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A B S T R A C T   

Background and purpose: Anatomical changes during radiotherapy pose a challenge to robustness of plans. 
Principal component analysis (PCA) is commonly used to model such changes. We propose a toolbox to evaluate 
how closely a given PCA model can represent actual deformations seen in the patient and highlight regions where 
the model struggles to capture these changes. 
Materials and methods: We propose to calculate a residual error map from the difference between an actual 
displacement vector field (DVF) and the closest DVF that the PCA model can produce. This was done by taking 
the inner product of the DVF with the PCA components from the model. As a global measure of error, the 90th 
percentile of the residual errors (Mres

90) across the whole scan was used. As proof of principle, we demonstrated 
this approach on both patient-specific cases and a population-based PCA in head and neck (H&N) cancer pa-
tients. These models were created using deformation data from deformable registrations between the planning 
computed tomography and cone-beam computed tomography (CBCTs), and were evaluated against DVFs from 
registrations of CBCTs not used to create the model. 
Results: For our example cases, the oropharyngeal and the nasal cavity regions showed the largest local residual 
error, indicating the PCA models struggle to predict deformations seen in these regions. Mres

90 ranged from 0.4 
mm to 6.3 mm across the different models. 
Conclusions: A method to quantitatively evaluate how well PCA models represent observed anatomical changes 
was proposed. We demonstrated our approach on H&N PCA models, but it can be applied to other sites.   

1. Introduction 

Throughout radiotherapy, geometric uncertainties such as set-up 
errors or anatomical changes may lead to underdosing the target or 
overdosing organs at risk. Margins or robust optimisation techniques can 
deal with these uncertainties, but their applicability is limited for 
complex changes. Therefore, adaptive strategies are often used for larger 
anatomical changes [1,2]. However, current adaptation strategies 
represent a significant workload and can create bottlenecks in 

workflows [3,4]. 
An alternative is to predict anatomical changes using mathematical 

models to increase plan robustness. Such models could be used to predict 
which patients may benefit from plan adaptation, or to identify regions 
where large anatomical changes are expected. Deformation models 
could also simulate anatomical changes during planning to increase 
robustness, e.g. using robust or probabilistic planning [5]. Principal 
component analysis (PCA) is widely used for creating such models, for 
instance in lung [6–9], prostate [10–14], cervix [5] and head and neck 
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Pérez). Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish 
Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark (Stine Korreman). 

E-mail addresses: raul.argota.perez@regionh.dk (R. Argota-Perez), stine.korreman@oncology.au.dk (S. Korreman).   
1 Both authors contributed equally to this paper.  
2 Both authors contributed equally to this paper. 

Contents lists available at ScienceDirect 

Physics and Imaging in Radiation Oncology 

journal homepage: www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology 

https://doi.org/10.1016/j.phro.2022.04.002 
Received 15 December 2021; Received in revised form 8 April 2022; Accepted 8 April 2022   

mailto:raul.argota.perez@regionh.dk
mailto:stine.korreman@oncology.au.dk
www.sciencedirect.com/science/journal/24056316
https://www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology
https://doi.org/10.1016/j.phro.2022.04.002
https://doi.org/10.1016/j.phro.2022.04.002
https://doi.org/10.1016/j.phro.2022.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phro.2022.04.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physics and Imaging in Radiation Oncology 22 (2022) 13–19

14

(H&N) [15,16]. The usefulness of such models depends on their ability 
to accurately simulate future changes in the patient. 

In this study, we propose a toolbox to evaluate how well a given PCA 
model can represent anatomical changes that were not used to generate 
the model. These tools can be used to evaluate the model robustness, 
estimate global residual errors within the boundaries of the scan and 
highlight regions where the model struggles to capture anatomical 
changes. The aim of this study was to present a proof-of-principle for this 
method in H&N cancer using both patient-specific and population-based 
deformation models. 

2. Materials and methods 

PCA models can be created from a set of displacement vector fields 
(DVFs) to simulate anatomical changes. These DVFs use non-rigid reg-
istrations to describe the deformations between two images, e.g., the 
planning CT (pCT) and a cone-beam CT (CBCT). 

The resulting model consists of the eigenvectors for each of the 
principal components of deformation, ei, the corresponding variance for 
each component, vari, and the mean of the input DVFs, vmean. These can 
then be used to simulate plausible DVFs (vsim), following Eq. (1), where 
the weights, ui, are selected from a Gaussian distribution centred at zero 
with variance vari. 

vsim = vmean +
∑

i
uiei (1)  

2.1. Evaluation strategy for PCA-based deformation models 

The proposed method presented here can be used to determine to 
what degree a PCA model can represent a DVF that was not used to 
generate the model. We refer to this DVF as the ‘reference DVF’, vref . The 
closest vector field to the reference DVF was generated using the model 
with an optimal set of weights, wi, found using Eq. (2). 

wi = ei⋅
(
vref − vmean

)T (2) 

The closest simulated DVF the model can produce was found by 
substituting wi, from Eq. (2) into Eq. (1). A measure of the likelihood of 
this closest DVF being produced by the model, the Z-score, is presented 
in Supplement 1. 

To quantify how close the closest DVF is to the reference DVF, we 
defined the residual DVF, vres, as. 

vres = vref − vclosest (3) 

By taking the magnitude of each vector within vres, Mres, we can 
identify local regions with larger errors. As a measure of the global 
model performance, we calculated the 90th percentile of Mres, Mres

90. The 
90th percentile is commonly used in the literature [9], but the mean or a 
different percentile could be selected depending on the intended 
application. 

2.2. Evaluation toolbox 

Our evaluation scheme can be used in different ways to evaluate how 
well PCA-models perform. E.g., we can evaluate the robustness and 
stability of the model, the sensitivity of the model to random noise, and 
the general ability of the model to simulate anatomical changes within 
the patient. 

Model robustness: To determine how robust a PCA model is to the 
input DVFs, a leave-one-out cross validation (LOOCV) analysis can be 
performed by running PCA with one of the input DVFs left out. The DVF 
that is left out can then be used as vref for that iteration. 

Model sensitivity: The sensitivity of the model to random noise and 
the number of components used for the evaluation can be assessed using 
simulated DVFs, to which Gaussian noise was added (Supplement 2). 

Model generalisability: To evaluate whether a deformation model 

describes real anatomical changes, the PCA model can be evaluated 
against unseen DVFs from the patient. 

2.3. PCA models examples 

To test our proposed method in different settings, we created both 
patient-specific models (datasets 1/2) and a population-based model 
(dataset 3). The datasets are summarized in Table 1 and detailed in 
Supplement 3. 

Dataset 1 includes twenty-four sinonasal cancer patients collected 
from the DAHANCA database with 30–34 daily CBCTs per patient, under 
approval by the Danish Data Protection Agency (1–16-02–676-18). 

Dataset 2 includes twenty oropharyngeal cancer patients collected 
from a single institution with 33–56 CBCTs per patient, under internal 
approval (in accordance with Danish guidelines). 

Dataset 3 includes forty oropharyngeal patients collected from a 
single institution with 8–31 CBCTs per patients, under ethics approval 
from the UK North West - Haydock Research Ethics Committee, (17/ 
NW/0060, local ref. 2018–018). Twenty patients were selected as 
training patients, dataset 3a. The remaining twenty patients were used 
for validation, dataset 3b. 

To generate the DVFs for PCA creation, each CBCT was first rigidly 
registered to the pCT based on bony anatomy, obtaining the starting 
point for deformation. The pCT and aligned CBCTs were then cropped to 
a bounding box to reduce computation time. Then, deformable regis-
tration was performed from each CBCT to the pCT, using either NiftyReg 
[17] (datasets 2/3) or Anaconda in RayStation [18] (dataset 1). A 
scheme summarising our approach is presented in Fig. 1. 

For the patient-specific models, DVFs from the first 5-days of treat-
ment were used to create each PCA model. The bounding box covered an 
area including the brainstem, parotids, primary CTV and the nodal CTV 
(if present) with a 5 cm margin in each direction excluding the shoul-
ders. To investigate the effect of the number of input scans, models were 
created for two of the patients (dataset 2) using the 10 DVFs corre-
sponding to the first two weeks of treatment. 

For the population-based model, DVFs mapping a CBCT from each of 
the 6-weeks of treatment from each of the 20 training patients were 
used. To standardise the DVFs between different patients, an average 
patient geometry was created using a groupwise registration [19] of the 
pCTs of these patients. The bounding box covered an area including the 
brainstem, parotids, oral cavity, larynx and primary CTV with a 1.5 cm 
margin in each direction. All DVFs were then mapped to the average 
geometry using SimpleITK [20] and were used to create a single PCA 
model. 

The authors visually inspected all deformed CTs and fine-tuned sub- 
optimal registrations. 

We generated all PCA models using Scikit-learn in Python [21]. We 
report the cumulative variance for each component for the PCA models 
in Supplement 4. 

2.4. Model evaluation 

For all models, we evaluated robustness with the LOOCV method. We 
ran an investigation into the model sensitivity for the population-based 
model and one of the patient-specific models (Supplement 2). 

As test data for the model generalisability method, we used the DVFs 
from the first CBCT of each of the subsequent five-weeks of treatment for 
patient-specific cases. For the population-based case, we used all 
remaining DVFs of the training patients (dataset 3a) and DVFs from all 
CBCTs of the validation patients (dataset 3b). In each case, we created 
heat maps of Mres to evaluate the local model quality and Mres

90 to 
evaluate the global model quality. 

A pass/fail threshold for Mres
90 can be set depending on the specific 

application. As an example, we selected 4 mm. 
We used all components available for evaluating the PCA models, but 

in practice one could restrict the number of components, e.g. many PCA 
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models only include components that cover the largest 90% of the total 
variance of the model. 

3. Results 

3.1. Model robustness (LOOCV) 

Fig. 2 shows Mres
90 for the LOOCV for all models. For the patient- 

specific study, all Mres
90 were well below the 4 mm threshold for data-

set 1, while for dataset 2, models for 4 out of 20 patients had Mres
90 > 4 

mm. In the population-based study (dataset 3a), all Mres
90 were below 4 

mm. 
The largest Mres were observed in the regions around the oropharynx 

for all datasets. Additionally, for dataset 1, the region around the nasal 
cavities had high Mres. 

3.2. Model generalisability 

The ability of the patient-specific models created with the DVFs from 
week 1 to adequately describe deformations present later during treat-
ment is shown in Fig. 3. Most of the patients passed the 4 mm threshold 
in subsequent weeks. As expected, a tendency for Mres

90 to increase over 
time during the treatment course was observed. Using DVFs from the 
first two weeks resulted in slightly decreased numbers, but with the 
same trend over time (see data in Supplement 5). It should be noted that 
two of the patients who failed the generalisability evaluation also failed 
the LOOCV (patients 10/18). A heat map of the mean (across all DVFs 
used for investigating the model generalisability) Mres for patient 1 of 
dataset 1 is shown in Fig. 4 (remaining patients shown in Supplement 6). 
The largest Mres values were found in the oropharynx region for all pa-
tients, and additionally in the nasal cavities for dataset 1 patients. 

For the population-based model, there was little difference in per-
formance between different treatment weeks, but the model performed 
worse for validation patients than training patients. Three of the vali-
dation patients were above the 4 mm threshold for all DVFs evaluated 
(Fig. 3). For the training patients, 2 DVFs from the first week of treat-
ment for a single patient failed to reach the threshold (who also had the 
second highest value for the LOOCV in week 1). Mres was largest around 
the oropharynx, consistent with the patient-specific results (Fig. 5). The 
mean (across all available DVFs) Mres values were higher for the vali-
dation patients in this and surrounding regions. Around the brainstem 
and within the skull, Mres was consistently low for both the training and 
validation patients. 

A scatter plot linking the mean Mres
90 for the LOOCV with the mean 

Mres
90 for the generalisability is presented in Supplement 7. 

4. Discussion 

We have presented a toolbox to evaluate how well anatomical 
changes in unseen data can be described by PCA models and tested it for 

Table 1 
Summary of patient datasets.  

Data for Patient-specific PCA models Population-based PCA models 

Training Validation 

Dataset 1 2 3a 3b 

Nr of patients 24 20 20 20 
Site Sinonasal Oropharyngeal Oropharyngeal Oropharyngeal 
Treatment technique All IMRT 10 IMRT,  

10 VMAT 

All VMAT All VMAT 

Treatment period 2009–2017 2008–2018 2016–2018 2016–2018 
Dose prescription 66–68 Gy, (n = 16), 

60–66 Gy (n = 8) 
66–68 Gy (n = 17), 
76 Gy (n = 3). 

60–66 Gy 60–66 Gy 

Number of CBCTs per patient 30–34 33–34 or 56 8–31 9–24  

Fig. 1. Flow chart showing the method for generating PCA models. For the 
patient-specific models, all CBCTs are from the same patient and are registered 
to the same pCT for that patient. For the population-based model, each CBCT is 
from a different patient and is registered to the corresponding pCT. 
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H&N cancer patients in both patient-specific and population-based 
contexts. Our evaluation strategy can be used to easily determine pa-
tients where PCA modelling could be used (e.g., by applying LOOCV and 
setting up a threshold of acceptable error) and highlight anatomical 
regions where the PCA model struggles. 

To the best of our knowledge, no other study has proposed such a 
method. Similar evaluation strategies have focussed on either deter-
mining the required number of components to use in a PCA model 
[6,9,10,12] or the optimal number of input scans needed to create the 
model [9]. Generally, these strategies tend to evaluate the PCA model 
against input DVFs, whereas our method compares the model to unseen 
DVFs. However, Badawi et al. [9] evaluated the residual error on unseen 
scans for PCA models created using a subset of the input scans, but this 
was mainly used to assess how many weeks’ worth of input scans was 
needed for the residual errors to stabilise. Budiarto et al. [12] also 
evaluated the residual error on three patients not previously seen by 
their population-based model, but did not evaluate on any unseen DVFs 
from their training patients. For our population-based model, the vali-
dation patients performed worse in the evaluation than the training 
patients (see Supplement 8). 

Some studies using PCA looked at deformations to the surface con-
tour of specific organs as inputs to the model [9,10,12], while others 
considered each image voxel [7,14,22]. Here we have used the voxel- 
based approach as this allows us to model changes on the entire scan 
and include multiple organs and their interactions, as well as other 
surrounding tissue. 

Our scheme focuses on computing the magnitude difference between 
the reference and closest DVF and does not differentiate between dif-
ferences in magnitude and direction for each vector. Of course, one 
could also evaluate each of the ×, y and z directions separately. 

While the method only evaluates individual instantiations of a DVF, 
by combing multiple results, the toolbox can be used to assess the quality 
of the model. E.g., by computing Mres for multiple known DVFs, this can 
give an idea of what modes of deformations are/are not captured by the 

model. In addition, our method also calculates the Z-score for each 
component, providing an idea of the magnitude of the deformations 
captured. Providing Z-scores across all sampled DVFs follow a normal 
distribution, the model accurately captures the size of the deformations 
sampled and will correctly describe expected changes. 

This work relies on PCA, so all limitations related to this method will 
apply. A vital part of PCA modelling and the evaluation toolbox are the 
deformable registrations. Although registrations were visually inspected 
to ensure quality, they will still introduce uncertainties into both the 
PCA model and residual DVFs. For this study, a quantitative assessment 
of registration accuracy was not done, but we would recommend this for 
specific applications depending on the required accuracy. To give an 
idea of the possible size of these uncertainties, Veiga et al. [23] found the 
mean distance transform between manual and deformed surfaces for 
H&N registrations using NiftyReg to be 0.3 ± 0.4 mm. We assumed that 
any uncertainties associated with imperfect registrations would be 
smaller than the anatomical changes we aim to capture in the model – e. 
g., Barker et al. [24] found the median medial shift of the centre of mass 
of the parotid throughout treatment to be 3.1 mm. 

Previous studies have investigated the generation of PCA models in 
H&N cancer patients and their evaluation. For example, Tsiamas et al. 
[15], assessed the number of components needed to model the spatial 
displacements for specific organs, using data from 18 patients to create 
both individual and population-based models. They focused on 
comparing the relative variance of the different PCA components be-
tween models. They found three to four principal components were 
sufficient to achieve spatial displacement prediction at the 95% confi-
dence level for normal organs. In another study, Chetvertkov et al. [16] 
generated PCA models considering variations occurring in the whole 
scan in 10 patients. They focused on whether the weighting factors from 
the inner product could be used to predict systematic changes 
throughout the treatment course, and dismissed the errors not expressed 
by linear combinations of the eigenvectors. Our results show that these 
errors can be considerable and should not be dismissed. 

Fig. 2. Mres
90 for the LOOCV for each of patient-specific model in a) dataset 1 and b) dataset 2, and for c) the population-based model (dataset 3a).  
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Fig. 3. The 90th percentile of Mres calculated on one DVF from each of weeks 2–6 of treatment for each patient for the patient-specific models created using a) dataset 
1, b) dataset 2, and for the population-based model calculated on all DVFs not used for model creation from each of weeks 1–6 using the c) training patients (dataset 
3a), d) validation patients (dataset 3b). 

Fig. 4. Identifying areas with a high Mres for the patient-specific model (patient 1, dataset 1). The panels show a) the pCT for a patient in two different slices (top 
showing nasal cavity region and bottom showing the oropharyngeal region), b) the mean of Mres from LOOCV and c) the mean of Mres from the following weeks. 
Contours of the brain, brainstem and spinal cord are shown in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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The patient-specific models were created from scans from the first 
week of treatment and could for instance be used either for informing a 
patient-specific threshold for adaptation, or for including variations seen 
in the PCA model in a patient-specific robust optimization. In the first 
case, a set of possible patient geometries could be simulated from the 
model, dosimetric evaluation could be performed, and an assessment of 
whether adaptation is required be made. In the second case, a robust 
plan could be made to include the variations seen in the PCA model, such 
that within this envelope of variations no adaptation would be required 
for the rest of the treatment. Our population-based model was created 
using treatment scans across 6 weeks from 20 patients, providing the 
opportunity to use it to simulate possible anatomical changes on new 
patients, without having to wait for multiple scans. This means 
population-based models could be used at the planning stage to evaluate 
the robustness of treatment plans against expected anatomical changes 
or to directly account for them by using robust or probabilistic planning. 
In this setting, our evaluation scheme could provide information on 
residual uncertainties that could be used to generate additional sce-
narios. Depending on the specific application, PCA models may be tuned 
to focus either on systematic variations (seen in the lower order com-
ponents) and/or random variations (in higher order components). 

We observed that Mres
90 varied between datasets. One possibility is 

that the oropharynx tumours in datasets 2 and 3 may affect the model 
performance as it changes the anatomy and the tumour may shrink 
during treatment. Another possibility is the difference in bounding 
boxes between patient datasets. The bounding box for dataset 1 was 
based on a region surrounding the skull, meaning there was likely to be 
better anatomical consistency than for datasets 2 and 3, where the 
bounding boxes generally extended further down the neck which is 
prone to larger deformations [25]. This shows that the residual error 
depends on the region of interest being considered, which should be 
carefully selected to cover clinically relevant organs. One way to elim-
inate the bias of the bounding box could be to report Mres

90 for the target 
volume and the relevant organs individually. 

By using our evaluation toolbox, regions where a PCA model strug-
gles to represent deformations can easily be identified. For example, the 
oropharynx presented a challenge for both the patient-specific models 
(using 5/10 input DVFs) and the population-based model (using 120 
input DVFs). This suggests that it is not a limit in the number of scans 
that is causing this challenge, but rather a limitation of the PCA method 
itself. PCA assumes variations are normally distributed around a non- 
zero mean. This assumption is commonly seen in the literature for 
models for day-to-day changes in organ shape [13,14], but it has not 
been validated in H&N. Additionally, for the sinonasal cancer patients, 
the nasal cavity was highlighted as a challenging region. This is due to 
the cavity being filled/emptied, which violates the assumption of the 
variation of the position of each voxel being normally distributed. 

In conclusion, we have proposed and tested a toolbox to evaluate 
how well PCA models can predict anatomical deformations. We showed 
how regions were identified where models created from the first week of 
radiotherapy in H&N cancer patients struggle to represent anatomical 
changes occurring later during treatment. All tested models had diffi-
culties capturing deformations in the oropharyngeal region, and the 
nasal cavity for models created on sinonasal cancer patients. Our 
methods could potentially be used in a variety of scenarios to evaluate 
and validate PCA models and facilitate incorporation of deformation 
modelling in various clinical applications. 
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