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In Silico
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Abstract The identification of immunogenic whole-protein antigens is fundamen-

tal to the successful discovery of candidate subunit vaccines and their rapid,

effective, and efficient transformation into clinically useful, commercially success-

ful vaccine formulations. In the wider context of the experimental discovery of

vaccine antigens, with particular reference to reverse vaccinology, this chapter

adumbrates the principal computational approaches currently deployed in the

hunt for novel antigens: genome-level prediction of antigens, antigen identification

through the use of protein sequence alignment-based approaches, antigen detection

through the use of subcellular location prediction, and the use of alignment-

independent approaches to antigen discovery. Reference is also made to the recent

emergence of various expert systems for protein antigen identification.

3.1 Introduction

The overwhelming case for vaccines and vaccination was long ago proven, yet

vaccines remain stubbornly underused. Controversy continues to surround

vaccines: it took over 10 years for a contentious connection between autism and

the MMR vaccine 1998 to be finally and ambiguously discredited [1]. Yet, for all

the prevalence of misinformation and muddled thinking, mass vaccination

represents—by far and away—the most efficient, efficacious, and effective form

of prophylactic medical intervention currently available to combat disease.

During most of the last century, in the developed world, over 600,000 people

died on average annually from a combination of smallpox, diphtheria, polio,

measles, and rubella; today this figure has fallen below 100. Smallpox in particular

was always a dreaded killer. Indeed, even during the 1960s, at least 10 million cases
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of smallpox were reported annually from across the globe, leading to about 2 million

deaths a year. Yet, today, the disease has been completely eradicated. In the last 30

years, there have been no known cases. Poliomyelitis or polio is the other large-

scale disease which has come closest to eradication. Its success too has been

formidable: in 1991, the Pan American Health Organization effectively eradicated

polio from the Western Hemisphere, since when the Global Polio Eradication

Programme has significantly decreased the overall incidence of Poliomyelitis

through the rest of the world. In 1988, there were approximately 350,000 cases

spread through 125 countries; in the past years, global figures amounted to less than

2,000 annually.

Yet, in spite of such remarkable success, death from vaccine-preventable

diseases remains unacceptably high [2]. There are over 70 common infectious

diseases responsible for one in four deaths globally. Rotavirus and Pneumococcus

are pathogens causing diarrhoea and pneumonia, the leading causes of infant deaths

in underdeveloped countries. In the next decade, effective, widespread vaccination

programs against such pathogenic microbes could save the lives of 7.6 million

children under 5 years of age. Hepatitis B causes 600,000 deaths in adults and

children aged over 5. Seasonal, non-pandemic influenza kills upwards of half a

million globally each year. For those aged under 5 in particular, a series of diseases

causes an extraordinary and largely preventable death toll. For example, tetanus

accounts every year for 198,000 deaths, pertussis is responsible for over 290,000

deaths, Hib gives rise to in excess of 386,000 deaths, diphtheria accounts for 4,000

deaths, and yellow fever over 15,000 deaths. Arguably, the most regrettable, the

most lamentable situation is that of measles. Measles accounts for the unneeded

deaths of 540,000 under-fives and over 70,000 adults and older children.

Despite this, the situation is by no means bleak. By the close of 2008, approxi-

mately 42 million had been vaccinated against Hib and 192 million children against

hepatitis B. During its first decade, vaccinations against polio, Hep B, Hib, measles,

pertussis, and yellow fever funded by GAVI had prevented the unnecessary loss of

over 5 million lives. There are approximately 50 vaccines licensed for use in

humans, around half of these are widely prescribed. Yet, most of these vaccines

target the prevention of common childhood infections, with the remainder

addressing tropical diseases encountered by travellers to the tropics; only a rela-

tively minor proportion combat endemic disease in under-developed countries.

Balancing the persisting need against the proven success and anticipated potential,

vaccines remain an area of remarkable opportunity for medical advance, leading

directly to unprecedented levels of saved and improved lives.

From a commercial perspective, the vaccine arena has long been neglected, in

part because of the quite astonishing success limned above; today, and in compara-

tive terms at least, activity within vaccine discovery is feverish [3, 4]. During the

last 15 years, tens of vaccines and vaccine candidates have moved successfully

through clinical trials, and vaccines in late development number in the hundreds. In

stark contrast to antibiotics, vaccine resistance is negligible and nugatory.

Despite the egregious and outrageous success enjoyed by vaccines, many major

issues persist. The World Health Organisation long ago identified tuberculosis
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(TB), HIV, and malaria as the three most significant life-threatening infectious

diseases globally. No vaccine has been licensed for malaria or HIV, and there seems

little realistic hope for such vaccines appearing in the immediate future. Bacille

Calmette Guérin (BCG), the key anti-TB vaccine, is of limited efficacy [5]. Levels

of morbidity and mortality generated by diseases already targeted by vaccines

remain high. Influenza is the key example, with a global annual estimated death

toll in the region of half a million.

In the twenty-first century, the world continues to be threatened by infectious

and contagious diseases of many kinds: visceral leishmaniasis, Marburg’s disease,

West Nile, dengue, as well as SARS potentially pandemic H5N1 influenza, and

over 190 human and emerging zoonotic infections, as well as the persisting threat

from HIV, TB, and malaria mentioned above. All this is further compounded by the

additional risk arising from antibiotic-resistant bacteria and bioterrorism, not to

mention major quasi-incidental issues, such climate change, an accelerating growth

in the world’s population, increased travel, and the overcrowding seen within the

burgeoning populations concentrated into major cities [6].

For reasons we shall touch on below, the discovery of vaccines is both more

urgent and more difficult than it has ever been. In an era where conventional drug

discovery has been seen to fail—or at least as seen by cupiditous investors, for

whom the current model of pharmaceutical drug discovery is broken—vaccines are

one of a number of biologically derived therapies upon which the future economic

health of the pharmaceutical industry is thought to rest. The medical need, as stated

above, is clear. Set against this is the unfortunate realisation that vaccines exist for

most easily targeted diseases, those mediated by neutralising antibodies, and so

outstanding vaccine-targets are those of more intractable diseases mediated primar-

ily by cellular immunity. To address those properly requires what all discoveries

required: hard work and investment; but they also need new ideas, new thinking,

and new vaccine discovery technology. Amongst, these are computational

techniques, the most promising of which are those targeting the discovery of

novel vaccine antigens: the candidate subunit vaccines of tomorrow see Fig. 3.1.

3.2 Vaccines

Vaccines are agents—either molecular (epitope- or antigen-based vaccines) or

supramolecular (attenuated or inactivated whole pathogen vaccines)—which are

able to create protective immunity against specific pathogenic infectious

microorganisms and any diseases to which they might give rise. Protective immu-

nity can be characterised as an enhanced but highly specific response to consequent

re-infection—or infection by an evolutionarily closely related micro-organisms—

made by the adaptive immune system. Such increased or enhanced immunity is

facilitated by the quantitative and qualitative augmentation of immune memory,

which is able to militate against the pernicious effects of infectious disease.

Vaccines synergise with the herd immunity they help engender, leading to reduced

transmission rates as well as prophylaxis against infection.
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The term “vaccine” derives from vacca (Latin for cow). The words vaccine and

vaccination were coined specifically for anti-smallpox immunization by the discov-

erer of the technique, Edward Jenner (1749–1823). These terms were later extended

by Louis Pasteur (1822–1895) to include a far more extensive orbit or remit,

including the entire notion of immunisation against any disease [2, 3, 6].

Several fundamentally distinct varieties of vaccine exist. These include inter
alia inactivated or attenuated whole pathogen-based vaccines; subunit vaccines are
based on one or more protein antigens, vaccines based upon one or more individual

epitopes, carbohydrate-based vaccines, and combinations thereof. Hitherto, the

best-used and, thus, the most successful types of vaccine were built from

attenuated—“weakened” or non-infective or otherwise inactivated—pathogenic

whole organisms, be they bacterial or viral in nature. Well-known examples include

the following: the BCG vaccine which acts prophylactically against tuberculosis

and Albert Sabin’s anti-poliomyelitis vaccine based on attenuated poliovirus. The

vast majority of subunit vaccines are immunogenic protein molecules, and are

typically discovered using a somewhat haphazard search process.

Concerns over the safety of whole-organism vaccines long ago prompted the

development of other kinds of vaccine strategy, including those based upon

antigens as the innate or immanent active biological constituent of either single

or composite vaccines. The vaccine which targets Hepatitis B is a good exemplar

of a so-called subunit vaccine as it is based on a protein antigen: the viral

envelope hepatitis B surface antigen. Other types of as-yet-unproven vaccines

include those based on epitopes and others based on antigen-presenting cells;

many have entered clinical trials, but none have fulfilled their medical or com-

mercial potential.

Microbial
Genome 
Sequence

Validated 
Computer 

Models

Shortlist of 
Validated 
Candidate 

Vaccine
Antigens

Fig. 3.1 Whole antigen discovery. When looking at a reverse vaccinology process, the discovery

of candidate subunit vaccines begins with a microbial genome, perhaps newly sequence,

progresses through an extensive computational stage, ultimately to deliver a shortlist of antigens

which can be validated through subsequent laboratory examination. The computational stage can

be empirical in nature; this is typified by the statistical approach embodied in vaxijen [115]. Or this

stage can be bioinformatic; this involves predicting subcellular location and expression levels and

the like. Or, this stage can take the form of a complex mathematical model which uses immunoin-

formatic models combined with mathematical methods, such as metabolic control theory [153], to

predict cell-surface epitope populations
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It is often difficult to capture the proper scientific meaning and use of recondite

terms, often borrowed from common usage or archaic language. So, let us be more

specific. An immunogen—a molecular moiety exhibiting the property of immuno-

genicity—is any material or substance capable of eliciting a specific immune

response. An antigen, on the other hand, is a molecular moiety exhibiting the

property of antigenicity. It is a substance or material recognised by a primed

immune system. Such a persisting state of immune readiness may be mediated by

humoral immunity (principally via the action of soluble antibodies) or by cellular

immunity (as mediated by T-cells, antigen presenting cells (APCs), or other

phagocytic cells), or a combination of both, in what is often referred to as a “recall”

response.

Immunogenicity is vital: it is the signature characteristic or property that prompts

a certain molecular moiety to evoke a significant immune response. Here, we shall

strictly limit use of “immunogen” and “antigen” to a sole meaning. Here, an

“antigen” or an “immunogen” will mean a protein that is capable of educing some

kind of discernible response from the host immune system. Specifically, and for

practical reasons, we will almost exclusively be referring to proteins derived from a

pathogenic micro-organism.

At present, the prophylaxis engendered by all current effective vaccines—all

except BCG—is primarily mediated by the humoral immune system, via soluble

antibodies. However, the disease mechanisms of most serious diseases for which

vaccines are not available are usually mediated by cellular immunity. Thus, for

untreated disease, we seek to identify immunogenicity generated principally by

cellular responses or by a combination of cellular and humoral responses, rather

than by humoral immunity alone.

To some extent, subunit vaccines can be thought to represent something of a

compromise between vaccines based on attenuated or otherwise inactivated whole-

organisms and the many more recent and more innovative vaccine strategies

typified by epitope or poly-epitope vaccines. Vaccines based around whole

pathogens have long engendered safety concerns [7–9]. From the Lubeck disaster

and the cutter incident [10–12] to the recent MMR debacle, issues over safety, real

or imagined, have always dogged the development of vaccines [1, 9]. Indeed,

during the eighteenth century the pre-vaccination practice of variolation against

Smallpox prefigured much of the current debate over the perceived danger of

vaccines [13].

While the case for vaccines is unanswerable, we should not be complacent. Any

live vaccine, however extensively attenuated, can revert to a pathogenic, disease-

inducing form. This is currently an on-going issue for polio vaccination [14]. Other

issues, particularly the chemical or biological contamination of vaccines during

manufacture, remain enduring and persistent problems. Undesired immunogenic-

ity, the type leading to severe and pathological immune responses, rather than

enduring immune memory, is a concern for both whole-organism and subunit-

based vaccines, as well as putative biologics [15]. Immunologists and

vaccinologists have thus long sought alternatives to the use of whole organisms

as vaccines. Subunit vaccines and conjugate vaccines are one such. Vaccines based

3 Identification of Candidate Vaccine Antigens In Silico 43



on epitopes, singly or in combination, are another. The diversity of innovations in

vaccine design holds much potential for success, but, thus far at least, has proved

spectacularly unsuccessful in a clinical context.

Logically, a vaccine that relies solely on, at most, a few well-chosen epitopes,

should be effective, efficacious, and, above-all, safe. Epitopes, as peptides, may be

cytotoxic and might possibly prompt some kind of inopportune immune response

but cannot be infective or revert to infectivity. In many ways, epitopes are closer in

size and share many properties with synthetic small molecules; possibly dealing

with their pharmacokinetics as such may be better than thinking of them as biologic

drugs. In practice, of course, epitope-based vaccines, like subunit vaccines, suffer

from poor immunogenicity, necessitating the use of a complex combination of

adjuvants and complicated delivery systems.

For diverse reasons, including immunogenicity, stimulating protective immune

responses against intracellular pathogens remains problematic when using non-

replicating vaccines. Why should this be? First, the immune response is very

complex, involving both the innate and adaptive immunity, and significant inter-

action between them. In all probability, and particularly when viewed in the

context of the whole population, many epitopes and danger signals are involved;

likewise, the many different immune actors, be they acting at the cellular or

molecular levels, interact with each other and are subject to complex mechanisms

of genetic, epigenetic, and system-level control and regulation. It may be that only

the large and complex organism-sized vaccines can induce the range of immune

responses necessary across the population to induce protection, since they com-

prise a potential host of immunogenic molecular moieties, not just a single

immunodominant epitope See Fig. 3.2.

In that which follows, we shall seek to explore the availability and accessibility of

informatic techniques and informatic tools used to identify candidate subunit

vaccines of microbial origin. Yet, we shall start by adding context with an examina-

tion of experimental approaches to antigen discovery: so-called reverse vaccinology.

Reverse vaccinology already relies on informatics, but, in a sense at least, what we

would like to do using informatics is to reproduce as much as is possible the steps

inherent in successful reverse vaccinology in silico rather than in vitro.

3.3 Reverse Vaccinology and the Experimental Identification

of Antigens

Reverse vaccinology, and the necessary computational support, is a much more

prevalent means of identifying subunit vaccines [16]. See Fig. 3.1. Even today,

many experimentalists retain a deep and atavistic distrust of all computation.

Experimentalists seldom trust the reliability and dependability of computational

methodology, choosing to trust instead in what they believe to be infallible, if

actually rather elusive, empirical reliability of observations, experiments, and the

whole paraphernalia of laboratory experimentation. Yet, things are in the process of
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changing, and this change is likely to accelerate as we move forward into a future

that looks more parsimonious and uncertain by the day.

Vaccines have come a long way from the days when they were prepared directly

from the fluids of smallpox pustules or extracts of infected spinal cords. Yet vaccine

discovery and development remains firmly empirical. Many modern vaccines still

comprise entire inactivated pathogens. While vaccines targeting papillomavirus,

tetanus, hepatitis B, and diphtheria are subunit vaccines, few are recombinant

proteins devoid of contaminants. Some would argue that the only molecular

vaccines are glycoconjugates: oligosaccharides conjugated to immunogenic carrier

proteins.

Conventional empirical, experimental, laboratory-based microbiological ways

to identify putative candidate antigens require cultivation of target pathogenic

micro-organisms, followed by teasing out their component proteins, analysis in a

series of in-vitro and in-vivo assays, animal models and with the ultimate objective

of isolating one or two proteins displaying protective immunity.

Unfortunately, in reality, the process is more complex, and more confusing, and

much more confounding as this brief synopsis might suggest. Cultivating pathogens

outside the environment offered by their host organism can be difficult, even

impossible. Not every protein is readily expressed in adequate quantities in vitro,

and many proteins are only expressed in an intermittent basis during the time course

of infection. Thus, a considerable number of potential, putative, and possible

vaccine candidate antigens could be missed by conventional experimental

approaches.

HOST

T-cell 
Epitopes

B-cell 
Epitopes

Physical
Form

Post-Translational
Modifications

PATHOGEN

Expression
Level

Sub-Cellular
Location

“PROTECTIVE” 
IMMUNOGENICITY

Fig. 3.2 Factors underlying immunogenicity. As elaborated in the text, the phenomenon of

immunogenicity can be explored through the diversity of underlying factors contributing to the

instigation of the immune response. The can be assigned to the host (epitope recognition), the

pathogen (location and expression level), and also factors intrinsic to the protein antigen itself,

such as the possession of post-translational danger signals
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Reverse vaccinology [16–19] has the potential to analyse genomes for potential

antigens, initially scanning “open reading frames” (ORFs), then selecting proteins

because they are open to surveillance by the host immune system. This usually

involves some complex combination of informatic-based prediction methodologies.

Recombinant expression of the resulting set of identified molecules can overcome

their reduced natural abundance, which has often prevented us recognising their true

potential. By enlarging the repertoire of native antigens, this technology can help to

foster the development of a new cohort of vaccines.

Reverse vaccinology was originally established and has been established by

studying Neisseria meningitidis, which is responsible for meningococcal meningitis

and sepsis. Vaccines are currently available for all serotypes, except that serogroup

B. N. meningitidis ORFs were found initially [20, 21]; 570 proteins were then

identified, 350 expressed in vitro and 85 found to be surface exposed. Seven

proteins elicited immunity over many strains. The culmination of this work was a

“universal” vaccine for serogroup B based on five antigens [22]. This proto-

vaccine, when used with Alum as adjuvant, induced murine bactericidal antibodies

versus 78 % of 85 meningococcal strains drawn from the world population of N.
meningitidis. Strain coverage increases to over 90 % when used with CpG or MF59

as adjuvant.

Another key illustration is Porphyromonas gingivalis, an anaerobic gram-

negative bacterium found in the chronic adult inflammatory gum disease periodon-

titis. Initially, 370 ORFS were identified [23]; of these, 120 protein sequences were

open to immune surveillance and 40 were positive for several sera. Two antigens

were found to be protective in mice.

Yet another fascinating instance is provided by Streptococcus pneumoniae, a
prime cause of meningitis, pneumonia, and sepsis [24, 25]. In this study, 130

potential ORFs were initially identified, with 108 of these proteins being readily

expressed. Finally, six proteins were seen to induce protection against the pathogen.

More recently, other and more advanced experimental techniques, such as

microarrays, are beginning to come on-stream, opening up a gallimaufry of possible

technologies to the new but maturing field of reverse vaccinology. The following

gives but a taste of what is to come.

Using ribosome display to undertake in-vitro protein selection, Weichart et al.

[26] identified within the methicillin-resistant COL strain of the virulent human

pathogen Staphylococcus aureus 75 genes, the majority of which were secreted or

surface-localized proteins; of these, 25 % had cell envelope function, 24 % were

transporter proteins, and 9 % were virulence factors or toxins.

Using an ingenious combination of advanced proteomics techniques and in-vitro

assays, Giefing et al. [27] identified 18 novel vaccine candidates which prevented

infections in children and in the elderly caused by a variety of pneumococcus

serotypes; four demonstrating major protection versus sepsis in animals. Two

leads—StkP (a serine/threonine protein kinase) and PcsB (a structural protein

with a role in cell wall separation of group B Streptococcus)—showed clear

cross-protection as potential candidate vaccines against four separate pneumococ-

cal serotypes.
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Using a whole proteome microarray, and in order to identify protein antigens,

Eyles et al. [28] probed serum from BALB/c mice previously immunized with a

vaccine comprising: killed Francisella tularensis and two immunomodulatory

adjuvants. Eleven out of the top twelve immunogenic antigens were known already

as immunoreactive, although 31 further proteins were discovered using this experi-

mental approach. In further work from this consortium, Titball and co-workers [29]

constructed a protein microarray of 1,205 Burkholderia pseudomallei proteins,
treated it with 88 patient samples, identifying 170 antigens. This smaller set was

treated with a further 747 distinct sera from 10 groups of patients, identifying 49

putative candidate antigens.

This survey, brief though it is, helps to highlight the potential power of reverse

vaccinology for vaccine discovery. However, since the number of antigens is high,

given all the potential difficulties in characterising and expressing them, it is

important to note that both computational and experimental techniques and

methodologies will doubtlessly omit important and interesting proteins from further

analysis, though not necessarily for the same or similar reasons. Thus, with the

burgeoning discipline of reverse vaccinology, both computational and experimental

techniques are in need of constant development and improvement.

3.4 Immunoinformatics

Compared to its role to drug discovery, genomics, and a host of other bioscience

sub-disciplines, bioinformatics support for the preclinical discovery and develop-

ment of vaccine is in its infancy; yet, as interest in vaccine discovery increases, the

situation changes. There are two key types of bioinformatics support for vaccine

design, discovery, and development. At the technical level, the first of these cannot

be properly or meaningfully distinguished from general support for target disco-

very. It includes the annotation of pathogen genomes, more conventional host

genome annotation, and the statistical analysis of immunological microarray

experiments. The second form of support concentrates on immunoinformatics,

that is, the informatics analysis of immunological problems, principally epitope

prediction.

B-cell epitope prediction remains defiantly basic or is largely dependent on a

sometimes unavailable knowledge of three-dimensional protein structure. Both

structure- [30] and data-driven [31] prediction of antibody-mediated epitopes

evince poor results. However, methods developed to predict T-cell epitopes now

possess considerable algorithmic sophistication. Moreover, they continue to

develop and evolve, as well as extend their scope and remit to address new and

ever larger and more challenging epitope prediction problems. Presently, accurate

and reliable T-cell epitope prediction is restricted to predicting the binding of

peptides to the major histocompatibility complex (MHC). Class I peptide-MHC

prediction can be reasonably accurate, or is for properly characterised, well-

understood alleles [32]. Yet a number of key studies have demonstrated that class
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II MHC binding prediction is almost universally inaccurate, and is thus erratic and

unreliable [33–35]. A similar situation persists for structure-driven prediction of

MHC epitopes [36, 37].

Irrespective of poor predictive performance, several other problems exist for

epitope prediction. For T cell prediction in particular, a prime concern is with the

availability or rather lack of availability of relevant data. It is now known that

immunogenic T cell epitopes, thought previously to be peptides no more than 10

amino acids in length, can be 16 or more residues long. Longmer epitopes now

greatly expand the number of possible peptides open to inspection by T cells

[38–41]. The inadequate results generated by B cell epitope prediction algorithms

may indicate that a fundamental reinterpretation of extant B cell epitope data is

necessary before improved methods become feasible.

These factors, when taken together, are consistent with the notion that methods

relying only on the possession of certain epitopes will not be fully effective when

tasked with antigen or immunogen identification. This is supported by information

indicating a lack of correspondence between selected antigens and experimentally

verified protective proteins.

3.5 Genomic-Level Identification of Antigens

There are many means of identifying antigenic proteins. Most focus on the

properties of protein sequence and structure, but arguably one of the most insightful

is instead to examine properties, both local and global, of the underlying nucleic

acid. One notable way is to look for evidence of the horizontal or lateral transfer of

so-called pathogenicity islands or PAIs. Horizontal transfer, such as transformation,

conjugation, or transduction, is distinct from the vertical transfer of genetic material

from an ancestor within its lineage. It typically involves an organism incorporating

genetic material from an evolutionarily distant organism without being its

offspring.

PAIs are a specific type of genomic island; that is, part of a genome acquired

through direct transfer between microbes. A genomic island can occur in distantly

related species and may be mono- or multi-functional; there are many sub-classes

classified by function. Other examples include antibiotic resistance islands, metal

resistance, and secretion system islands. The gene products of PAIs are crucial to

the propagation of disease pathogenesis, much as the PAIs themselves are key to the

evolution of pathogenesis. Pathogen-associated type III and type IV secretion

systems are, for example, often found together in the same PAI.

Detecting such large (>10 Kb) and discrete clusters of genes clusters, habitually

possessing a characteristically atypical G/C content, at least when compared with

the remainder of the genome, leads, in turn, to the individual identification within

clusters of virulence-associated protein antigens. Prokaryotic PAIs are frequently

associated with tRNA-encoding genes, many are flanked by repeat structures, and

many contain fragments of mobile genetic elements such as plasmids and phages.
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PAIs can be identified by combining analysis of nucleotide composition and

phylogeny, amongst others. Composition-based approaches rely on the natural

variation between genome sequences from different species. Regions of the

genome with abnormal composition, as demonstrated by nucleotide or codon

bias, may be potentially transferred horizontally. Such methods are prone to

inaccuracies; these result from inherent genomic sequence variation, such as is

seen in highly expressed genes, and the observation that over time the sequences of

genomic islands alter to mirror the composition of host genomes.

Evolution-based approaches seek regions that may have been transferred hori-

zontally by comparing related species. Put at its simplest: a putative genomic island

present in one species, but absent from several related species, is consistent with

horizontal transfer. Of course, the island may have been present in the last common

ancestor shared by the species compared and subsequently been lost from the other

species. A less likely explanation would be that the island arose by mutation and

selection in this species and no other. To decide, a body of extra evidence would

need to be explored, such as the size of the PAI, the mechanistic ease of deletion,

the consistent presence of the island in more distantly related species, the relative

pathogenicity of island-less species, and the divergence of the genome relative to

that of other related species.

Many methods, which seek to quantify and leverage these somewhat vague

notions, are now available [42–44]. Such analysis at the nucleic acid level shares

many features in common with approaches used to identify CpG islands in eukary-

otic genomes [45–48]. Recently, Langille et al. tested six sequence-composition

genomic island prediction methods and found that IslandPath-DIMOB and SIGI-

HMM had the greatest overall accuracy [49].

Island Path was designed to help identify prokaryotic PAIs, through the

visualisation of common PAI characteristics such as mobile element-associated

genes or atypical sequence composition [50]. SIGI-HMM is a very accurate

sequence composition-based genomic island predictor, which combines a Hidden

Markov Model (HMM) and codon usage measurement to identify genomic islands

[51].

In another work, Yoon et al. coupled heuristic sequence searching methods,

which aimed simultaneously to identify PAIs and individual virulence genes, with

composition and codon-usage bias [52]. Exploiting a machine learning approach,

Vernikos and Parkhill sampled the structural features of genomic islands using a

hypothesis-free, bottom-up search, with the objective of explicitly quantifying the

contribution made by each feature to the overall structure of different genomic

islands [53]. Arvey et al. sought to identify large chromosomal regions with

atypical features using a general divergence measureable to quantify the composi-

tional difference between genomic segments [54]. IslandPick is a comparative

genomic island predictor, rather than a composition-based approach, that can

identify very probable genomic islands and very probable non-genomic islands

within investigated genomes but does require that several phylogentically related

genomes are available [49]. Observing PAIs as having a G + C composition closer

to their host genome, Wang et al. used so-called genomic barcodes to identify PAIs.

3 Identification of Candidate Vaccine Antigens In Silico 49



These barcodes are based on the fact that the frequencies of 2-mers to 7-mers, and

their reverse complement, are very stable across a whole genome when using a

window size of over 1,000 bps and that this constituted a characteristic signature for

genomes [55].

The ready detection of PAIs, as a tool in computational reverse vaccinology, has

been greatly aided by the deployment of several web-based resources. A key

example of a server that successfully integrates several accurate genomic island

predictors is IslandViewer [56], which combines the methods: IslandPick [49],

IslandPath [50], and SIGI-HMM [51] and is available at the URL: http://www.

pathogenomics.sfu.ca/islandviewer/query.php. The GUI facilitates the visualisation

of genomic islands and downloading of data at the gene and chromosome levels in a

variety of formats.

Another important, web-accessible resource is PAIDB or the PAI database. This

is a wide-ranging database of PAIs, containing 112 distinct PAIs and 889 GenBank

accessions present in 497 strains of pathogenic bacteria [57]. PAIDB may be

accessed via the URL: http://www.gem.re.kr/paidb.

Thus, alternative techniques and methodologies are required in order to select

and to rank proteins likely to be protective antigens and thus candidate vaccines.

Below, we shall explore three key approaches: subcellular location prediction,

alignment-dependent sequence similarity searching, and alignment-independent

empirical statistical approaches.

3.6 Identifying Antigens Using Sequence Similarity

In this section, we consider, perhaps, the clearest and cleanest way to identify

potential new antigens in any microbial genome to alignment-dependent sequence

similarity searching. There are two complimentary but distinct ways of identifying

the immunogenicity of a protein from its sequence. One is to look for significant

similarity to proteins of known immunogenicity. This idea seems so straightforward

as to be almost facile. The other approach is somewhat less obvious conceptually

but almost as straightforward logistically and involves seeking to identify antigens

as proteins without discernible sequence similarity to any host protein. Let us turn

to the first of these two alternatives.

Let us begin by stating or rather reiterating the obvious. If we know the sequence

of an existing antigen or antigens, we can use sequence searching to find similar

sequences in the target genome [58, 59]. Any candidate antigens selected by this

process can then be selected for further verification and validation. The same old,

familiar caveats apply here: are chosen thresholds appropriate? Are high-scoring

matches an artefact or are they real and meaningful? The litany of such conditions is

all too familiar to anyone well versed in sequence similarity searching. Clearly,

when a sequence search is run, using BLAST or FASTA3, for example, an

enormously long list of nearly identical proteins might ensue, or one that does not

get any hits at all, or almost any intervening result might be obtained. As reflective
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practitioners, we must judge which result can be classified as useful and which

cannot, and in so doing, identify sets of suitable thresholds, above which we expect

usefulness and below which we might anticipate little or no utility. Thresholds are

contingent upon the sequence family studied, as well as being dependent solely on

the problem investigated. Thus heuristically identified cut-offs are desirable, but

much thinking and empirical investigation are required to select appropriate values.

Of course, the process adumbrated above presupposes that sufficient antigenic

protein sequences are known. Compilation of this data is the role of the database.

Recently, extensive literature mining, coupled with factory-scale experimentation,

has created many functional immunology databases, although databases, such

as SYFPEITHI [60, 61], focussing on cellular immunology—primarily MHC

processing, presentation, and T cell recognition—have existed for 15–20 years.

Arguably, the best extant database is the HIV molecular immunology database

[62], although clearly the depth of the database is at the expense of generality and

breadth. Other recent databases include MHCBN [63, 64] and EPIMHC [65],

amongst many others. Two databases, warrant particular attention: AntiJen [66],

formerly known as Jenpep [67, 68]; and IEDB [69].

Implemented as a relational postgreSQL database, AntiJen integrates a wide-

ranging set of data items, much of which is not stored by other databases.

In addition to the kind of cellular immunological information familiar from

SYFPEITHI, such as MHC binding and T cell data, AntiJen additionally archives

B cell epitopes and also includes a significant stockpile of quantitative data: kinetic,

thermodynamic, as well as functional, including measurements of immunological

peptide–protein and protein–protein interactions. The IEDB database is consider-

ably more extensive than other equivalent database systems, benefiting from the

input of 13 dedicated epitope sequencing projects. IEDB has come to eclipse other

work in this area. Although both AntiJen and IEDB are full of epitope-focussed

information of many flavours, they remain incomplete concerning immunogenic

antigens. Fortuitously, specific antigen-orientated—rather than epitope-focussed—

databases are starting to be available.

Arguably, the most obvious and most unambiguous example of an antigen is

virulence factor (VF): proteins, such as toxins, able to induce disease directly by

attacking a host. Analysis of known pathogens has allowed recurring VF systems of

40+ distinct proteins. Often, sets of VFs exist as discrete, distinct genome-encoded

PAIs, as well as being more widely spread through the genome.

Clearly, antigens do not need to be VFs in order to be immunogenic and thus

candidates for subunit vaccines. Instead, they need only be accessible to the

immune system. They do not need to directly or indirectly mediate infection.

Thus, other databases are needed which capture, collate, and archive the burgeoning

plethora of antigen-orientated data. Recently, we have helped developed a very

different database: AntigenDB [70]. It contains over 500 antigens collated from the

primary scientific literature, as well as other sources. Another related database

system has been christened VIOLIN (vaccine investigation and online information

network) [71], which allows straightforward curation and the analysis and
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comparison of research data across diverse pathogens in the context of human

medicine, animal models, laboratory model systems, and natural hosts.

As we outline above, in addition to identifying sequence similarity to known

antigens, another idea gaining ground is that the immunogenicity of an antigen is

solely determined by the absence of similarity to host proteins. Some think this is

the prime determinant of potential protein immunogenicity [72, 73]. Such ideas are

supported by the belief that immune systems are actively educated to lack reactivity

to self-proteins [74], a process—often termed “immune tolerance”—which is

generated via epitope-specific mechanisms [75, 76].

What we really want is a meaningful measure of the “foreignness” of a protein

correlating with its immunogenicity. Usually, “evolutionary distance” substitutes

for “foreignness.” Clearly, such an evolutionary distance must be specified in terms

of biomacromolecular structures or sequences. But, is this practically useful for

selecting candidate vaccines?

Another way to formulate this idea is to say that the probability that a protein is

immunogenic is exclusively a product of its dissimilarity, at the whole-sequence or

sequence-fragment level, to each and every protein contained within the host

proteome. Most search software is well matched to this problem. In terms of

fragment length, the typical length of an epitope might seem logical, since the

epitope is the molecular moiety typically recognised during the initial phase of an

immune response. Yet, even at the epitope level—say a peptide of 8–16 amino acid

residues—even a single conservative mutation or mismatch in an otherwise identi-

cal match might prove significant. Single sequence alterations may totally abrogate

or significantly enhance neutralising antibodies binding or recognition by the

machinery of cellular immunology.

We have attempted to benchmark sequence similarity and correlate it with

immunogenicity in order to explore the potential of this idea in a quantitative

fashion. To that end, we examined the differences between sets of antigens and

non-antigen using sequence similarity scores. We looked specifically at sets of 100

known non-antigenic and 100 antigenic protein sequences from six sources: bacte-

ria, viruses, fungi, and parasites, as well as allergens and tumours [77–79], compar-

ing pathogen sequence to those from humans and mice using BLAST [80].

Most non-antigenic and antigenic sequences were non-redundant; implying a

lack of homologues between pathogens and host proteomes, although certain

parasite antigens, such as catalases and heat shock proteins, had a much greater

level of similarity. We were not able to determine a suitable and appropriate

threshold based on the hypothesis of non-redundancy to the host’s proteome,

suggesting that this is not a viable solution to vaccine antigen identification.

However, rather than looking at nucleic acid sequences, or at protein sequences

using an alignment-based approach, a new set of techniques, based upon alignment-

free techniques, has been and is being developed; as this approach begins to show

significant potential, we shall examine it next.
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3.7 Identifying Antigens through Subcellular Location

Prediction

Proteins accessible to immune system surveillance are assumed to lie external to the

microbial organism or be attached to its surface rather than being sequestered and

sequestrated within the cell. For bacteria, this means being located on—or in—the

outer membrane surface or being secreted. Thus, being able to accurately predict

the physical location of a putative antigen can provide considerable insight into the

likelihood that a particular protein will prove to be an immunogenic and possibly

protective.

There are two basic kinds of prediction method for identifying subcellular

location: manual rule construction and the application of data-driven machine

learning methods. Data used to discriminate between compartments include

sequence-derived features of the protein, such as hydrophobic regions; the amino

acid composition of the whole protein; the presence of certain specific motifs; or a

combination thereof. Accuracy differs significantly between different methods and

different compartments, mostly resulting from the deficiency and inconsistency of

data used to derive models. Gross overall sequence similarity is unable to predict

protein sub-cellular location reliably or accurately. Even nearly identical protein

sequences may be found in distinct locations, while there are many proteins which

exist simultaneously at several distinct locations within the cell, often having

equally distinct functions at these different sites [81].

Eukaryotes and prokaryotes have quite distinct subcellular compartments.

The number of such compartments used in prediction studies varies. A com-

mon schema reduces prokaryotic to three compartments (cytoplasmic, periplas-

mic, and extracellular) and eukaryotic cells to four compartments (nuclear,

cytoplasmic, mitochondrial, and extracellular). Other structural classifications

evince in excess ten eukaryotic compartments. Ten compartments maybe a

conservative estimate, such is the complex richness of sub-cellular structure.

Any prediction method must account for permanent, transient, and multiple

locations, and, in addition, multi-protein complexes and membrane-bound

organelles as possible sites.

Numerous signal sequences exist. Several methods predict lipoproteins. The

prediction of proteins translocated via the TAT-dependent pathway is important

but has yet to be addressed properly. However, amongst binary, single-outcome

approaches, SignalP is probably the most accurate and reliable method available. It

uses neural networks to predict the presence and probable cleavage sites of type II

or N-terminal Spase-I-cleaved secretion signal peptides [82–84]. This signal is

common to both prokaryotic and eukaryotic organisms. SignalP has recently been

enhanced with a HMM intended to discriminate cleaved from uncleaved signal

anchors. A limitation of SignalP is its proclivity to over-predict: it cannot properly

discriminate reliably between a number of very similar yet functionally different

signal sequences, regularly predicting lipoproteins and integral membrane proteins

as type II signals.
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Many methods have been devised capable of dividing a genome or virtual-

proteome between the various subcellular locations of a eukaryotic or prokaryotic

cell. PSORT is a good example; it is a multicategory prediction procedure, com-

prising many different programmes [85–88]. PSORT I predicts 17 subcellular

compartments, while PSORT II predicts ten different locations. iPSORT deals

with several compartments: chloroplast, mitochondrial, and proteins secreted

from the cell, while PSORT-B focuses solely on predicting bacterial sub-cellular

locations.

Another effective programme is HensBC [89]. HensBC can assign gene products

to one of four different types (nuclear, mitochondrial, cytoplasmic, or extracellular)

with an accuracy of about eight out of ten for gram-negative bacteria. Another

programme, SubLoc [90], predicts prokaryotic subcellular location divided

between three compartments. Another programme is Gpos-PLoc [91], which

integrates several basic classifiers. Other methods include Phobius [92], LipoP

1.0 [93], and TatP 1.0 [94]. A comparison of several such programmes, using 272

mycobacterial proteins as a gold standard [95], showed subcellular localisation

prediction and possessed high predictive specificity.

We have developed a set of methods which predict bacterial subcellular

location. Using a set of methods for lipoprotein, TAT secretion, and membrane

protein prediction [96–102], three different Bayesian network architectures

were implemented as software pipelines able to predict specific subcellular

locations, and two serial implementations using a hierarchical decision struc-

ture, and a parallel implementation with a confidence-level-based decision

engine [103]. The soluble-rooted serial pipeline performed better than the

membrane-rooted predictor. The parallel pipeline outperformed the serial pipe-

line but was significantly less efficient. Genomic test sets proved more ambig-

uous: the serial implementation identified 22 more of the 74 proteins of known

location yet more accurate predictions are made overall by the parallel

implementation.

The implications of this work are clear. The complexity of subcellular structures

must be integrated fully into sub-cellular location prediction. In extant studies,

many important cellular organelles are not considered; different routes by which

proteins can reach the same compartment are ignored; and proteins existing

simultaneously at several locations are likewise discounted. Clearly, combining

high specificity predictors for each compartment appropriately must be the way

forward [103].

Many difficulties, problems, and quandaries persist; the most keenly felt is the

lack of high-quality, verified, and validated datasets which unambiguously

established the location of well-characterised proteins. This dearth is particularly

serious for certain types of secreted protein, such as type III secretion. In a similar

manner, considerably more work is required to accurately predict the locations for

proteins of viral origin; while certain studies are encouraging [104, 105], the

complexity of viral interaction with host organisms continues to confound attempts

at analysis.
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3.8 Identifying Antigens Using Alignment-Independent

Methods

Predicting antigens in silico typically utilise bioinformatics tools. Such tools can

identify signal peptides or membrane proteins or lipoproteins successfully, yet the

majority of algorithms tend to depend on motifs characteristic of antigens or, more

generally, sequence alignment as the principal arbiter of definitive and meaningful

sequence relationships. This is potentially a problem of some magnitude, particu-

larly given the wide range of evolutionary rates and mechanisms amongst microbial

proteins. Certain protein families do not, however, show obvious or significant

sequence similarity, despite having common biological properties, functions, and

three-dimensional structures [106, 107].

Thus alignment-based approaches may not always produce useful and unequiv-

ocal results, since they assume a direct sequence relationship that can be identified

by simple sequence search techniques. Immunogenicity, as a signature characteris-

tic, may be encrypted within the structure and/or sequence instead. This may be

encoded so cryptically or so subtlety as to completely confound or at least mislead

conventional sequence alignment protocols. Discovery of utterly novel and previ-

ously unknown antigens will be totally stymied by the absence of similarity to

known antigenic proteins.

Alignment-dependent methods tend to dominate bioinformatics and, by exten-

sion, immunoinformatics. Several authors have chosen to look at alternative

strategies, implementing so-called alignment-independent or alignment-free

techniques. The first authors to do so were Mayer et al., who reported that protective

antigens had a different amino acid composition compared to control groups of non-

antigens [108]. Such a result is unsurprising since it has long been known that the

structure and sequence composition of proteins adapted to the different redox

environments of different sub-cellular compartments [109].

Mayer’s analysis was formulated primarily in terms of univariate comparisons of

antigens versus controls for different properties. Subsequently, we explored bivari-

ate comparison in terms of easily comprehensible scatter-plots. See Fig. 3.3 for

representative examples. What their results ably demonstrate is the potential for the

discrimination of antigens and non-antigens by the appropriate selection of orthog-

onal descriptors. The challenge, of course, is to identify a robust choice of

descriptors which are capable of extrapolating as well interpolating when used

predictively.

Progressing beyond this type of analysis, and synergising with our other work on

alignment-independent representation [110–114], we have initiated the develop-

ment of new methods to differentiate antigens—and thus potential vaccine

candidates—and non-antigens, using more sophisticated alignment-free approach

to sequence representation [115, 116]. Rather than focus on epitope versus non-

epitope, our approach utilises data on protective antigens derived from diverse

pathogens to create statistical models capable of predicting whole-protein

antigenicity.
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Our alignment-independent method for antigen identification uses the auto cross

covariance (ACC) transformation originally devised by Wold et al. [117, 118] to

transform protein sequences into uniform vectors. The ACC transform has found

much application in peptide prediction and protein classification [119–126]. In our

method, amino acid residues are represented by the well-known and well-used z
descriptors [127–129], which characterise the hydrophobicity, molecular size, and

polarity of residues. Our method also accounts for the absence of complete inde-

pendence between distinct sequence positions.

We initially applied our approach to groups of known viral, bacterial, and

tumour antigens, developing models capable of identifying antigen. Extra models

were subsequently added for fungal and parasite antigens. For bacterial, viral, and

tumour antigens, models had prediction accuracies in the 70–89 % range [115, 116,

130]. For the parasite and fungal antigens, models had good predictive ability with

78–97 % accuracy. These models were incorporated into a server for protective

antigen prediction called VaxiJen [115] (URL: http://www.darrenflower.info/

VaxiJen). VaxiJen is an imperfect but encouraging start; future research will

yield significantly more insight as well-characterised protective antigens increase

significantly in number [70].
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Fig. 3.3 Two scale plots of antigen and non antigen. (a) Proteins separated in terms of mean

hydrophobicity versus mean polarity. (b) Proteins separated by mean polarity versus mean relative

mutability. (c) Protein separated by mean hydrophobicity versus mean relative mutability score
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3.9 Antigen Selection and Immunogenicity

Aswe have said, a number of bioinformatics problems are unique to the discipline of

immunology: the greatest of these is the accurate quantitative prediction of immu-

nogenicity. This chapter has in its totality been suffused and pervaded by the idea of

immunogenicity and the challenge of predicting this property in silico. Such an

endeavour is confounding, yet exciting, and, as a key instrument in developing

better, safer, more effective vaccines, is also of undisputed practical utility.

Successful immunogenicity prediction is at its simplest made manifest through

the identification of B cell or T cell epitopes. Epitope recognition, when seen as a

chemical event, may be understood in terms of the relationships between apparent

biological function or activity and basic physicochemical properties. Delineating

structure-activity or property-activity relationships of this kind is a key concern of

immunoinformatics. At the other end of the spectrum, immunogenicity can be

viewed is a cohesive, integrated, system property: a property of the entire and

complete immune system and not a series of individual and isolated molecular

recognition events. Thus, the task of predicting systems-level immunogenicity is in

all likelihood manifold more demanding than predicting peptide-binding say.

The clinical manifestation of vaccine immunogenicity arises from the complex

amalgam of many contributing extrinsic and intrinsic factors, which includes

pathogen-side and host-side properties, as well as those just coming directly from

proteins themselves. See Fig. 3.2. Protein-side properties include the aggregation

state of candidate vaccines and the possession of PAMPs. Pathogen-side properties

are clearly properties intrinsic to the pathogen, including expression levels of the

antigen, the time-course of this expression, as well as its subcellular location. So-

called host-side properties are innate recognition properties of host immunity, and

most obviously include T cell epitopes or B cell epitopes.

A bona fide candidate antigen should be available for immune surveillance and

thus highly expressed, constitutively or transiently, as well as having several

epitopes. A protein without immunogenicity would logically lack all or some of

these characteristics. As a prediction problem, this is, to say the least, not uncom-

plicated; clearly consisting of a great variety of difficult-to-compute stages. In

terms of mechanism, many of these stages are poorly understood. Yet, each can

be addressed using standard computational and statistical tools. They can all be

predicted, however, presupposing, of course, the presence of relevant data in

sufficient quantity.

3.10 Expert Systems for Antigen Discovery

One of the strongest messages to emerge from this review is that immunogenicity is

a strongly multi-factorial property: some protein antigens are immunogenic for one

reason, or set of reasons, and other immunogenic proteins will be so for another

possibly tangential reason or set of reasons. Each such causal manifold is itself
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complex and potentially confusing. Thus, the prediction of immunogenicity is a

problem in multi-factorial prediction, and the search for new antigens is a search

through a multi-factorial landscape of contingent causes and discombobulating

decoys.

Some of the evidence will be highly precise and quantitative. The kind provided

by predictive immunoinformatics, for example. This typically yields exact values

for, say, the binding affinity of a peptide to a protein component of the immune

system, or an unequivocal yes or no answer to the question: is this peptide sequence

an epitope? However, for each such exact prediction, we have some notional

associated probability concerning how reliable we regard this result. Different

methods evince a range of accuracy, which, in practice, equate to probabilities of

reliability: we naturally have more confidence and assume a greater reliability for a

highly accurate prediction versus one of average predictability, though it can still

give wrong predictions and generally inaccurate predictors may work well for a

specific subset of the data.

Other types of forms of evidence will have a distinctly more anecdotal flavour.

Take, for example, the case of bacterial exotoxins. Together with endotoxins, such

as LPS, and so-called superantigens, exotoxins form the principal varieties of toxin

secreted by pathogenic bacteria. Exotoxins have evolved to be the most toxic

substances known to science: in terms of the median lethal dose, botulinum

toxin—the active ingredient of BOTOX and causative agent of botulism, amongst

others—is about ten times as lethal as radioactive isotope polonium-210 and a

million times more deadly than mainline poisons, such as arsenic or potassium

cyanide. Virtually, all such potent bacterial exotoxins comprise two functionally

distinct subunits, either separate proteins or distinct domains, usually denoted A

and B. The A subunit is habitually an enzyme, such as a protease, which modifies

specific protein targets, thus disrupting key cellular processes with host cells. The B

subunit is a protein which binds to host cell surface lipids or proteins, enabling the

toxin to be internalised efficiently. The high specificity of this dual action lends

exotoxins much of their remarkable lethality.

Exotoxins are also extremely immunogenic, inducing the immune systems to

produce high-affinity neutralising antibodies against them, and thus make excellent

targets for vaccinology. A toxoid—a toxin which has been treated or inactivated,

often by formaldehyde—is in essence a form of subunit vaccine and, as such,

requires adjuvant to induce adequate immune responses. Vaccines targeting tetanus

and diphtheria, which usually need boosting every decade, are based on toxoids,

albeit typically combined with pertussis toxin acting as an adjuvant. Poisoning by

exotoxins, on the other hand, requires treatment with antitoxin comprising pre-

formed antibodies.

However, and say that we were offered a newly sequenced pathogen genome, is

such a classification for AB toxins helpful when trying to identify a potential

exotoxins? The answer is neither yes nor is it no, but lies somewhere between

these extremes. Assuming we had extant knowledge or a reliable method predicting

the presence of structural and functionally distinct domains, this very simple rule-

of-thumb would become a useful tool for eliminating large numbers of possible
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toxin molecules. It would not directly identify an antigen but would enormously

reduce the workload inherent in their discovery.

As well as needing more and more reliable predictors, we also need a way of

combining the information we gather from any set of reliable predictors to which

we have access. Thus, when analysing a pathogen genome, what we seem to need,

at least in order to identify immunogenic proteins, is both a set of reliable and robust

tools and a cohesive expert system within which to embed them. Such systems,

albeit still at a relatively crude and faltering level, do exist. Because there is an

implicit hierarchy of one prediction being based on others, there is a need to balance

and judge different pieces of probabilistic evidence. An effective expert system

should be capable of such a feat.

To a first approximation, an expert system is a computer programme that

undertakes tasks that might otherwise be prosecuted by a human expert osten-

sively by simulating the apparent judgement and behaviour of an individual or

organization with expertise and experience within a particular discipline. An

Expert System might make financial forecasts, or play chess; it might diagnose

human illnesses or schedule the routes of delivery vehicles. To create an expert

system, one first needs to analyse human experts and how they make decisions,

before translating this into rules that a computer can follow. Such a system

leverages both a knowledge base of accumulated expertise and a set of rules

for applying such distilled knowledge to particular situations in order to solve

problems. Sophisticated expert systems can be updated with new knowledge and

rules and can also learn from the success of its prediction, again mirroring the

behaviour of properly performing experts.

At the heart then of an Expert System is the need to combine evidence in order to

reach decisions. Combining evidence, and reaching a decision based on that

combined evidence, is no easier in the laboratory, be that virtual or actual, than it

is in the court room. The problem of combining evidence is encountered across the

disciplines, and various solutions have arisen in these different areas.

Within bioinformatic prediction, a particular variety of evidence combination,

so-called meta-prediction, is a now a well-established strategy [131, 132]. This

approach seeks to amalgamate the output of various predictors, typically internet

servers, in an intelligent way so that the combined result is more accurate than any

of those coming from a single predictor. Indeed, combining results from multiple

prediction tools does often increase overall accuracy. A consensus strategy was first

proposed by Mallios [133], who combined SYFPEITHI [60, 61, 134], ProPred

[135, 136], and the iterative stepwise discriminant analysis meta-algorithm

[137–139]. MULTIPRED [140] integrates HMMs and artificial neural networks

(ANN). Six MHC class II predictors were combined by Dai and co-workers

[141–143] basing its overall prediction on the probability distributions of the

different scores. Trost et al. have used a heuristic method to address class I

peptide-MHC binding [144]. Wang et al. [145] applied a consensus method to

calculate the median rank of the top three predictive methods for each MHC class II

protein initially evaluated so as to rank all possible 8-, 9-, and 10-mers from one

protein. This rank was used to identify the top 1 % of peptides from each protein.

3 Identification of Candidate Vaccine Antigens In Silico 59



In probabilistic reasoning, or reasoning with uncertainty, there are many ways to

represent espoused beliefs—or, in our domain, predictions—that effectively encode

the uncertainty of propositions. These include fuzzy logic and the evidential

method, among many others. For quantitative data, information fusion, in its

various guises [146], is one robust route to effective combination. Another requires

us to enter the world of Bayesian statistics, or, at least, a special thread within it.

Bayes theory, and the ever-expanding strand of statistics devolving from it, is

concerned primarily with updating or revising belief in the light of new evidence,

while so-called Dempster–Shafer theory [147] is concerned not with the conditional

probabilities of Bayesian statistics but with the direct combination of evidence. It

extends the Bayesian theory of subjective probability, by replacing Bayesian

probabilities with belief functions that describe degrees of belief for one question

in terms of probabilities for another and then combines these using Dempster’s rule

for merging degrees of belief when based on independent lines of evidence. Such

belief functions may or may not have the mathematical properties of probabilities

but are seemingly able to combine the rigor of probability theory with the flexibility

of rule-based approaches.

Several Expert Systems of different flavours and hues have now become avail-

able within the vaccinology arena. Sundaresh et al. developed a specialist software

package for the analysis of microarray experiments that could easily be classified as

an Expert System and used it in the area of reverse vaccinology. This package,

which was written in the open-source statistical package R, was used to help

analyse a variety of complex microarray experiments on the bacteria F. tularensis,
a category A bio-defense pathogen [148]. This programme implements a two-stage

process for diagnostic analysis: selection of antigens based on significant immune

responses coupled with differential expression analysis, followed by classification

of measured antigen responses using a combination of k-Means clustering, support

vector machines, and k-nearest neighbours.

We have already discussed VaxiJen [115, 116, 130], and the related server

EpiJen [149], which combines various methods for identifying epitopes within

extant proteins. These two servers can also be classified as vaccine-related Expert

Systems. NERVE is another Expert System, which has been developed to help

automate aspects of reverse vaccinology [150]. Using NERVE, the prioritisation of

potential candidate antigens consists of several stages: prediction of subcellular

localisation; is the antigen an adhesion?; identification of membrane-crossing

domains; and comparison to pathogen and human proteomes. Candidates are

filtered then ranked and putative antigens graded by provenance and its predicted

immunogenicity.

The web-based Expert System, DyNAVacS [151], was developed to facilitate

the efficient design of DNA vaccines and is available in the URL: http://miracle.

igib.res.in/dynavac. It takes a structured approach for vaccine design, leveraging

various key design parameters, including the choice of appropriate expression

vectors, safeguarding efficient expression through codon optimization, ensuring

high levels of translation by adding specific sequence signals, and engineering of

CpG motifs as adjuvant mechanisms exacerbating immune responses. It also allows
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restriction enzyme mapping, the design of primers, and lists vectors in use for

known DNA vaccines.

VAXIGN is another Expert System developed to help facilitate vaccine design

[152]. VAXIGN undertakes dynamic vaccine target prediction from sequence.

Methodologically, it combines protein subcellular location prediction with predic-

tion of transmembrane helices and adhesins, analysis of the conservation to human

and/or mouse proteins with sequence exclusion from the genomes of non-

pathogenic strains, and prediction of peptide binding to class I and class II MHC.

As a test, VAXIGN has been used to predict vaccine candidates against

uropathogenic Escherichia coli.
However, NERVE and its various and varied siblings are tasked with such a

confounding and difficult undertaking that they are obliged to fall somewhat short

of what is required. An obvious first step in tackling the greater problem is to

address first subcellular location prediction. Then, we can look at antigen presenta-

tion, modelling for each component step, before building these into a fully func-

tional model. We can also develop empirical approaches—such as VaxiJen [115,

116, 130]. We must also factor in antibody-mediated issues, properly address

PAMPs, post translational danger signals, expression levels, the role of aggrega-

tion, and the capacity of molecular adjuvants to enhance the innate immunogenicity

to usable levels. See Fig. 3.2.

3.11 Discussion and Conclusions

The value of vaccines is not yet unchallenged. However, most reasonable people

would, in all probability, agree that they are a good thing, albeit with a few minor

provisos. The idea underlying all vaccines is a strong and robust one: it is in the

reification—that is, the realisation, manifestation, and instantiation—of this

abstract concept that the trouble lies, if indeed trouble there is. Existing vaccines

are by no means perfect; again, most sensible and well-informed people would no

doubt acknowledge this also. One might argue that their intrinsic complexity, and

the highly empirical nature of their discovery over decades, and the fraught nature

of their manufacture, has much to answer in this regard.

Why should this be? In part, it is due to the extreme complexity of immune

response to an administered vaccine, which is largely specific to each individual

or at least is different in different sub-groups within the totality of the vaccinated

population. The immune responses is comprised, at least for whole-pathogen

vaccines, of the adaptive immune response to multiple B cell and T cell epitopes

as well as the responses made by the innate immune responses to diverse

molecular structures, principally PAMPs. When one considers also the degree

to which such a repertoire of responses is augmented and modified by the action

of additives, be they designed to increase the durability and stability of vaccines

or be they adjuvants, which are intended to raise the level of immune reactions.

Add in stochastic and coincidental phenomena, such as reversion to
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pathogenicity, and we can see immediately that navigating our way through the

vaccine minefield is no easy task. All such problems engendered by this intrinsic

complexity are themselves compounded by our comparatively weak understand-

ing of immunological mechanisms, since, if we understood the mechanism of

responses well enough, we could and would have designed our vaccines to

circumvent these issues.

Part of the answer to this cacophony of conflicting and confounding quandaries

is the newly emergent discipline of vaccinomics. A proper understanding of the

relationships between gene variants and vaccine-specific immune responses may

help us to design the next generation of personalised vaccines. Vaccinomics

addresses this issue directly. It seeks to identify genetic factors mediating or

moderating vaccine-induced immune responses, which are known to be extremely

variable within population. Much data indicate that host genetic polymorphisms are

key determinants of innate and adaptive response to vaccination. HLA genes, non-

HLA genes, and genes of the innate immunity all contribute, and do so in many

ways, to the variation observed between individuals for immune responses to

microbial vaccines. Vaccinomics offers many techniques that can help illuminate

these diverse phenomena. Principal amongst these are population-based gene/SNP

association studies between allele or SNP variation and specific responses,

supplemented by the application of next-generation sequencing technology and

microarray approaches.

Yet, and for all this nay-saying and gainsaying, vaccines and vaccination have

demonstrated their worth time after time; yet, to justify the continuing faith we

invest in them, new and better ways of making safer and more focussed vaccines

must be found. Most current vaccines work via antibody-mediated mechanisms;

and most target viruses and the diseases they cause. Unfortunately, the stock of such

disease targets is dwindling. Low-hanging fruit has long since been cut down. Only

fruit that is well out of reach remains. Vaccines based on APCs and peptides are

new but unproven strategies; most modern vaccine development relies instead on

effective searches for vaccine antigens.

One of the clearest points to emerge from such work is that there are many

competing concepts, thoughts, and ideas that may confound or help efficient

identification of immune reactive proteins. Certain such ideas we have outlined.

Some are indisputably persuasive, even compelling, yet many strategies—and the

technical approaches upon which they are based—have singly failed to deliver on

their promise.

Long ago, and based on his lifetime’s experience of all things immunological,

Professor Peter CL Beverley sketched out a paradigm for protein-focussed vaccine

development, which we have formalised further, and which schema is summarised

in Fig. 3.4. Some of his factors overlap with the factors from Fig. 3.2. He identified

many of the factors that potentially contribute to the immunogenicity of proteins, be

they of pathogen origin or another source entirely, and also other features which

might make proteins particularly suitable for becoming candidate vaccines. Of

these, some are as-yet beyond prediction, such as the attractiveness for APCs or

the inability to down-regulate immune responses. The status of proteins as evasins is
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currently only possibly addressable through sequence similarity-based approaches

and likewise for the attractiveness for uptake byAPCs is again, though possible there

exist motifs, structural or sequence, which could be identified. Currently, the dearth

of relevant data precludes prediction of such properties; and, while it is possible to

predict some of these properties with some assurance of success, and others are

predictable but only incidentally, overall, we are still some way from realising the

dream embodied in Fig. 3.4.

Failure occurs for simple reasons: we deal with simplified abstractions and

cannot hope to capture all that which is required for prediction by looking superfi-

cially at a single factor. Protein immunogenicity comes instead from the dynamic

combination of innumerable contributing factors. This is by no means a facile or

easily solved informatics conundrum. A vaccine candidate should have epitopes

that the host recognises, be available for immune surveillance, and be highly

expressed. Factors mediating protein immunogenicity are many; possession of B

or T cell epitopes, post-translational danger signals, sub-cellular location, protein

expression levels, and aggregation state amongst them. Predicting such diverse,

complex, confounding properties is—and remains—a challenge.

Vaccine antigens, once discovered, should, ultimately, and with appropriate

manipulation, together with an apt, apposite, and appropriate delivery system and

the right choice of adjuvant, become first a candidate for clinical trials, before,

hopefully, progressing to regulatory approval. We require an integrative, systems-

biology approach to solve this problem. No single approach can be applied univer-

sally and with success; what we crave is the full integration of numerous equally
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Fig. 3.4 The Beverley paradigm
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partial yet equally valid techniques and strategies which, in turn, draw upon a

wealth of relevant, useful data. With an issue of such importance, even an incom-

plete solution should be sufficient.
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