechanical forces associated with the traveling wave. The
present OHC model is minimalistic, and reduces a complex cell with
inhomogeneous expression and properties into a single lumped el-
ement, yet is sufficient to resolve the OHC speed paradox.

Methods
Electro-mechanical behavior, including capacitance susceptibility, has origins
in the Gibbs free energy of the membrane complex. In the present analysis,
themo-electromechanical behavior is examined within a control volume
encompassing the entire membrane complex (see SI Appendix for compete
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derivation). The control volume includes the inhomogeneous lipid bilayer,
membrane-associated structural proteins, and charged coupled proteins including
prestin, but the approach is agnostic to the specific molecular arrangements and
mechanisms. Under plane-stress thermodynamic equilibrium conditions, the Gibbs
free energy relates small changes in the mechanical stress Tj and strain Sj to small
changes in temperature Θ′ and transverse electric field (17, 18). Key constitutive
parameters are as follows: compliance tensor κij, piezoelectric coefficients δj,
thermal expansion coefficients αj ,electrostriction coefficients γj, electrical permit-
tivities «j, and pyroelectric coefficients pj. The OHC membrane was modeled a

mixture of a piezoelectric material (p: δpj ) occupying area fraction φ and a passive

material (s: δsj = 0) occupying area fraction (1 − φ). A single time constant for each

domain was used to model the speed of deformation under a step change in load.
Constitutive parameters for the two materials combine to determine the effective
piezoelectric coefficient and compliance of the composite. The general equations
were simplified for a thin membrane subject to a transverse electric field.
Equations were further simplified to a discrete lumped parameter model as-
suming axisymmetric, isotropic, isochoric, whole-cell deformations. Model pa-
rameters were determined from previously published experimental data
primarily from guinea pig OHCs as detailed in Table 1. Model parameters were
estimated for the composite membrane, without explicit determination of the
area fraction or properties of individual constituents.

To estimate power output under cochlear load, the frequency-dependent
load in the cochlea was simulated using a spring-mass-damper system with the
natural frequency ωncorresponding to the place principle in the cochlea. The

load was slightly underdamped, ωn = 1.3ωζ   rad · s−1. For simulations in Fig. 4 C
and D, the OHC size (length, membrane area, linear capacitance) and the
passive RC corner frequency (conductance) were set according to a model
place principle to illustrate how OHCs of different length deliver power to the
cochlear amplifier (SI Appendix, Fig. S3). OHC lengths and intrinsic natural
frequency are based on the guinea pig frequency map (41), while electrical
passive electrical is based on gerbil (9, 42). Frequency domain simulations in
the present study were done using identical piezoelectric material parameters

at Vpk for all OHCs (φ, ~δ
c
, and ~κc), changing only length and loading conditions.

Data Availability. All data are from previously published reports as cited in Ta-
ble 1. Parameter curve fitting and figures were generated using the software
Igor64 (WaveMetrics). All study data are included in the article and SI Appendix.
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