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Abstract 

 

During embryogenesis, homogenous groups of cells self-organize into stereotypic spatial 

and temporal patterns that make up tissues and organs. These emergent patterns are 

controlled by transcription factors and secreted signals that regulate cellular fate and 

behaviors through intracellular regulatory circuits and cell-cell communication circuits. 

However, the principles of these circuits and how their properties are combined to provide 

the spatio-temporal properties of tissues remain unclear. Here we develop a framework 

to explore building-block circuits of developmental programs. We use single-cell gene 

expression data across developmental stages of the human intestine to infer the key intra- 

and inter-cellular circuits that control developmental programs. We study how these 

circuits are joined into higher-level hyper-motif circuits and explore their emergent 

dynamical properties. This framework uncovers design principles of developmental 

programs and reveals the rules that allow cells to develop robust and diverse patterns. 
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Introduction 

 

Embryonic development is a well-orchestrated process in which cells divide, migrate, and 

differentiate into the diversified tissues that form the embryo. Starting from a single 

fertilized egg, cells use communication signals that they secrete and sense to regulate 

their cell fate decisions1. These signals, also known as morphogens, produce gradients 

and spatial patterns that inform the cells of their position and allow them to respond 

accordingly2–6. There are several families of morphogens that play key roles in shaping 

the spatial patterns in the embryo including the bone morphogenic proteins (BMPs)7,8, 

fibroblast growth factors (FGFs)9, Hedgehog (HH)10, WNT11,12 and Retinoic acid13. The 

production of these morphogens and their receptors is regulated by several transcription 

factor (TF) families that play critical roles in development, including HOX, GATA, ETS, 

SOX, PAX, TBOX, FOX, and E-proteins14–22. These morphogens and TFs regulate each 

other’s expression through intracellular regulatory circuits as well as cell-cell 

communication circuits, forming a complex network of interacting genes23–29 (Fig 1A). 

However, the rules that govern these interactions in regulating cell-fate decisions and 

forming tissue-level patterns remain poorly understood. Two complementary conceptual 

frameworks provide guiding principles governing cell fate decisions: Turing reaction-

diffusion model and the concept of positional information30–35.  

 

Studies in model organisms have shed light on key pathways in developmental 

processes, where a detailed transcription network can be inferred in specific contexts 

from experimental data (as exemplified in Fig 1A). However, it is unclear which circuits 

out of the detailed transcription network are the ‘building blocks’ required for the proper 

development of the organism, and how their dynamical properties explain the wide range 

of observed tissue-level patterns36. 

 

Previous theoretical and experimental work has defined network motifs, which are 

recurrent patterns, as the building blocks of biological networks37,38. Network motifs such 

as the feedforward loop (FFL) have been extensively studied and their dynamical 

properties were elucidated39,40. Seminal previous work has uncovered several families of 

network motif designs that can provide distinct behaviors in the interpretation of 

morphogen gradients41. How the integration of the individual network motifs within the 

complex regulatory network influences their functionality is not yet understood, however. 

Integration of small network motif patterns may generate emergent properties that cannot 

be explained by each motif alone. Understanding complex systems such as 

developmental regulatory networks therefore require the understanding of the rules of 

interaction between the systems’ building-block components. To address this, we recently 

defined hyper-motifs - higher-level network modules that describe how network motifs are 
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embedded in large networks42. Given two network motifs, we consider two ways in which 

they can be directly joined to form a hyper-motif: having at least one node that is common 

to both motifs and being directly linked in the network through at least one edge (Fig 1B). 

Hyper-motifs can generate novel properties that are not observed in each motif alone and 

can also be used to silence certain motifs when not needed43. Such properties are critical 

to ensure accurate choice of cell fate, developmental timing and spatial patterning during 

embryogenesis. It is therefore important to understand how network motifs form these 

higher-level functional modules. 

 

Here, we develop a network analysis framework to study the underlying principles of 

regulatory and cell-cell interactions that control developmental programs. Going beyond 

previous studies that focused on network motifs, we explore how the different network 

motifs in developmental programs are wired together within cells and between different 

cells through morphogen signaling pathways (Fig 1C). This framework can help explain 

how cellular interactions that are governed by a minimal set of regulators show diverse, 

complex and precise emergent properties. 

 

Figure 1: A network analysis framework to explore developmental programs. (A) Out of the 

multitude of regulatory interactions in gene regulatory networks (GRNs), what are the building 

block circuits of developmental programs for cell-fate decisions and pattern formation? (GRN 
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adapted from Davidson et al., 200223). (B) Definition of the hyper-motif framework: given two 

network motifs, their hyper-motifs are defined as combinations of motifs where the motifs share 

at least one node or interactions of motifs where the motifs are directly linked through at least one 

edge. Distinguishing different node positions within the motif is important to explore different 

hyper-motif structures. (C) A computational framework to analyze regulatory networks by 

identifying network motifs as building-block circuits and how they are joined together to form 

hyper-motifs within and between communicating cells. 

 

Results 

 

Enriched network motifs in the development of the human intestine 

 

We analyze single-cell RNA-sequencing (scRNAseq) data from the human intestine 

across 9 time points, spanning 8-22 post-conceptual weeks (PCWs), from Fawkner-

Corbett et al.44 (Fig 2A-B). We focus on developmental-related genes including 

developmental TFs, morphogens ligands, their antagonists, receptors and co-receptors. 

We used SCENIC45 to infer regulatory interactions between the developmental 

transcription factors and their target genes (Fig 2C, Methods). The networks we inferred 

are such where we sum over all regulatory interactions between genes that are expressed 

across different cell types. The size of the networks remains roughly constant across time, 

with the number of genes ranging between 220 and 275 and number of edges between 

752-1045 (Fig S1).  

 

We find five network motifs (up to 3-node circuits, Methods) that are continuously 

enriched across all time points. The network motifs are: (1) autoregulation (mostly 

positive), (2) mutual feedback loop, (3) a regulated feedback loop, (4) a regulating 

feedback loop, and (5) a feedforward loop (FFL) (Fig 2D). These network motifs are also 

found in developmental programs of other organisms40. The dynamical properties of these 

5 network motifs, including bi-stability and delayed response time, are crucial for 

developmental processes46,47. The network motifs we find in intestinal developmental 

programs can give rise to diverse gene expression patterns from ubiquitous genes 

expressed in all major cell types to genes expressed in specific cell types (Fig 2E). 
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Figure 2: Five network motifs enriched in gene regulatory networks of developing 

intestine. (A) Schematic of intestine development that is spanned by the data in Fawkner-Corbett 

et al.44. (B) We analyze the single-cell data and use SCENIC to infer gene regulatory interactions 

between developmental-related TFs and target genes. (C) The GRNs inferred from the data 

across 9 developmental timepoints. Nodes are TFs and target genes, edges represent positive 

(blue) and negative (red) interactions. (D) The most statistically enriched network motifs are 

shown with their Z-score. The red dashed line is a threshold for enrichment significance. For the 

autoregulation motif (left-most panel) the fraction of nodes in the network that are autoregulated 

is plotted. (E) Examples of network motifs inferred from 8 PCW. Log mean expression of genes 

in 6 major cell type categories is plotted as a function of time (PCW).   

 

Developmental genes can be categorized based on their position in the network 

motifs    

 

To explore patterns in the network structure over time, we categorize the genes at each 

time point according to their position in the network motifs (or their motif role, Fig 1B) and 

explore whether genes change their positions across time or keep the same motif roles. 

Considering the 5 network motifs we find in the intestinal developmental programs, there 

are 7 unique motif roles that we partition the genes into. These motif roles are: 

autoregulated TFs; TFs in mutual feedback; input, intermediate, and output of an FFL; 

input to a regulated feedback; and output of a regulating feedback (Fig 3A). Categorizing 

the genes into these 7 motif roles, we find that the most abundant role in each network is 

the FFL’s output (Fig 3B). Considering the proportions of genes that generally participate 

in either input, intermediate or output roles show that intermediate genes form a much 

smaller group than input and output genes, suggesting a bowtie structure in the 

networks48.  

  

Next, we explore the robustness of categorizing genes according to their role in motifs by 

looking for changes in the identity of the TFs and genes participating in each motif role. 

To do so, we compute the overlap (Jaccard index, Methods) between the lists of genes 

participating in a certain motif role from two successive time points (Fig 3C). We find that 

autoregulation is the most robust motif role, where about 60% of the TFs that are 

autoregulated at a certain time point remain so in the next time point in the data. Other 

motif roles such as the input to a regulated feedback and the output of a regulating 

feedback are more variable where on average only 30% of the genes participating in 

these roles maintain their role in successive time points (Fig 3C).  

 

This analysis highlights time points where there are major changes in the identity of genes 

that participate in a certain motif role. We quantitatively define major changes by 

considering time points where the Jaccard index is smaller than the median across all 
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time points (red dashed line in Fig 3C). For example, the largest changes in the regulated 

feedback’s input occur at 10,12, and 15 PCWs (second panel to the right, Fig 3C).  

 

Next, we analyze the TFs and genes that are added in those transition time points to a 

certain motif role to explore whether these genes are indeed associated with specific 

expression patterns or are thought to be important for the differentiation of a new cell 

type. Among the genes added at 10 PCW, we find BMP2, BMP4, and BMP5, which were 

reported to be expressed in pre-cryptal S2 fibroblasts (telocytes) and to promote epithelial 

proliferation and differentiation44. We also find FOXD1 that controls the terminal ileum, 

TCF21 which is important for fibroblast early development, and TWIST2 that is involved 

in key TF networks delineating muscularis cells. FOXF2 which is important for muscle cell 

differentiation appears in a new motif role at 12 PCW. At 15 PCW, we find several 

epithelial-restricted genes including LEFTY1 and IHH which are expressed in an 

epithelial-specific module. At 16 PCW we find WNT5B, which is expressed by stromal, 

neuronal and muscle cells and supports epithelial cells. At 20 PCW we find FOXL1 which 

is a marker for S2 fibroblast differentiation, and WNT2B which is expressed in a 

myofibroblast module. At 22 PCW we find SOX13 which is important for intestinal 

angiogenesis44.     

 

Next, we asked whether changes to gene motif roles across time are random or follow 

certain rules. To answer this, we define a gene state based on its motif roles (hereby 

called motif role state) where a gene can participate in one or multiple roles 

simultaneously (forming a hyper-motif as discussed next). For each gene participating in 

network motifs at least once, we follow how its motif role state changes over time.  

 

For example, considering HOX genes in our inferred networks (Fig 3D), we find that some 

HOX genes maintain the same motif role state overtime (Fig 3F) and some transition into 

new roles (Fig 3E, Fig S2). To visualize the possible transitions between motif role states, 

we build a network of motif role state transitions (Fig 3G). In this network, the nodes 

represent a motif role state, and edges represent transitions between states from two 

successive time points. The weights of the edges are based on the frequency of the 

transitions. Exploring the patterns of motif role transitions, we find that there are specific 

rules regarding which role a specific gene can transition into based on its current role 

within the network. For example, we find that input genes do not transition directly into 

output genes and vice versa. We also find that TFs that participate in mutual feedback 

are usually found to be hubs, where they serve as common nodes of multiple network 

motifs (Fig 3G).            
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Figure 3: Categorizing developmental genes by motif roles highlights developmental 

transitions. (A) Developmental genes can be categorized to 7 motif roles (highlighted in red). (B) 

Fraction of genes participating in each motif role at each time point. (C) In each panel the black 

points are the Jaccard index between the two sets of genes participating in a particular motif role 

from two successive time points. The red dashed line is the median Jaccard index across all time 

points. (D) Table of motif role states of HOX genes at 8 and 10 PCWs. (E) HOXA11 transitions 

from not participating in motifs to a node common to multiple network motifs combined. (F) HOXB3 

maintains the same motif role state between 8 and 10 PCWs despite other genes in the motif that 

change their regulatory roles. (G) Network of motif role transitions. Nodes in the network represent 

motif role states and edges represent transitions between two successive networks. Only 

transitions that occur more than 2 times are considered.    

 
Network motifs as predictors of gene expression profile 
 

To assess the role of the network motifs we find in developmental programs in regulating 

gene expression, we next explore the relationship between the identity of network motifs 

and similarity in gene expression profiles. To do so, we focus on the epithelial and 

fibroblast cell type populations and consider the specific cell types epithelial and fibroblast 

progenitor cells diversify into (Fig 4A-B). Within each cell type category, we calculated the 

Euclidean distance between every pair of cell types (e.g. secretory progenitors and goblet 

cells, proximal enterocytes and proximal stem cells, etc.) in gene expression space 

considering their average gene expression profiles across the entire transcriptome 

(Methods). We then compare this gene expression distance measure to the similarity in 

the network motifs that we inferred regulating these cells’ gene expression. We estimate 

the similarity of network motifs by computing the overlap of lists of genes participating in 

or regulated by a specific network motif between every pair of cells (Methods). We find a 

large correlation between gene expression distance and overlap in network motif genes 

where the more network motifs two cell types share, the more similar their gene 

expression profiles are (Fig 4C-N). This correlation is remarkable given the fact that 

examining whether a group of ~20 TFs are autoregulated or not, provides a strong 

prediction on the similarity in the gene expression state of ~20,000 genes (Fig 4C, I). We 

find that some network motifs are better predictors than others. For example, for epithelial 

cells, autoregulation is more correlated with gene expression than mutual feedback and 

feedforward loops (Fig 4E,G). However, focusing on effector genes - the identity of genes 

that are directly regulated by the motifs, improves the correlation (Fig 4D,F,H). 

Additionally, we find that fibroblast cell types show larger correlations than epithelial cells 

across all network motifs and their effector genes we examined.      
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Figure 4: High correlations between network motif identity and gene expression distance 

in epithelial and fibroblast cell types. (A-B) Cell fraction of epithelial (A) and fibroblast (B) cell 

types across time. (C-N) Every point is a pair of epithelial (C-H) or fibroblast (I-N) cell types, where 

the y axis is the overlap (Jaccard index) between genes participating in a network motif or its 

output gene in the two cell types and the x axis is the Euclidean distance between the gene 

expression profiles of the two cell types. The overlap in genes is computed for the nodes marked 

in red in each panel. The color of the points in the plots represents the developmental stage from 

early stage (8 PCW - blue) to late stage (22 PCW - red). PC=Pearson correlation.    

 

The recurrent network hyper-motifs show common patterns  
 

We next compute the most statistically enriched hyper-motifs42, where multiple motifs are 

combined through at least one common node (Methods). The most enriched hyper-motifs 

show several common patterns. Autoregulation is usually coupled to feedback circuits or 

to FLLs through their intermediate and output nodes. Feedback circuits are combined 

with FFLs through their intermediate nodes. Motifs share a common input or output node 

(Fig 5A).  
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Some combinations are statistically enriched across all developmental time points, while 

others are significantly enriched only at certain time points. Assuming that some 

combinations of motifs may lead to new properties, time points with enrichment of hyper-

motifs suggests emergence of new cell types or tissue-level patterns. The most enriched 

hyper-motif topologies appear at 10 PCW, which is indeed the time where the crypt to 

villus axis is formed (Fig 5A). 

 

The under-represented network hyper-motifs also follow certain patterns. Autoregulation 

and mutual feedback do not combine with the FFL’s input node, combinations of multiple 

feedback circuits are avoided only at 18 PCW, and cascades of FFLs are also excluded 

in multiple time points (Fig 6B).  

 

Dynamical properties of enriched hyper-motif regulatory circuits 
 

We consider several hyper-motif regulatory circuits that we find to be statistically enriched 

in the networks and mathematically model their dynamical behavior. One of the enriched 

hyper-motifs is a combination of a feedback circuit and an FFL through the intermediate 

node of the FFL (Fig 5B). This hyper-motif is very frequent in the regulatory networks of 

stromal and epithelial cells throughout the developmental process where it directly 

controls the expression levels of morphogen ligands and receptors as well as various 

development-related TFs (Fig 5C). We developed a mathematical model for the 

dynamical behavior of this hyper-motif (Methods). Our model suggests an interesting 

property of this hyper-motif where there are two types of input signals affecting the output 

gene. The first input signal is the FFL’s input X, and the second class of input signal are 

the Y/W TFs which mutually regulate each other. While both inputs are assumed to be 

required for the transcription of the output gene (Z) in our model, they differ in their effect 

on the dynamical behavior of Z. The X input signal is required to turn on Z, but its initial 

or final levels do not influence the dynamical behavior of Z. This means that Z is 

insensitive to variations in the levels of X (Fig 5D). In contrast, the initial levels of Y or W 

have a large effect on the dynamical behavior of Z (Fig 5E). This sensitivity to the Y/W 

levels provides a way of generating different responses to varying levels of inputs using 

a simple regulatory circuit, thus fulfilling the requirement for the interpretation of 

morphogen gradients, for example.   

 

We also consider a hyper-motif which joins two types of FFL circuits: coherent and 

incoherent FFLs (Fig 5F). This circuit is seen for example at 8 PCWs in fibroblast cells 

where the HMGA2-HOXB5-FOXP1 circuit is an incoherent FFL (HMGA2 activates 

FOXP1 directly but inhibit it through HOXB5), whereas the KLF5-HOXB5-FOXP1 circuit 

is a coherent FFL (Fig 5G). This hyper-motif can exhibit known properties of each motif 

when the input signals vary separately. When the two input signals are changing 

simultaneously, this motif presents an interesting behavior where the final level of the 
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output Z is robust to variations in the input signal regulating the incoherent FFL (X1) but 

is sensitive to noisy inputs stimulating the coherent FFL (X2) (Fig 5H-O).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Enriched network hyper-motifs and their dynamical behavior. (A) Table of over- 

and under-represented hyper-motifs across the developmental process. Rows are different hyper-
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motif topologies; columns are different time points in the data. Black squares mark positive 

enrichment, and red squares mark negative enrichment. (B) An enriched hyper-motif circuit where 

input signal X activates output gene Z and the mutually regulating TFs Y and W which both 

activate Z as well. (C) Examples of the hyper-motif in the developmental networks. (D-E) 

Dynamical behavior of the output gene Z where the different curves are for different initial 

conditions of the input signal X (D) or the TF W (E). (F) Hyper-motif circuit that combines a 

coherent FFL and an incoherent FFL. (G) Examples of the hyper-motif in the developmental 

networks. (H) Simultaneous step-like changes in X1 (noisy, gray) and X2 (precise, blue) (L) 

Dynamical behavior of output Z in response to the input signals plotted in H. (M-O) Same as H-L 

only with X1 as the noisy signal and X2 as the precise signal.         

 

Cell-cell hyper-motif circuits emerge through morphogen signaling pathways 
 
Next, we explore how regulatory circuits within cells are linked through morphogen 

signaling pathways creating hyper-motif circuits between communicating cells. For the 

purpose of cell communication circuit analysis, we focus on fibroblast and epithelial cell 

type populations, the two cell types playing important roles in governing intestinal 

development49. First, we identify pairs of interacting cells where we consider interactions 

through ligand-receptor pairs of the developmental morphogen families (BMP, WNT, HH, 

FGF, and retinoic acid). To identify pairs of interacting cells, we used NicheNet, a 

computational method that infers ligand-receptor interactions considering expression 

patterns of ligands, receptors and downstream signaling genes in the receiving cells50 

(Methods). Using NicheNet, we highlight the top ligands that are predicted to link 

fibroblast and epithelial cell types (Fig 6A). Throughout the developmental process, we 

find that fibroblasts and epithelial cells communicate reciprocally through various BMP 

ligands; whereas IHH and SHH production is restricted to epithelial cells and its receptors 

and antagonists are produced by fibroblasts. Other morphogens, such as WNTs, appear 

at specific time points (Fig 6A).  

 

Next, we use these cell communication circuits to infer regulatory networks linking 

perception of certain morphogens to production of other morphogens. We focus on 

reciprocal circuits composed of provisions of pairs of signaling pathways. Out of these 

circuits, we look for situations where gene regulatory interactions that are downstream to 

a certain morphogen signaling pathway in the receiving cell directly upregulate or 

downregulate expression of a morphogen ligand (Fig 6B). Following these morphogen 

circuits over time, we find several patterns that recur in multiple time points. For example, 

downregulation of IHH by BMP signaling appears at 12, 16, and 22 PCWs.  
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Figure 6: Inferring hyper-motif circuits between communicating cells through ligand-

receptor interactions. (A) Cell-circuits between the epithelial (E, orange square) and fibroblast 

(F, pink square) cell type populations through morphogen and growth factor (GF) provision from 

8-22 PCWs. Black arrows from cells to GFs represent ligand production. Black arrows from GFs 

to cells represent binding to cognate receptors. Dashed colored inhibitory arrows represent 

inhibition of GFs through antagonist expression. (B) Table of cell circuits where expression of 

morphogen ligands is directly regulated by a regulatory circuit downstream to a morphogen 

signaling pathway. Black arrows pointing from GF1 to another GF’s production arrow, GF2, 

represent activation or inhibition through a gene regulatory circuit that is downstream to the GF1 

signaling pathway in the cell type producing the GF2 signal.  

 

Cell-cell hyper-motif circuits can provide emergent dynamical properties 
 

We consider three examples of hyper-motif regulatory circuits between communicating 

cells and examine their potential dynamical behavior in more detail. To do so, we consider 

the shortest path in the gene regulatory network linking the TF (Y) downstream to the 

input morphogen signaling pathway (X) received by the cell and the output morphogen 

ligand (Z) that is produced by the same cell (Fig 7A). Since the genes participating in this 

shortest path are part of a larger complex gene regulatory network, we developed a new 

method to extract the circuit topology controlling the expression of the output gene Z. 

Instead of simply considering a cascade of genes following the shortest path between X 

and Z in the network, we are inferring the ‘shortest network motif path’. Using the shortest 

network motif path approach, we follow the network motifs in which the genes linking X 

and Z participate in (Fig 7A, Methods). After inferring the shortest network motif path 

between a pair of morphogen signals, we developed a mathematical model to simulate 

the dynamical behavior of the resulting hyper-motif circuit (Methods). We find that 

interactions between members of BMPs and IHH (Fig 7B) can provide pulsatile response 

(Fig 7C) and pure oscillations (Fig 7D). Interactions between BMP4, WNT4 and its 

inhibitor SFRP2 (Fig 7E) can yield antagonistic expression patterns for BMP4 and WNT4 

depending on model parameters (Fig 7F-G). The hyper-motif in epithelial cells that 

regulates IHH and is activated by WNT4 (Fig 7H) can provide pulsatile (Fig 7I) or delayed 

and sustained (Fig 7J) response.                    
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Figure 7: Dynamical properties of cell-cell hyper-motif circuits. (A) Illustration of our method 

to infer the shortest network motif path linking input signal X and output gene Z. Nodes 

participating in the shortest path are marked in red. Edges and additional nodes participating in 

the shortest network motif path are marked in orange. (B-J) Examples of three hyper-motif gene 

regulatory circuit topologies (B, E, H) linking two morphogen signaling pathways between 

fibroblast and epithelial cells. Dashed arrows represent production of morphogen antagonists. (C-

D, F-G, I-J) Simulated dynamical behavior of the circuits in B, E and H with varying parameters 

or initial conditions (Methods).  

 

Hyper-motif regulatory circuits frequently regulate morphogen production  
 

Next, we explore the extent to which hyper-motif regulatory circuits regulate morphogen 

expression directly through regulation of morphogen ligands and indirectly, through 

regulation of the morphogen receptors and antagonists. For every pair of morphogen 

families, we examine whether there is a direct path in the gene regulatory network linking 

one morphogen signaling pathway to expression of another morphogen’s ligand, receptor 

or antagonist. Counting the number of target genes belonging to a certain morphogen 

family that are regulated by another morphogen signaling show large variation between 

the pairs of morphogens, as well as variation in the pattern over time (Fig 8A, C). 

Additionally, we explore the number of genes, within the regulatory paths linking pairs of 

morphogen signaling, that participate in network hyper-motif circuits. We find that most 

regulatory paths linking morphogen pairs are enriched with hyper-motif regulatory circuits 

(Fig 8B, D). Examining the composition of the most common hyper-motif regulatory 

circuits within these paths, we find that many of the regulatory circuits regulating 

expression of morphogen signaling correspond to the most statistically enriched hyper-
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motifs in the network (Fig 8E-F; Fig 5A), suggesting that these enriched hyper-motif 

circuits indeed play important roles in regulating morphogen expression patterns.  

 

Figure 8: Role of hyper-motif circuits in regulating morphogen signaling pathways. (A, C) 

Heatmaps of the number of target genes that are regulated downstream to morphogen signaling 

pathways in epithelial cells (A) and in fibroblasts (C). A square in X row and Y column is colored 

by the number of ligands, receptors and antagonists belonging to morphogen family Y that are 

found to be directly regulated in response to morphogen ligands from the X family, divided by the 

total number of ligands in the Y family. (B, D) Heatmaps of the number of genes in the regulatory 

circuits described in (A) and (C) that participate in more than one motif role (forming a hyper-

motif) in epithelial cells (B) and fibroblasts (D). (E-F) The 10 most common hyper-motifs regulatory 

circuits linking morphogen pathways in epithelial cells (E) and fibroblasts (F).        

 

Discussion 

 

Developmental processes are regulated by complex regulatory networks. To disentangle 

this complexity, we used our recently developed framework exploring how building-block 

circuits are joined in complex networks to reveal design principles of developmental 

programs. By applying our approach to intestinal development single-cell data, we found 
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that developmental GRNs show 5 network motifs that are joined in the network according 

to specific rules. We find that network motif identity and position of genes within motifs 

are good predictors for gene expression profiles for certain network motifs within epithelial 

and fibroblast populations, supporting the validity of the network motif approach to 

examine gene regulatory networks. Examining major transitions in the network structure, 

including emergence of enriched network hyper-motifs and appearance of new genes in 

key positions within the network, highlight major developmental events and their potential 

regulators. Lastly, we find that morphogen ligands, receptors and co-receptors are 

regulated directly by combinations of network motifs creating hype-motif circuits between 

communicating cells that can generate emergent dynamical properties.  

 

Our approach offers a new way to categorize developmental genes according to their 

roles in the network motifs. This categorization distinguishes between input genes, 

effector genes and hub genes that are core regulators combining multiple network motifs. 

It will be interesting to apply this method to developmental processes of other tissues to 

explore the robustness of gene categorization based on network motif roles.       

 

In our analysis of over- and under-represented network hyper-motifs, we discovered that 

positive feedback circuits, including autoregulatory and mutual feedback, are highly 

enriched throughout the developmental process, whereas cascades of feedforward loops 

are statistically scarce. This finding is surprising, given that both circuit designs provide a 

delayed response which is an important property in developmental programs. The 

potential selection against cascades of FFLs may be due to the fact that FFL cascades 

provide delay in response time at the cost of noise amplification, whereas positive 

feedback circuits provide delay and sensitivity to input signals without compromising on 

the ability to buffer noise propagation51,52. 

 

We note that our approach provides theoretical predictions on the mesoscale structure of 

developmental gene regulatory networks at a systems level. Future work where 

predictions regarding particular TF and target gene positions and roles within the 

networks are experimentally explored will be integral to complement this approach.   
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Methods 

 

Inference of gene regulatory networks from single-cell data 

 
We analyzed single-cell RNA sequencing data from Fawkner-Corbett et al.44 using the 

SCENIC package in python (pySCENIC)45,53. The pySCENIC pipeline consists of: (1) 

Obtaining expression data per each time point in the data using the Seurat pipeline54; (2) 

Inferring an adjacency matrix describing co-expression relationships between 

transcription factors (TFs) and target genes; and (3) Constructing regulons - modules 

containing TF and target genes by integrating motif information. The activity of a TF in a 

cell is calculated by integrating the TF target genes’ expression. We repeated the 

pySCENIC pipeline 6 times and kept the overlapping regulons to reduce noise. To focus 

on TFs with variable activity in the tissue, we filtered out low-variance regulons by 

removing those with activity variance less than 0.1. To build the gene regulatory networks, 

we considered pairs of TFs and target genes that have a predicted activity that is higher 

than the median across all pairs, considering genes that belong to a manually curated list 

of developmental-related genes (5143 genes).  

  
Network motif enrichment analysis 

 

To identify network motifs - statistically enriched patterns in the developmental regulatory 

networks, we used the MFinder package55 to identify network motifs of up to 3 nodes. We 

verified these network motifs by detecting enriched patterns using the IGraphM package 

in Mathematica. To randomize the networks, we used the IGRewire function and to find 

motifs and their frequencies we used the IGMotifs function.  

 
Motif role transitions 

 

To explore transitions of genes between network motif roles, we first categorized the 

genes in the regulatory networks according to their role (or roles) in the motifs. We denote 

𝑁𝑚,𝑡 as the set of nodes in a GRN that participate in network motifs in time t. Next, for 

each time point t, we categorized nodes in 𝑁𝑚,𝑡 to 7 groups according to their roles in the 

network motifs: {𝑛1,𝑡 , 𝑛2,𝑡 , . . . , 𝑛7,𝑡}, for the 7 unique motif roles in our case (Fig 3A). Note 

that certain nodes may belong to more than one group (which is the case where network 

motifs are combined). Next, for each one of the 7 motif roles, we consider all successive 

pairs of node groups within each role, such as: {𝑛1,𝑡 , 𝑛1,𝑡+1}, {𝑛1,𝑡+1, 𝑛1,𝑡+2}, etc. For each 

pair of successive groups, we compute the Jaccard index: 𝐽(𝑛𝑖,𝑡 , 𝑛𝑖,𝑡+1) = |𝑛𝑖,𝑡  ∩

 𝑛𝑖,𝑡+1|/|𝑛𝑖,𝑡  ∪  𝑛𝑖,𝑡+1|, which is the size of the intersection of the two groups divided by the 

size of their union. If all genes in a certain motif role remain in the same motif role in the 

next time point: 𝐽 = 1, and if none of the genes remain in the same motif role: 𝐽 = 0.  
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To build the network of motif role transitions, we defined motif role states for every gene 

(g) in the networks in each time point (t): 𝑥𝑔,𝑡, which is a 7-dimensional vector that 

represents whether gene g participates in each one of the 7 motif roles or not (for 

example: (1,0,0,0,0,0,0), (1,1,0,0,0,0,0), (1,0,1,0,0,0,0), etc.). Overall, there are 2
7 = 128 

different possible motif role states (although not all of them are implemented in the 

developmental GRNs). We then build a network where the nodes represent the different 

possible motif role states. We then consider for every gene, all pairs of motif role states 

from successive time points: {𝑥𝑔,𝑡−> 𝑥𝑔,𝑡+1}. For each direct transition between motif role 

states, we draw an edge connecting the two motif role states (or a self-loop arrow in case 

the genes retain the same motif role state). We assign weights to the edges to account 

for the observed frequencies of each transition.              

  
Correlations between network motif identities and gene expression profiles 

 
We consider pairs of specific cell types (clusters) within the epithelial cells (and separately 

also within the fibroblast populations) across successive time points in the data. For each 

such pair of cell types and for every pair of successive time points, we compute the 

Jaccard index of genes participating in a certain network motif or are regulated by a 

certain network motif. For example, considering the feedforward loop (FFL), first we 

create a list of all the triplets of genes participating in FFLs in each cell type. We then 

compute the Jaccard index of the two lists of triplet genes. We compare the Jaccard index 

with the Euclidean distance between the gene expression profiles of the two cell types in 

question. We then used the PearsonCorrelationTest function in Mathematica to estimate 

the Pearson correlation for every network motif and its statistical significance.        

 
Detection of over- and under-represented network hyper-motifs 

 

To detect over- and under-represented network hyper-motifs, we detect enrichment of 

combinations of network motifs. To do so, we follow the following steps (presented in 

detail in 42):  

1. Compute the Jaccard index for all 𝑘(𝑘 − 1)/2 pairs of motif roles (here 𝑘 = 7) 

within each time point: 𝐽(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡) = |𝑛𝑖,𝑡  ∩  𝑛𝑗,𝑡|/|𝑛𝑖,𝑡  ∪  𝑛𝑗,𝑡|. 

2. For nodes that appear more than once in the same role within the same network, 

we compute the Jaccard index by the ratio of the number of nodes that appear in 

a network motif role more than once to the total number of nodes that participate 

in that motif role. 

3. We use the MFinder package55 to create 100 random networks (for each time point 

in the data) that have the same number of nodes and edges, the same number of 
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incoming and outgoing edges per node, and the same frequency of all subgraphs 

up to three-node subgraphs, as in the real network. 

4. After categorizing the nodes according to their motif roles for each of the 100 

random networks (per time point), we repeat steps 1 through 2 for all the random 

networks and compute 𝐽𝑟𝑎𝑛𝑑(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡) for all pairs of motif roles in the random 

networks. 

5. For every i,j such that 𝑖, 𝑗 ∈ {1,2, . . . , 𝑘}, we compute the Z-score of 𝐽(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡) from 

the distribution of  {𝐽𝑟𝑎𝑛𝑑(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡)}: 𝑍𝑖𝑗 = (𝐽(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡) − 𝑚𝑒𝑎𝑛 ({𝐽𝑟𝑎𝑛𝑑(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡)}))/

𝑠𝑡𝑑({𝐽𝑟𝑎𝑛𝑑(𝑛𝑖,𝑡 , 𝑛𝑗,𝑡)}), and compute the P value by estimating the cumulative 

density of 𝑍𝑖𝑗 for a normal distribution with zero mean and unit variance. We use 

the function NormalPValue in the package HypothesisTesting in Mathematica to 

compute the P value. We then use the Benjamini–Hochberg procedure to correct 

for multiple hypothesis testing, which provides us a corrected q-value for each pair 

of motif roles. 

6. We consider over- and under-represented motif combinations if their q-value is 

smaller than 0.05, where 𝑍𝑖𝑗 > 0 for over-represented combinations and 𝑍𝑖𝑗 < 0 

for under-represented combinations. 

 

Mathematical models for statistically enriched network hyper-motif regulatory 

circuits 

 

We consider the following differential equations to model the dynamical behavior of the 

hyper-motif circuit that combines two FFLs and a mutual feedback loop (Fig 5B): 

 

 
We chose parameter values that provide bistability to the mutual feedback circuit. We 

therefore used the following parameter values: 

𝑘𝑤𝑤 = 𝑘𝑤𝑦 = 𝑘𝑦𝑤 = 𝑘𝑦𝑦 = 0.3, 𝑘𝑤𝑧 = 𝑘𝑥𝑤 = 𝑘𝑥𝑦 = 𝑘𝑥𝑧 = 𝑘𝑦𝑧 = 0.01 

𝑛𝑤𝑤 = 𝑛𝑤𝑦 = 𝑛𝑦𝑤 = 𝑛𝑦𝑦 = 3, 𝑛𝑤𝑧 = 𝑛𝑥𝑤 = 𝑛𝑥𝑦 = 𝑛𝑥𝑧 = 𝑛𝑦𝑧 = 1 
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We used the following initial conditions for Fig 5D:  

𝑦0 = 0.25, 𝑤0 = 0.35, 𝑧0 = 0.01, and 𝑥0 as denoted in Fig 5D. 

and the following initial conditions for Fig 5E:  

𝑥0 = 0, 𝑤0 = 0.3, 𝑧0 = 0.01, and 𝑦0 as denoted in Fig 5E.  

 

We consider the following differential equations to model the dynamical behavior of the 

hyper-motif circuit that combines two FFLs forming a multi-input FFL (Fig 5F): 

 
Here we used log linear terms (assuming that the variables are far from saturation) since 

this is the range of parameters that provide well-known dynamical properties of the 

coherent and incoherent FFLs such as the fold-change detection property39,56–58.    

  

Inference of cell communication circuits through morphogen ligand-receptor 

interactions  

 
To infer interactions between epithelial and fibroblast populations, we applied NicheNet, 

an algorithm that infers ligand-receptor interactions within a transcriptomic dataset, using 

prior knowledge on ligand-receptor interactions and regulatory networks50. We applied 

NicheNet to the intestinal development scRNAseq dataset considering interactions 

between the specific cell type populations of fibroblasts and epithelial cells across the 

developmental process. The pairwise interaction between cell types (mature enterocytes, 

fibroblast progenitors, absorptive cells, etc.) was calculated independently for each time 

point in the data (9 time points spanning 8-22 PCWs). For each cell type and for each 

time point, genes of interest (GOIs) were defined as genes that were upregulated in a 

particular cell type compared to all other cell types in that time point and expressed in at 

least 25% of the cells within the cell type population. Interaction score was calculated as 

the Pearson coefficient calculated by ‘predict_ligand_activities’ function, using the GOIs 

of that time point and the genes that were expressed in the ‘receiver’ clusters as targets. 

For each pair of sender-receiver cells, we chose the top 10% quantile ligands. This 

analysis allowed us to infer interactions between every pair of specific cell type 

populations among the different fibroblast and epithelial clusters. In Fig 6A we consider 

the possible interactions through the different morphogen ligand-receptor pairs where we 

group together the various fibroblast and epithelial clusters.           
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Analysis of shortest network-motif paths 

 

To infer regulatory interactions that link a signal (S) perceived by a cell to an expression 

of a ligand encoded by a target gene (Z), we consider the GRN of that cell type. We then 

use the function ‘FindShortestPath’ in Mathematica to compute the shortest path linking 

a transcription factor X, which is downstream to the S signaling pathway and the target 

gene Z. Let us denote the set of genes that are in this shortest path {𝐺𝑠}. We now build a 

new set of genes that will make up the shortest network-motif path: {𝐺𝑀}. For each gene 

𝑔𝑖  in {𝐺𝑠}, we perform the following steps: 

1. Check if 𝑔𝑖  participates in network motifs in the same time point and in the same 

cell type.  

2. If the answer to #1 is yes - add 𝑔𝑖  and the genes interacting with 𝑔𝑖  in the network 

motif to {𝐺𝑀}. *Note that in case 𝑔𝑖  participates in multiple network motifs of the 

same topology and in the same motif role, we consider only one instance of this 

motif in {𝐺𝑀}. This is similar to having multiple shortest paths in a network, and 

arbitrarily choosing one of them.   

3. If the answer to #1 is no - add only 𝑔𝑖  to {𝐺𝑀}.         

 
Mathematical models for regulatory circuits between communicating cells 
 

We model the dynamical behavior of two morphogen lignands that regulate each other’s 

expression through regulatory circuits between a pair of communicating cells (Fig 7).  

For the cell circuit depicted in Fig 7B we use the following set of differential equations 

where x represents the FOS/SMAD1/NR2F2/FOXP2 module, y represents HNF4A, Z is 

PPARG, u is for IHH, and v represents BMP2/4/5/7: 

  
We used the following parameter values for Fig 7C: 

𝑘𝑢𝑣 = 𝑘𝑣𝑥 = 𝑘𝑥𝑥 = 𝑘𝑥𝑦 = 𝑘𝑦𝑢 = 𝑘𝑦𝑦 = 𝑘𝑦𝑧 = 𝑘𝑧𝑢 = 0.01 
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𝑛𝑢𝑣 = 𝑛𝑣𝑥 = 𝑛𝑥𝑥 = 𝑛𝑥𝑦 = 𝑛𝑦𝑢 = 𝑛𝑦𝑧 = 𝑛𝑧𝑢 = 1, 𝑛𝑦𝑦 = 3 

with the following initial conditions: 

𝑥0 = 𝑧0 = 𝑢0 = 𝑣0 = 0.01, 𝑦0 = 1 

And the following parameter values for Fig 7D: 

𝑘𝑢𝑣 = 𝑘𝑥𝑥 = 𝑘𝑥𝑦 = 𝑘𝑦𝑢 = 𝑘𝑦𝑧 = 𝑘𝑧𝑢 = 0.01, 𝑘𝑣𝑥 = 4.3, 𝑘𝑦𝑦 = 0.3 

𝑛𝑢𝑣 = 𝑛𝑣𝑥 = 𝑛𝑥𝑥 = 𝑛𝑥𝑦 = 𝑛𝑦𝑢 = 𝑛𝑦𝑧 = 𝑛𝑧𝑢 = 𝑛𝑦𝑦 = 1 

with the following initial conditions: 

𝑥0 = 𝑦0 = 𝑧0 = 𝑢0 = 𝑣0 = 0.01 

 

For the cell circuit depicted in Fig 7E we use the following set of differential equations 

where x is IRF1, y is TCF12/4, Z is SOX6, u is for BMP4, and v represents WNT4. To 

account for effect of expression of BMP and WNT antagonists, we added direct inhibition 

terms in the equations for the morphogen ligands:  

 
 

We used the following parameter values for Fig 7F: 

𝑘𝑢𝑢 = 𝑘𝑣𝑢 = 10.2, 𝑘𝑢𝑣 = 𝑘𝑣𝑦 = 𝑘𝑥𝑦 = 𝑘𝑥𝑧 = 𝑘𝑦𝑦 = 𝑘𝑦𝑧 = 𝑘𝑧𝑧 = 0.01, 𝑘𝑣𝑣 = 4.7, 

𝑘𝑥𝑢 = 0.3, 𝑘𝑧𝑢 = 6.3, 𝛼 = 5.7 

𝑛𝑢𝑢 = 𝑛𝑢𝑣 = 𝑛𝑣𝑢 = 𝑛𝑣𝑦 = 𝑛𝑥𝑦 = 𝑛𝑥𝑧 = 𝑛𝑦𝑦 = 𝑛𝑦𝑧 = 𝑛𝑧𝑢 = 𝑛𝑧𝑧 = 1, 𝑛𝑣𝑣 = 𝑛𝑥𝑢 = 3 

with the following initial conditions: 

𝑥0 = 𝑦0 = 𝑧0 = 𝑢0 = 𝑣0 = 0.01 

And the following parameter values for Fig 7G: 

𝑘𝑢𝑢 = 𝑘𝑢𝑣 = 𝑘𝑣𝑦 = 𝑘𝑥𝑦 = 𝑘𝑥𝑧 = 𝑘𝑦𝑦 = 𝑘𝑦𝑧 = 𝑘𝑧𝑧 = 0.01, 

𝑘𝑥𝑢 = 𝑘𝑧𝑢 = 𝑘𝑣𝑣 = 0.3, 𝛼 = 0.01 

𝑛𝑣𝑣 = 𝑛𝑣𝑦 = 𝑛𝑥𝑦 = 𝑛𝑥𝑢 = 𝑛𝑥𝑧 = 𝑛𝑦𝑦 = 𝑛𝑦𝑧 = 𝑛𝑧𝑢 = 𝑛𝑧𝑧 = 1, 𝑛𝑢𝑢 = 𝑛𝑣𝑢 = 𝑛𝑢𝑣 = 3 

with the following initial conditions: 

𝑥0 = 𝑦0 = 𝑧0 = 𝑣0 = 0.01, 𝑢0 = 0.46 
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For the cell circuit depicted in Fig 7H we use the following set of differential equations 

where x is KLF5, y is TCF7L2, w is HNF4A, Z is FOXA1, u is for IHH, and v represents 

WNT4: 

 
  

We used the following parameter values for Fig 7I: 

𝑘𝑖𝑗 = 0.3, 𝑛𝑖𝑗 = 3 for every i,j 

with the following initial conditions: 

𝑥0 = 𝑢0 = 𝑣0 = 0.01, 𝑦0 = 1.1, 𝑧0 = 0.33, 𝑤0 = 0.83 

And the following parameter values for Fig 7J: 

 𝑛𝑖𝑗 = 3 for every i,j except for 𝑛𝑣𝑦 = 1 

𝑘𝑢𝑣 = 𝑘𝑤𝑢 = 𝑘𝑤𝑤 = 𝑘𝑤𝑦 = 𝑘𝑤𝑧 = 𝑘𝑥𝑢 = 𝑘𝑥𝑤 = 𝑘𝑦𝑤 = 𝑘𝑧𝑢 = 𝑘𝑧𝑧 = 0.01, 𝑘𝑣𝑦 = 𝑘𝑥𝑦 = 𝑘𝑦𝑦 =

0.3  

with the following initial conditions: 

𝑥0 = 𝑦0 = 𝑤0 = 𝑧0 = 𝑣0 = 𝑢0 = 0.01 
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SI Figures 

 

Figure S1: (A) Proportions of the 6 major cell type categories in the intestine computed from the 

single-cell data in Fawkner-Corbett et al.44 across the 9 time points that follow the developmental 

process. (B-C) Number of nodes (B) and edges (C) in each network inferred from the single-cell 

data. (D) Proportion of genes that participate in network motifs out of the total number of genes 

in each network. (E) Heatmap of the overlap of genes that participate in the different gene 

regulatory networks (GRNs). Every square is a comparison between two networks from time 

points in the data. Overlap is computed by calculating the Jaccard index of the two lists of genes 

participating in the two networks.  
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Figure S2: Table of genes participating in network motifs in at least one of the networks inferred 

from the single-cell data, and their roles within the network motifs in each time point in the data. 

Every row is a gene, and it is colored by its role within network motifs in each time point.  
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