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The mucosal immune system in the female reproductive tract (FRT) is well equipped to meet the sexually 
transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT 
indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well 
as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate 
immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim 
of this literature is to review the diverse components of the innate immune system, contributing to an 
exclusive protection system throughout the FRT.
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Review Article

infections by Herpes simplex virus type 2, group 
B streptococcus, Treponema pallidum (syphilis), 
bacterial vaginosis, Hepatitis B virus (hepatitis), 
Neisseria gonorrhoeae (gonorrhea), Chlamydia 
trachomatis, and human immunodeficiency viruses 
(HIVs).[3] Some of them like C. trachomatis are 
associated with cervicitis, ectopic pregnancy, pelvic 
inflammatory disease, tubal factor infertility, 
spontaneous abortion, and chronic pelvic pain.[4] 
There are more than 20 pathogens transmissible 
through sexual intercourse.[3] Protection against 
these pathogens and others in the female reproductive 
tract (FRT) is provided by immune system; thus, 
knowing better about the immune system can help to 
design novel strategies which may more effectively 
treat STIs.

The human immune system is fundamentally divided 
into two major sub-divisions, the innate or non-
specific and the adaptive or specific immune system. 
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INTRODUCTION

The main problem of worldwide health in reproductive 
field is sexually transmitted infections (STIs) and their 
associated diseases.[1] In spite of sustained preventive 
activities, only limited success has been achieved in 
curtailing the reproductive complexity and mortality 
related to STIs.[2]

Some complications of STIs with the largest 
prevalence and socio-economic burden include 
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Although both of them have a protective function 
against invading pathogens, they differ in time to 
react, the cells involved, effector mechanisms, type, 
and specificity of receptors.[5,6] The innate immune 
system constitutes the first line of response to infection 
and incorporates rapidly after dealing with infectious 
agents, for this reason it has a pivotal role in host 
defense.[5-7]

The innate immune system in the FRT consists of 
mechanical, chemical, and cellular components. 
Mucus lining and epithelial cells act as the 
mechanical barrier. The chemical barrier can 
be divided into natural anti-microbial peptides 
(AMPs) (NAPs) and pattern recognition receptors 
(PRRs), specially Toll-like receptors (TLRs).[8] 
Briefly, NAPs are mainly produced by epithelial 
cells and neutrophils. They destroy target cells 
through abrogation of PH and ionic concentration 
gradients.[9] TLRs are expressed on the immune 
cells, including neutrophils, macrophages, dendritic 
cells (DCs), dermal endothelial cells, and mucosal 
epithelial cells.[10] They detect microbial-associated 
molecular patterns and gather a number of adapters 
to initiate intra-cellular signaling pathways in 
order to recruit the immune cells, to secret anti-
microbial factors eradicating pathogens, and finally, 
to facilitate adaptive immune responses.[1,6,8,11]

The cellular components include inflammatory immune 
cells that migrate into the genital tract, as well as 
resident epithelial cells and stromal fibroblast.[8]

The mucosal innate immune system of the FRT 
is not only involved in specialized physiological 
events, including menstruation, fertilization, 
implantation, pregnancy, and parturition, but also in 
protecting against sexually transmitted pathogens, 
as well as supporting allogeneic spermatozoa and 
an immunologically distinct fetus. To meet these 
challenges, the FRT has unique requirements as 
mentioned above, briefly.[6] The purpose of this review 
article is to examine key mediators of innate immune 
defense that protect female genital tract against 
pathogens.

EPITHELIAL CELLS BARRIER, MUCUS

The FRT consists of three compartments: Lower part 
(vagina and ectocervix), transitional endocervix, and 
the upper part (endometrium and the fallopian tubes). 
All of them are covered by epithelial cells which, on one 
hand, provide a physical and immunological barrier 
to protect against invading micro-organisms, on the 
other hand, support the migration of sperm, ovum, 
and fetus.[12] Integrity of the mucosal monolayer in the 

upper FRT is preserved with tight junctions between 
columnar epithelial cells. However, the lower part 
is lined with multiple layers of stratified squamous 
epithelial cells, containing a loose connection.[13] 
Entirety of mucosal epithelial barrier can be directly 
altered by sex hormones, cytokines, growth factors, 
TLR agonists, and pathogens.[12,14,15] A lack of tight 
junctions in the lower part of the FRT may permit 
transition of intruder to intra-epithelial, which 
results in pathogens’ counter with immune cells 
like CD4+T.[16] On the other hand, PRRs, which are 
located on epithelial cells, detect antigens on these 
micro-organisms and then induce secretion of AMPs, 
cytokines, and chemokines. Totally, mucosal epithelial 
cells play important roles in innate immunity by: (I) 
formation of a physical and immunological barrier, (II) 
sending signals to the underlying immune system, (III) 
production of cytokine and chemokine, (IV) inducing 
death of infected cell through necrosis, apoptosis, or 
phagocytosis, (V) activating adaptive immunity, and 
(VI) development of an acute inflammatory reaction.[17]

The epithelial cells of endometrium as well as vagina 
are covered by a layer of mucus, which maintains them 
from direct contact with infectious agents.[13]

Most of the components of mucus are water and a 
family of high-molecular-weight glycoproteins, namely 
mucin, particularly mucin-1, which traps micro-
organisms.[18] Domino et al. showed in an animal model 
that cervical mucins have a protective role against 
Candida albicans.[19] Human cervico-vaginal mucus 
provides a protective barrier blocking the spread of 
STIs from the vagina toward the upper FRT.[13] Poor 
secretion of cervico-uterine mucus seems probably to 
be related to reduced fertility in women with cystic 
fibrosis.[20] The properties and amount of the secreted 
mucus vary during the menstrual cycle under the 
influence of the sex hormones. Estrogenic mucus is 
present at the proliferative stage and increases at 
mid-cycle. It is less viscous and appears to provide a 
more favorable environment for sperm migration.[21] 
Progestational mucus is present at high level following 
ovulation and low level during the menstrual and early 
proliferative phases. It is thick, sticky, and restricts 
the passage of sperm into the uterus.[21] It can be 
concluded that epithelial cells and mucus are two key 
components of the physiological barrier which protects 
the FRT against pathogens.

TOLL-LIKE RECEPTORS

Rapid innate immune defense against infection usually 
involves the detection of pathogen-associated molecular 
patterns (PAMPs) and endogenous damage-associated 
molecular patterns (DAMPs) by specific PRRs.[10,22,23] 



Amjadi, et al.: Innate immunity in female reproduction

Advanced Biomedical Research | 2014 	 3

Recent studies identified several classes of PRRs 
family including TLRs, nucleotide oligomerization 
domain (NOD)-like receptors (NLRs), retinoic acid-
inducible gene I (RIG-I)-like receptors (RLRs) and 
cytosolic DNA sensors.[24] Toll protein was discovered 
for its role in dorsoventral patterning of Drosophila 
embryos. Later investigations declared an important 
role of Toll in the fly’s immune response to bacterial 
and fungal infections that have opened a new window 
for the mammalian homologues research.[11,25] The 
first identified human TLR was TLR4.[26] Structurally, 
the TLRs are comprised of an extra-cellular leucine-
rich repeat domain that recognizes PAMPs and 
a cytoplasmic Toll/interleukin 1 receptor domain 
for downstream signaling transduction.[27,28] TLRs 
have a critical role in the induction of immune and 
inflammatory responses in mammals.[23] To date, at 
least 10 human TLRs and 13 mouse TLRs have been 
described[11] TLR1, 2, 4, 5, and 6 are located on the 
plasma membrane and detect pathogen membrane 
components, while TLR3, 7, 8, and 9 are expressed 
in cytoplasmic organelles, mainly the endosomes, 
lysosomes, endolysosomes, and endoplasmic reticulum 
in order to detect pathogen nucleic acids.[11,29] TLR1-9 
are conserved between human and mice. Mouse 
TLR 11 is functional, but the human homolog has a 
stop codon that results in the lack of production.[23] 
Each individual TLR has a distinct function in terms of 
PAMPs detection and immune responses.[30] Examples 
of PAMPs include lipopolysaccharide (LPS), the 
major component of gram-negative bacterial outer 
membranes, peptidoglycan, and the major component 
of gram-positive bacterial cell walls, lipoproteins, 
zymosan, and nucleic acids.[31] On the other hand, heat-
shock protein 60 and 70, polysaccharide fragments of 
heparin sulfate, hyaluronic acid, fibrinogen, fibronectin 
DA domain, and mRNA are also categorized as 
DAMPs.[8] Table 1 shows an overview of the cognate 
ligands for TLRs.[29,30,32-40]

TLRs do not act alone. Their signal transduction is 
mediated by the recruitment of different intra-cellular 
adaptors [Table 1].[11] Selective usage of these adaptor 
molecules causes differential responses mediated 
by these distinguished distinct TLR ligands.[29] Two 
intra-cellular signaling cascades can be induced 
after TLR activation, MyD88-dependent cascades, 
which lead to secretion of pro-inflammatory cytokines 
or TRIF-dependent cascades, which induce type 1 
interferon (IFN) as well as inflammatory cytokines 
and chemokines [Figure 1].[30] After the discovery 
of TLRs, other PRRs, comprising of NLRs such as 
RLRs, were identified. Similar to TLRs, NLRs and 
RLRs have an important role in immune responses; 
however, in contrast to TLRs, they only detect 
microbial components in the cytosol. NLR family has 

more than 20 members and is involved in response 
to the various PAMPs and PAMP particles through 
production of IL-1β.[24,30]

TLRs in the female reproductive tract
The mucosal epithelium of the genital tract serves as 
front line of defense against microbial infections. It has 
been thought the expression of TLRs on the epithelium 
plays an important role in antigen detection, initiation 
of immune response, and connection between innate 
and adaptive immunity.[8] Recent studies have 
also supported the importance of TLRs activation 
in fertilization and implantation failure through 
stimulation of the innate immune system.[41,42] Several 
research works have been done on the expression and 
role of these receptors in the FRT.[2,43,44]

Constitutive expression of TLR1-10 in epithelial 
cells of fallopian tubes and endometrium has 
been reported.[2,43,45,46] The presence of TLR1-9 has 
also been detected in vagina and cervix.[43,47-49] 
TLR1-3, 6, 7, and 10 exist in uterine natural killer 
(NK) cells[50,51] and TLR1 is present in vascular 
endothelial and smooth muscle cells of the cervix 
and uterus.[10] Expression of TLR2-4, 7-10 has been 
shown in endometrial stroma.[52,53] Other reports have 
demonstrated the existence of TLR5 in smooth muscle 
and vascular endothelial cells within the stroma of 
the vagina and endocervix [Figure 2].[10]

The presence of TLR2 and TLR4 on amniotic epithelial 
cells has also been shown during pregnancy; however, 

Table 1: Overview of used adaptor proteins by TLRs.
Adaptor 
protein

Ligand Receptor 
number

MyD88/Mal Triacyl lipopeptides, Pam3Cys-Ser-(Lys)4 TLR1
MyD88/Mal peptidoglycan, lipoprotein, Pam3Cys-Ser-

(Lys)4, Zymozan, and lipoteichoic acid
TLR2

TRIF dsRNA (virus), siRNA, endogenous mRNA, 
and poly (I:C)

TLR3

TRIF/MyD88/
Mal/TRAM

LPS, lipid A analogs, cryptococcal 
capsule, Aspergillus hyphae, respiratory 
syncytial virus Protein F, heat shock 
protein 60, 70 and fibronectin, and 
hyaluronic acid. LPS derived from N. 
gonorrhoeae, LPS and HSP derived from 
C. trachomatis and mannan derived from 
C. albicans

TLR4

MyD88 Flagellin TLR5
MyD88/Mal diacyl lipopeptide, soluble tuberculosis 

factor
TLR6

MyD88 ssRNA, imiquimod, resiquimod and 
loxoribine (anti-viral and anti-tumoral 
compounds)

TLR7

MyD88 ssRNA TLR8
MyD88 Unmethylated CpG DNA, ssRNA TLR9
MyD88 bacterial lipopeptide ligands TLR10
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the presence of TLR2 seems to be restricted to the 
basolateral side of these cells.[54] TLR2 functions 
as a heterodimer with either TLR1 or TLR6 on 
the plasma membrane of both innate and adaptive 
immune cells. The TLR2/TLR1 heterodimers detect 
triacylated lipoproteins from gram-negative bacteria 
and mycoplasma, whereas TLR2/TLR6 heterodimers 
recognize diacylated lipoproteins from gram-positive 
bacteria and mycoplasma.[30]

TLR4 proteins have been detected in term decidual 
inflammatory immune cells, such as neutrophils and 
macrophages.[23]

The expression of TLR4 decreases from the upper 
genital tract toward cervix.

There is controversy about the presence of TLR4 
in epithelial cells of the female genital tract. Some 
reports have declared the presence of TLR4 in the 
epithelial cells of the fallopian tubes, endometrium, 
endocervix, and vagina, while others have rejected 
this report.[10,43,47,55,56]

TLR4 is involved in the response to LPS of gram-negative 
bacteria in association with CD14 and MD-2.[11,57] CD14 
is found in endometrial stromal fibroblasts, but not in 
endometrial and fallopian epithelial cells.[56,58] Unlike 
epithelial cells in the upper part of FRT, epithelial 
cells of cervix and vagina express co-receptor CD14 
(55). It was reported that MD2, an ancillary molecule 
of TLR4-signaling, was missing in cultured epithelial 
cells derived from normal human vagina, ectocervix, 
and endocervix.[8,47] Recently, Packiam et al. have 

experimentally demonstrated that TLR4 has a 
protective role against gonococcal infection.[59]

TLR3 activates by double-stranded RNA and mRNA 
from killed cells.[60] It has been shown that TLR3 
function can depend on sexual hormones. For example 
17-β-estradiol inhibits cytokine and chemokine 
production which are already induced by TLR3 
activation without any effect on TLR3 expression.[61]

TLR9 recognizes CpG motifs in the genome of bacterial 
and viral pathogens. Production of IL-8 by cultured 
epithelial cells of fallopian tubes, uterine, and cervix 
increases in response to binding CpG oligonucleotides 
to TLR9.[49]

Aflatoonian et al. have demonstrated the cycle-
dependent expression of TLR1-10 in human 
endometrium. They declared that relative expressions 
of TLR2-6, 9, and 10 were significantly higher during 
the secretory phase compared to other phases of the 
menstrual cycle. According to these findings, we can 
probably conclude the inhibitory effect of estrogen 
or the protective effect of progesterone in the genital 
tract, especially in the endometrium.[2,62]

NATURAL ANTI-MICROBIAL PEPTIDES

Synthesis of peptides and small proteins with 
anti-microbial activity is generally emerged as the 
most ancient primary mechanism of the immune 
system.[9] NAPs possess additional functions apart 
from microbicidal activity, including cell proliferation, 
cytokine induction, chemotaxis, and modulation of 
innate and acquired immunity.[63]

Endogenous AMPs have redundancy and synergism 
together, so these properties provide better protection 
in comparison to a single factor.[64] Major NAPs with 
different structural and functional characteristics 

Figure 1: TLRs signaling pathway

Figure 2: Localization of TLRs in the female reproductive tract
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include defensin, elafin, cathelicidin, secretory 
leukocyte protease inhibitor (SLPI), lysozyme, and 
lactoferrin. They are mainly produced by epithelial 
cells and neutrophils[9] and regulated by bacterial 
production and inflammation.[65] It has shown that 
AMPs similar to antibodies, cytokines, and chemokines 
vary at different times during the menstrual cycle 
reflecting endocrine regulation. Also, it is noticeable 
that biological activity of antimicrobials can change 
with pH, salt, serum, and presence of sperm.[3,66,67] 
NAPs can interact with cell membrane of pathogens 
based on the charge, then forming pores that destroy 
target cell through abrogation of pH and ionic 
concentration gradients.[9] Together, NAPs constitute 
an important chemical barrier which orchestrates 
immune responses against foreign micro-organisms.

Defensins
One of the most prominent NAPs at the mucosal 
surface is defensins. Two main functional sub-families 
of them are α and β-defensins. Six α-defensins 
have been recognized in humans: (I) HNP (human 
neutrophil peptide) 1-4 and (II) HD5,6 (human 
defensin). Leukocytes and epithelial cells are the main 
sources of HDs.[1] α-Defensins have anti-bacterial 
activity against gram-negative and gram-positive 
bacteria, fungi, yeast, and anti-viral effects against 
HIV-1, 2, and HSV-1; however, α-defensins 5 and 6 
increase HIV infection.[3] Six human β-defensins, 
HBD1 to 6 have been identified, which are structurally 
similar to α-defensins. Four of them are expressed 
by mucosa and epithelial cells of the female genital 
tract.[3,68,69] They have anti-viral activity and decrease 
level of HIV-1CXCR4 co-receptor.[70,71] Several studies 
have examined the presence and role of defensins in 
the FRT at different stages of menstrual cycle.[1,72,73] 
It has been shown that HBDs1-4 and α-defensing 
5 are expressed in the endometrial epithelium. 
HBDs1, 3, and 5 are at maximal concentration during 
the secretory phase while HBD4 reaches peak in the 
proliferative phase and HBD2 is highest during the 
menstruation.[1,73] Within the cervico-vaginal lavages 
(CVL), HNPs1-3 and HBD2 are maximum during the 
proliferative phase and minimum at mid-cycle.[74]

During pregnancy, endogenous anti-microbials can 
play a critical role in preservation of uterine health 
and prevention of its infection. Expression of α- and 
β-defensins has been detected in the amnion epithelium, 
chorion, decidua, trophoblast, and cervical mucus plug, 
during pregnancy. In addition, changes in vaginal 
microflora are related to defensins at mid-pregnancy.[75]

Elafin and secretory leukocyte protease inhibitor
SLPI and elafin from whey acidic protein family 
were introduced as human protease inhibitors.[76] 

SLPI is synthesized by macrophages and epithelial 
cells. It suppresses elastase and cathepsin G, but not 
proteinase3, while elafin is inhibitor for elastase and 
proteinase3. The anti-protease effect of these peptides 
can restrict host tissue damage from an unregulated 
inflammation, in part mediated by proteases.[9]

SLPI has anti-bacterial activity (against Escherichia 
coli, Pseudomonas aeruginosa, Staphylococcus aureus) 
and anti-fungal activity (against Aspergillus fumigatus 
and C. albicans.[77] Elafin and SLPI also have anti-
HIV activity in vaginal fluid that is independent of 
their protease inhibitory role.[78,79] SLPI and elafin 
are present throughout FRT.[1] SLPI expression has 
been detected in the vagina, cervix, amnion, vernix 
caseosa, uterus pregnant, and decidua and at very 
high level in cervical mucus (1000 µg/mL).[80,81] Elaphin 
expresses in the vagina, cervix, uterus pregnant, fetal 
membranes, and placenta just at term pregnancy.[3] 
Endometrial neutrophils are rich source of Elafin 
during menstruation. SLPI and elafin are expressed 
during pregnancy probably for anti-inflammatory, 
anti-protease, and anti-microbial properties.[1]

Cathelicidin LL37, lactoferrin, and lysozyme
Another component of FRT secretions is cathelicidin. 
In humans, LL37 is only cathelicidin, which is 
produced by neutrophils and epithelial cells of the 
lower FRT.[3,9] LL37 is found in vaginal fluid and 
cervical mucus. It counters with bacteria and fungi 
which may have been introduced by intercourse.[81]

Main sources of lactoferrin are neutrophils and 
epithelial secretions. It has been found in vaginal 
fluid (1 µg/mL) and cervical mucus (100 µg/mL).[82] 
It has anti-viral and anti-bacterial effects (against 
gram-negative bacteria), directly or by sequestration 
of iron essential for microbes under acidic conditions, 
such as lower part of FRT.[81-83] Lactoferrin displays 
synergism with lysozyme that promotes innate 
immune protection in the FRT.[7]

Lysozyme is synthesized by neutrophils and detected in 
vaginal fluid (13 µg/mL) and mucus plug (1 mg/mL).[82] 
In addition to enzymatic lysis of peptidoglycan present 
on bacterial cell walls, lysozyme can kill bacteria by 
a non-enzymatic mechanism. Although lysozyme has 
an anti-bacterial effect against gram-positive species, 
for example streptococci, but it is in effective against 
gram-negative bacteria.[84] It also blocks HIV-1 viral 
entry and its replication.[85,86]

CYTOKINES AND CHEMOKINES

Cytokines are small pleiotropic glycoprotein mediators 
whose biological actions are locally mediated 
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by specific receptors.[75] Chemokines are small 
chemotactic cytokines, very locally acting, well known 
for their function in leukocyte recruitment to sites of 
inflammation and their activation.[87] Chemokines 
attract immune cells to the tissue, while cytokines 
differentiate and activate these cells.[6] Several 
studies have demonstrated the constitutive secretion 
of numerous cytokines, including granulocyte-
macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony-stimulating factor (G-CSF), 
TNF-α, IL-1, IL-6, leukemia inhibitory factor (LIF), 
TGF-β, and of chemokines such as MIP-1β, monocyte 
chemoattractant protein-1 (MCP-1), and IL-8 by 
polarized epithelial cell from the cervix, uterus, and 
fallopian tubes.[12,88-91] Most of these inflammatory 
mediators were preferentially secreted into the 
apical/luminal compartment resulting in a gradient 
for stimulation and attracting immune cells to the 
epithelial surface.[12,92] For example, IL-8 produced by 
uterine epithelial cells induces neutrophil migration 
across the epithelium.[92,93] Also, MCP-1 and MIP-1β 
are potent chemoattractants for monocytes and T cells, 
respectively. Other cytokines, such as TGFβ, secreted 
into the baso-lateral/sub-epithelial compartment of 
uterus, affect function and development of immune 
cells.[94,95] The cytokines TNFα, IL-6, GM-CSF, and 
G-CSF trigger differentiation of leukocytes to more 
active pro-inflammatory cells.[12] In addition to 
chemotactic activity, IL-8 participates in proliferation 
and angiogenesis during early to mid-secretory phase, 
as well as in apoptosis during menstruation.[91] The type 
I IFNs are other important cytokine family involved in 
FRT immunity, particularly against viruses.[96] IFNs 
are immediately induced in counter with viral and 
bacterial pathogens.[60,97] IFNβ is induced in uterine 
epithelial cells by the double-stranded viral agonist 
poly (I:C). In the FRT, IFNβ induces expression of 
the anti-HIV molecules, like MIP3α/CCL20 and 
hBD2, showing its protective role against HIV-1 
infection.[13] Immune cells, including monocytes, 
macrophages, NK cells, and DCs, are also the sources 
of immunoregulatory cytokines and chemokines in the 
FRT.[98,99] The secretion of chemokines and cytokines 
is modulated by autocrine and paracrine manners, 
as well as sex hormones. The hormonal effect on 
their secretion is direct or indirect.[12,13] For instance, 
progesterone depletion leads to the up-regulation of 
IL-8, MCP-1, and COX-2, resulting in the activation 
of monocytes and neutrophils and finally, up-
regulation of matrix metalloproteinases for initiation 
of menstruation.[100] As an indirect effect, estradiol 
treatment leads to up-regulation of hepatocyte growth 
factor (HGF) secretion that in turn regulates TNFα 
and MIP3α/CCL20 production by uterine epithelial 
cells.[101-103] Thus, concentrations of chemokines 
and cytokines will vary in the endometrium during 

normal physiological processes, as well as pathological 
conditions, such as infection and endometriosis.[92] 
Production of chemokines and cytokines by uterine 
epithelial cells may associate with pathological 
conditions during pregnancy. For example, there is a 
relationship between elevated concentrations of IL-6, 
IL-8, and MCP-1 and amniotic microbial infection 
in cervical and amniotic fluids from patients with 
spontaneous preterm birth.[104-106] In contrast, low 
levels of IL-1β, IL-8, and IL-6 in cervical fluid are 
correlated with clinical chorioamnionitis in early 
pregnancy.[107] So, low concentrations of cytokines 
create a permissive environment for ascending 
infection. It has been recommended that the levels 
of specific chemokine(s) and cytokine(s) in the FRT 
during pregnancy should be monitored where is a high 
risk of preterm labor.[108] Expressions of cytokines, 
chemokines, and adhesion molecule are also critical 
for endometrial growth in preparation for fertilization, 
implantation, and successful pregnancy, but also for 
the remodeling of the uterus during each menstrual 
cycle that is regulated by the sex hormones.[109-111]

Collectively, cytokines and chemokines, as chemical 
messengers, provide an immunological environment 
hostile to pathogen survival and maintain the 
normal homeostatic.[91] Their secretion leads to rapid 
communication between the different immune cells 
which are present in the FRT.[13] Innate immune cells 
provide another line of defense.

INNATE IMMUNE CELLS

Macrophage
As professional phagocytes, macrophages play an 
important role in the pathogens recognition, removal of 
debris, and indirect stimulation of the immune system 
by cytokines and chemokines production along with 
all aspects of inflammatory responses. These versatile 
cells are widely distributed throughout the human 
FRT (constitute 10% of the leukocytes population in the 
FRT).[6,112] The numbers of endometrial macrophages 
increase prior to menstruation, and also macrophage 
chemoattractants, like MCP-1, FKN, and MIP-1β, 
are up-regulated peri-menstrually.[6,113] Accumulation 
of endometrial macrophages also occurs across the 
mid-secretory phase of the cycle, while numbers of 
vaginal macrophages remain constant during the 
menstrual cycle.[13] Increasing evidences suggest that 
the migration of macrophages into endometrium 
is modulated by estradiol and progesterone.[114-116] 
Physiologic levels of estrogen induce macrophage 
proliferation and function.[117] Tissue macrophages 
have different phenotypic characteristics, reflecting 
the unique local micro-environment which they have 
been exposed.[6] For example, vaginal macrophages 
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express higher levels of the HIV-1 receptor CD4, 
CCRs, and CXCR4.[118,119] Macrophages have also 
been identified as key modulators of ovarian function 
through regulation of folliculogenesis and atresia.[120] 
They are most numerous during ovulation as an 
inflammatory reaction.[117] Decidual macrophages can 
participate in diverse activities during pregnancy.[121] 
They are classified as M1- and M2-types which take 
part, respectively, in progression of inflammation and 
immune tolerance during pregnancy. A balance of 
them may contribute to the outcome of pregnancy.[121]

Dendritic cells
DCs, as the major antigen-presenting cells in the FRT, 
seem to make a link between innate and adaptive 
immunity. They are present in the sub-epithelial 
stroma of the endometrium. In contrast, vaginal DCs 
are localized to the epithelial layer.[122] Exposure to 
pathogens and inflammatory stimuli, such as LPS, 
lead to maturation of DCs which are characterized 
by CD38 marker expression and IL12 production. 
Mature DCs facilitate the development of T-helper 
1 (Th1) cells.[122] The roles of DCs are to prevent 
infection by direct inactivation or the stimulation 
of adaptive immunity. However, new findings have 
suggested the expression of DC-SIGN by these 
cells could increase susceptibility of women to HIV 
infections.[123] DCs are not only essential for the 
induction of primary immune responses, but are also 
important for the induction of immunological tolerance 
and maintenance of successful pregnancy.[124,125] They 
are recruited into the endometrium and accumulated 
especially around the implanted embryo.[124] The 
function and differentiation of DCs are regulated by 
the local microenvironment determined by cytokines, 
chemokines, and estroied hormones.[124] Estradiol has 
been shown preferentially through a promotion of a 
specific sub-set of DCs differentiation, characterized by 
high surface expression of MHC class II and CD86.[126]

Natural killer cells
NK cells, as the key innate immune cells, use a variety 
of effector mechanisms to promote host immune 
defenses, while eliminating virus-infected cells and 
tumor cells by secretion of cytotoxic products.[127] 
Defects in NK cell activity are associated with increased 
infections particularly, herpes viral infections, ovarian 
cancer, uterine cancer, and endometriosis,[6,128-131] 
whereas elevated NK-cell activity has been associated 
with recurrent pregnancy loss.[132,133] NK cells have 
the ability to amplify an inflammatory response and 
to promote macrophage activation, generation of 
cytotoxic T cells, recognition of fungal infections, and 
cytokine production.[6,134,135] Uterine NK cells (uNKs) 
express several TLRs in particular TLR2, TLR3, and 
TLR4 which can respond to TLR agonists by producing 

cytokines.[123] Variety of cytokines, including IL12, IL8, 
IL15, IL1β, or IFNα in combination with PAMPs will 
activate NK cell cytokine production, leading to further 
activation of innate immunity.[136-138] The number of 
endometrial NK cells are low in the early proliferative 
phase and increase as the menstrual cycle progresses, 
reaching a peak in the late secretory phase.[112,139,140] 
However, NK cell numbers in other regions of the 
FRT are not affected across the menstrual cycle.[13] 
Also, an increase in number of endometrial NK cells 
increase during early pregnancy reaches a maximum 
at the end of the first trimester and a minimum at 
term.[141] It shows an important role of these cells in 
the establishment and maintenance of pregnancy. At 
least, two theories have been proposed for the increase 
of uNK cells within the uterus: In situ proliferation and 
recruitment from the peripheral NK cells blood.[141-144] 
Estradiol regulates NK cells activity via endogenous 
TGFβ.[123] Several reports suggest that IL15 is also 
required for uNK cells survival, proliferation, and 
differentiation into decidual NK cells.[144-149] The uNK 
cells have a distinct phenotype from blood NK cells.[150] 
Unlike blood NK cells, uNk cells express CD9 and 
CD69 on their cell surface.[99,151-153] It has been shown 
the cell-surface phenotype of NK cells is different 
within the FRT. For example, CD69 and CD96 are 
both expressed by NK cells in the endocervix and 
endometrium, but not in the ectocervix.[150] Uterine 
NK cells, not blood NK cells produce some essential 
cytokines for implantation such as, angiogenic growth 
factors ( vascular endothelial growth factor (VEGF), 
Placental growth factor( PLGF) , Angiopoietin2) and 
leukemia inhibitory factor (LIF).[13,154,155] Finally, it can 
be concluded that uNK cells are involved in several 
processes, including host defense, decidualization, 
implantation, and pregnancy.[141-143]

Neutrophil
Neutrophils are present in all tissues of the FRT and 
possess many effector mechanisms for mediating 
innate immunity.[156] Under the influence of chemokines 
gradient,[157,158] neutrophils can cross the endothelial 
barrier, eliminate pathogens by phagocytosis, and 
produce toxic oxygen and nitrogen species, as well 
as release cytokines and anti-microbial compounds, 
such as defensin–serine proteases.[159-161] IL8 is a 
major neutrophil chemoattractant.[162] IL8 and GM-
CSF, secreted by epithelial cells, cause to bring 
neutrophils toward the epithelium or cross the 
epithelial barrier into the lumen.[6] Insemination 
also causes a great influx of neutrophils into the 
uterine lumen to remove superfluous sperm, micro-
organisms, and seminal debris. This migration is 
accompanied by accumulation of macrophages, DCs, 
granulocytes, and lymphocytes in the endometrial 
stroma to maintain uterine sterility.[163] In contrast 
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to NK cells, neutrophil numbers are highest in the 
fallopian tubes whereas progressively decrease 
from the upper FRT into the lower regions of the 
tract.[112] In spite of the most numerous neutrophil 
in the fallopian tubes, their exact role remains to be 
studied.[164] The number of neutrophils in vagina has 
been shown to be stable throughout the cycle, similar 
to T cells and macrophages, expect in vaginal fluid 
from infected women.[165,166] Also, it has been declared 
that neutrophils count does not fluctuate across the 
menstrual cycle, but at menses sharply increase in the 
endometrium, which is preceded by a surge in IL-8.[13] 
At menses, breakdown of endometrial tissue is done by 
neutrophils via the release of elastase which activates 
matrix-metalloproteinases.[6,13] Some evidence suggest 
that exposure to different cytokines within FRT 
tissue can arise a different neutrophil population by 
altering their function and receptor expression.[167] For 
example, fallopian tube neutrophils express higher 
level of CD15 marker which may be important in 
innate immune defense of the fallopian tube.[168]

Our knowledge regarding immune defense mechanisms 
in the FRT remains limited. By further studies, new 
avenues may be identified both to protect against 
pathogens and to improve the quality of woman’s 
reproductive health.

CONCLUSIONS AND FUTURE PERSPECTIVES

Growing body of data about the FRT demonstrates the 
presence of a complex system of immune protection. 
Mucus lining, a tight epithelial barrier, the secretion of 
AMPs and cytokines by epithelial and innate immune 
cells, and expression of TLRs throughout the reproductive 
tract indicate that the FRT has evolved to meet the 
challenges of STIs and to minimize the risk of infection 
in order to support an allogeneic fetus. This review 
confers the opportunity of understanding the unique 
immunological characteristics of the female genital 
tract, and also highlights the need for further researches. 
Finally, we hope to provide new approaches into design 
novel therapeutic means for the female reproductive 
diseases associated with the innate immune system.
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