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Antiferromagnetic 
and ferromagnetic spintronics 
and the role of in‑chain 
and inter‑chain interaction on spin 
transport in the Heisenberg 
ferromagnet
L. S. Lima

Spin-transport and current-induced torques in ferromagnet heterostructures given by a ferromagnetic 
domain wall are investigated. Furthermore, the continuum spin conductivity is studied in a frustrated 
spin system given by the Heisenberg model with ferromagnetic in-chain interaction J1 < 0 between 
nearest neighbors and antiferromagnetic next-nearest-neighbor in-chain interaction J2 > 0 with aim 
to investigate the effect of the phase diagram of the critical ion single anisotropy Dc as a function of J2 
on conductivity. We consider the model with the moderate strength of the frustrating parameter such 
that in-chain spin-spin correlations that are predominantly ferromagnetic. In addition, we consider 
two inter-chain couplings J⊥,y and J⊥,z , corresponding to the two axes perpendicular to chain where 
ferromagnetic as well as antiferromagnetic interactions are taken into account.

From the end of 80 decade up to now, the spintronics has witnessed a variety of spin related phenomena such 
as spin transfer torque, tunneling magnetoresistance1 and so on. The spintronics demands the spin transport 
study, where the spin current plays a central role in order of spintronics phenomena to occur in magnetic 
materials and also in various other materials including semiconductors and oxides2,3. So, the spin current can 
be used to control the magnetization via spin-transfer-torque and spin-orbit-torque in several magnetic (and 
also nonmagnetic) materials4–9.

On the other hand, the frustrated antiferromagnetism has been also a rich topic nowadays since to very 
intriguingly phenomena like topological phase transitions that may occur in this class of systems. The frustra-
tion leads to an importance of quantum effects because of the classical order is suppressed and novel phases 
may occur and to govern the physics at low-energy. Moreover, these systems can exhibit a nematic ground state 
induced by a spontaneous symmetry breaking induced by terms such as frustrating interactions in the Heisenberg 
model10. This nematic ordering can occur when spin fluctuations are taken at some axis without any direction 
being chosen11. In a general way, the frustration is present in materials as LiVCuO4, LiVCu2O4, LiZrCuO4 that 
are adequately described by ferromagnetic nearest-neighbor interactions J1 and antiferromagnetic next-nearest-
neighbor interactions J212–30. All of these materials are of spin-1/2. For spin-1, there are a small number of materi-
als as example the material NiCl24SC(NH2)2 which is a quasi-one-dimensional antiferromagnet with easy-plane 
anisotropy dominating the exchange interaction31–33.

The first generation of spintronic devices are based on spin transport, that utilises the magneto-transport 
being invented in 200134. The injection efficiency depends on the spin polarisation of the ferromagnet and the 
spin scattering at the ferromagnetic/non-magnetic interface, where it is also important to eliminate any other 
effects, namely a stray field from a ferromagnet, that distorts the estimation of the injection efficiency.

The aim of this paper is to analyze the effect of scattering among electrons with a ferromagnetic wall domain 
on spin transport by electrons and to analyse the spin transport by ions on the lattice in a two-dimensional frus-
trated spin lattice model with the aim to analyse the effect of quantum phase transition (QPT) on longitudinal 
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spin conductivity. Additionally, we analyze the Meissner effect for the ideal spin transport or superconductor 
obtained for many other two-dimensional frustrated spin systems. The plan of this paper is the following. In 
“Spin polarized current” section, we discuss the spin polarized current. In “Meissner effect for the spin super-
current” section, we discuss the Meissner mechanism for the spin super-current. In “Spin transport in quantum 
frustrated spin-1/2 ferromagnet” section, we discuss the spin transport in afrustrated lattice model such as the 
Heisenberg ferromagnetic model with in-chain and inter-chain interactions with the aim to analyse the effect 
of the parameters of coupling in the neighboring of the QPT, on spin conductivity. In the last “Conclusions” 
section, we present our conclusions and final remarks.

Spin polarized current
The spin transport by electrons in a system can be expressed by a spin current in the form JS = −�/2e

(

J↑ − J↓
)

 , 
where e is the electron charge. In the same way the charge current Jc is given by Jc = J↑ + J↓ . Both currents 
obey to a diffusion equation given by

where µ↑,↓ is the magnetic momentum of each electron and Ŵ =
√
Dτ  is the diffusion coefficient, being D the 

diffusion constant and τ the spin flip time35,36. Here, we consider the model described by the Hamiltonian

where J denotes the exchange integral and V(r) is the potential (nonmagnetic) of the lattice. The last term in the 
Equation above V(r) = Js · S(r′) provides the interaction between electron with the ferromagnetic domain wall. 
We consider a homogeneous magnetic domain wall with a collinear magnetization. The interaction among the 
electrons spins with the spins of the ferromagnetic wall is represented in Fig. 1, where the potential of interac-
tion among the electron spins with the spins of the wall domain is given by V(r) = Js · S(r) . The the aim here 
is to verify the influence of this on spin wave function of the electrons. The transmission of electron through a 
domain wall was discussed in Refs.37,38. The purpose here is to use the Born’s expansion for f↑,↓(k, k′) to calculate 
the effect of interaction electron spin-domain wall on spin wave function of the electrons of the current Jc . The 
wave function of the electron at large distance from the wall domain is given by

where ψin(r) = ψ(−∞) is the wave function of the electron after the scattering with the wall. Consequently, far 
from domain wall, we have ψout(r) given by

where |ψ↑,↓(k, r)� = S|ψ↑,↓(k, r)� and S is the scattering matrix.

where µB is the Bohr’s magneton and T is given by the Lipmann-Schwinger’s equation

and

(1)∇2(µ↑ − µ↓) =
1

Ŵ
(µ↑ − µ↓)

(2)H = − �
2

2m
∇2ψ(r)+V(r)ψ(r)+ Js · S(r)ψ(r).

(3)|ψ(r)� =
(

φ↑(r)
φ↓(r)

)

,

(4)
|ψ↑(k, r)� = eik·r

(

1

0

)

+ eik·r

r
f↑(k, k

′)

(

0

1

)

|ψ↓(k, r)� = eik·r
(

0

1

)

+ eik·r

r
f↓(k, k

′)

(

1

0

)

(5)f↑,↓(k, k
′) = − µB

2π�2
�ψ↑,↓(k, r)|T|ψ↑,↓(k

′, r′)�,

(6)T = V + V
1

ω −H0 + i0+

(7)H0 =− �
2

2m
∇2 +V(r),

Figure 1.   A schematic view of interaction among electron with the spins of the ferromagnetic domain wall of 
width δ . χ(x) is the phase angle among electron spin with spin of the ferromagnetic wall.
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where we consider J = 1 . Thus

where n is the times number that V enters in the equation above,

and the potential V(x) ( r = xî ) is given by

where x′ corresponds the region inside of the ferromagnetic wall domain. Consequently, we have

where the A(k) coefficient is given by

The integral above was solved approximately as

where δ is the width of the wall. The potential of interaction among electron spin with the spins of the domain 
wall V(x) has the form V(x) = JsdS cos(4 arctan(e

−δx)) . The shape of the potential is displayed in Fig. 2. We 
consider the expansion of the Eq. (9) up to first order. An analysis considering terms of superior order will gen-
erate a large quantity of terms in the Eq. (14) and should not generate any change in the scattering. We obtain 
a very complicated expression for the wave function of the electron after the scattering with the ferromagnetic 
wall domain however, in a combination of two polarization states. The presence of the coefficient f (k, k′) in the 
second term making the control of the state of polarization of each electron after the scattering with the domain 
wall a very difficult problem.

The electron Hamiltonian interacting with the ferromagnetic domain wall can be written as39,40

where H0 is the Hamiltonian of the free electron, Hsw is the electron-domain-wall Hamiltonian and Hw is the 
Hamiltonian of the wall domain.

V is given by Eq. (11).
Making the transformation of the spin operators

(8)V(r) =Js · S(r),

(9)f↑,↓(k, k
′) =

∞
∑

n=0

f
(n)
↑,↓(k, k

′),

(10)f
(1)
↑,↓(k, k

′) = − µB

2π2�
�ψ↑,↓(k, r)|V |ψ↑,↓(k

′, r′)�

(11)V(x′) = − 2Jsd

gµB
s · �S(x′)�,

(12)f
(1)
↑,↓(k, k

′) = −2

e
A(k, k′)

(13)A(k) =
∫ + δ

2

−δ
2

S cos(arctan(e−δx′)) sin(kx′)dx′.

(14)
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,

(15)H = H0 +Hsw +Hw ,

(16)H0 =− t
∑

�ij�

(

c†i↑cj↓ + h.c.
)

+ �

∑

i,j

ni↑nj↓,

(17)Hsw =V
∑

i,j

Si · sj ,

(18)Hw =J
∑

i,j

Si · Sj .

(19)S+i =
√
2SA†

i , s+i =
√
2Sa†i ,
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we have for the Hamiltonian Hsw

where H′ contains terms of four or more operators ai and Ai . The contribution of the interaction between each 
electron with the domain wall on the electric current operator Jsw is given by

We use the Matsubara’s Green function method at finite temperature39,40 to determine the contribution of the 
interaction of the electrons with the wall domain for the regular part of the electric conductivity or continuum 
conductivity, σ reg (ω) , given by

where fk = �ni↑� = �ni↓� = (eβωk + 1)−1 is the fermion occupation number and Nk = (eβWk − 1)−1 is the 
boson occupation number associated with the spin waves of the wall domain and β = 1/T . We have that in the 
low energy limit

where v is the Fermi’s velocity. In the Fig. 3, we present the behavior of the contribution of the interaction among 
electrons with the domain wall, σ reg

sw (ω) . How the electric resistance is the inverse of the electric conductivity, the 
inverse of σ reg

sw (ω) provides the information about the electric resistance generated by the ferromagnetic domain 
wall. Our results show a peak of resonance in the contribution of the spin electron-ferromagnetic wall domain 
at range ω ≃ 2.5J , which indicates a peak in the electric conductivity at this range of ω.

(20)S−i =
√
2SAi , s−i =

√
2Sai ,

(21)Szi =S − A†
i Ai , szi = s − a†i ai ,

(22)Hsw = 2V
√
Ss
∑

i,j

(

A†
i aj + h.c.

)

+H
′

(23)Jsw ≃ 2V
√
Ss
∑

i,j

(

A†
i aj − h.c.

)

.

(24)σ
reg
sw (ω) = 4V2sS

ω

∑

k

sin2 kx

ωkWk

[

fk(Nk + 1)δ(ω − ωk −Wk)+ Nk(1− fk)δ(ω + ωk +Wk)
]

,

(25)ωk =v|k|,

(26)Wk = J

3

(

cos kx ,+ cos ky + cos kz
)

Figure 2.   Behavior of the potential of interaction between the electron with the ferromagnetic domain wall, 
V(x), where the width of the wall is δ.
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Meissner effect for the spin supercurrent
It is a fact well known that an example in the nature of local spontaneous breaking of gauge symmetry is the 
superconductivity. How the charge conductivity is a response to a time-dependent electric field given by Ohm’s 
law, J (x, t) = σE(x, t) , in a similar way, we have that the spin current flows in response to a magnetic-field gra-
dient following the Fick’s laws for ∇B(x, t) as �J (x, t)� = σ∇B(x, t) . Hence, so as for electric superconductors, 
we should have here σ → ∞ for the case of a spin superconductor, where in a finite system with N sites we must 
have a finite number of spins. As in general, the spin conductivity cannot be infinite consequently, the gradi-
ent of the external magnetic field ∇B(x, t) must be zero inside of the a spin superconductor as in the electron 
superconductivity. So, if B is zero in the beginning, it must be zero inside the superconductor even if we apply a 
gradient of an external magnetic field outside the superconductor. This means that the applied external magnetic 
field must not depend on x inside the superconductor. Consequently, the spins of a spin superconductor should 
generate a current that screens the external gradient of the magnetic field.

The action of the system becomes invariant under the gauge transformation

We introduce the Goldstone boson field φ(x) that has the property φ(x) = φ(x)+�(x) and

where q is the charge. Thus, the magnons in the Heisenberg model must be described by a charged scalar field 
so as the cooper pairs in the electric superconductor where the Lagrangian describing the interaction between 
this scalar field with the gradient of the electromagnetic field being given by

being Lm a not well known functional.
The Proca’s equation is given by

with

Thus, the scalar field ψ produces a mass for the photons following the Higg’s mechanism where the scalar field 
that describes the spin waves plays the role of a Higg’s field developing a antiferromagnetic vacuum expectation 
value. So, the photon must acquire a mass � inside the spin superconductor like in the electric superconductor 
with the wave equation becoming the Klein-Gordon equation for the quantity B defined by B = ∇B(x, t) given 
by the massive Klein-Gordon equation

(27)Aµ(x) → Aµ(x)+ ∂µ�(x),

(28)ψ(x) → ψ(x)eiq�(x)/�.

(29)ψ(x) = eiqφ(x)/�ψ(x).

(30)L = −
∫

1

4
FµνF

µν + Lm[Aµ − ∂µφ],

(31)∂µF
µν +�2Aν = 0

(32)(�+�2)Aν = 0.

2 2.2 2.4 2.6 2.8 3
ω
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Figure 3.   Behavior of the contribution of the interaction between electron with the domain-wall, σ reg
sw (ω) in 

the temperature T = 0.1J . The very small value of this contribution is due to interaction of only one electron 
with the ferromagnetic three-dimensional wall domain. In the electric current we have a flow of N electrons by 
seconds.
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Thus, if we apply a gradient of an external magnetic field, the solution of equation above will become ∇2B = 0 
for x < 0 and (∇2 −�2)B = 0 for x > 0 . The solution for x > 0 gives a penetration length given by l = 1/� , 
being the inverse of the mass that the photon acquires inside of the spin superconductor.

Spin transport in quantum frustrated spin‑1/2 ferromagnet
We discuss the role of the interchain coupling on spin transport in coupled frustrated spin-1/2 magnets with a fer-
romagnet NN in-chain coupling J1 < 0 and an AFM NNN in-chain coupling J2 > 0 , where the chains are aligned 
along the x axis, and they are coupled along the y and z axes by J⊥,y and J⊥,z , respectively. Thus the model is given by

where 〈i, j〉 , x, y, z labels NN bonds along the corresponding axis, and [i, j], x labels NNN bonds along the chain. 
Furthermore, we consider J1 < 0 and J2 ≤ 0 , whereas no sign restrictions are valid for J⊥,y and J⊥,z.

In the linear response theory, the spin conductivity is the response to an actual frequency-dependent gradient 
of magnetic field is given by41–43

where we have introduced the spin-flip part of the exchange interaction along the x direction. The Eq. (35) 
exhibits the desired structure �J � = σ∇Bz , where the formula for the spin conductivity is defined as the linear 
spin-current response to a uniform, k = 0 , frequency-dependent gradient of the magnetic field44. In general, 
the k = 0 conductivity at T = 0 may be written as Re

(

σβγ (ω)
)

= DSδ(ω)+ σ reg (ω) , where DS is the Drude’s 
weight. Therefore, beyond the k = 0 the relation between the “twist conductivity” and the response to an inho-
mogeneous magnetic field is not clear.

The Green’s function at zero temperature is defined as42

where T is the time ordering operator. The current-response function G(k,ω) at finite temperature is given by

G(k = 0,ω → 0) is the susceptibility or retarded Green’s function42,43.
The operator for spin current from site j to site j + x is defined by44–48

where j + x is the nearest-neighbor site of the site j in the positive x direction. Furthermore, the spin-current 
operator can be expressed as J = −i[X ,H] , where the generating operator X  is X ≡

∑

j xjS
z
j  , where xj is the 

x-coordinate of lattice site j, Jx(j) ≡ Jx→j+x and Jx ≡
∑

j Jx(j).
We find the spin current operator in terms of boson operators α and β given by

where the higher-order terms in Eq. (39) involves terms of four or more boson operators and have been discarded. 
We find the Green’s function given by

where gkk′(ω) is obtained by applying the Wick’s theorem following of the Fourier transform after performing a 
tedious calculation. The Eq. (40) corresponds to the lowest approximation (noninteracting magnetic excitations) 
which replaces the magnon propagators by the free propagators G0 and hence, it is valid only in the mean-field 
approach. Thus, the Green’s function for ψ is �α(t)α†(0)� → G0(t) and �β†(t)β(0)� → G̃0(t) , where G0 is the 
bare propagator.

(33)(�+�2)B = 0.
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and

Furthermore, we employ the formula42

We obtain the retarded Green’s function and σ reg (ω) , using the SU(3) Schwinger boson theory and applying the 
Gree-Kubo formula we obtain the continuum conductivity given by

We find the spin conductivity using the SU(3) Schwinger boson theory given as a second-rank tensor, being 
different from results in literature obtained using the Dyson-Maleev representation which is given by a scalar 
or zero-order tensor42,43. This difference implies in a different response of the spin current to the gradient of the 
external magnetic field ∇B.

We can improve SU(3) Schwinger boson mean-field formalism including the fluctuations around the mean-
field result49. We can consider the phase fluctuations φij around the mean-field results for A as Aij = Ãeiφij tak-
ing into account in the action for the Hamiltonian Eq. (34) which is invariant under the gauge transformation: 
bij → bij + (φi − φj) , bj → bje

iφj.
In Fig. 4, we obtain σ reg (ω) at T = 0 using the SU(3) Schwinger boson formalism. We perform the calcula-

tions for the following values of parameters: J1 = −1.0 , Jy = 0.1 , Jz = 0.0 and J2 = 0.2 , where the system is near 
to line of phase transition in the graphic DC vs. J2 : 0.251 ≤ J2C ≤ 0.252 , where DC goes continuously to zero 
DC → 033. There is a discontinuous drop of DC at J2C which is an effect of the dimension of the system. Being the 
behavior for three-dimensional and two-dimensional model are similar as was found in Ref.32. Where below DC 
the system is ordered and the magnetization is non-zero and the magnetization goes to zero at DC . We obtain a 
large peak for the spin conductivity at ω ≈ 0.03 and a finite spin conductivity at ω → 0 and none divergence at 
DC limit, which is due to the behavior of the expression for σ reg (ω) . Furthermore, this peak is due to behavior of 
dispersion relation ωk in the Brillouin zone, where the main effect of the frustration occurs at the long-wavelength 
limit where the gap of the dispersion relation, in the disordered phase vanishes at critical parameter DC → 0 , at 
a wave vector signaling the magnetic order that appear below DC . Experimental results can be compared with 
our results when available. As far as I know, there is no result for the spin transport for the model studied here. 
As In Fig. 5, we obtain σ reg (ω) as a function of J2 and for the values: J1 = −1.0 and Jy = 0.1 . We perform the 
calculations for the ω near to the peak of the spin conductivity obtained in Fig. 4, ω0 = 0.03 . Due to symmetry 
of equation for conductivity, we should obtain the same behavior for the conductivity as a function of Jy . In 
Fig. 6, we obtain σ reg (ω) as a function of J2 for J1 = −1.0 and Jy = 0.1 . We perform the calculations also near to 

(41)G(k,ω) = 1

π2

∫ 2π

0

dω1G0(k,ω1)G̃0(k,ω − ω1),

(42)G̃0(k,ω) = − 1

ω + ωk − i0+
, G0(k,ω) =

1

ω − ωk + i0+
.
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1

2π

∫

G0(ω)dω → T
∑

m

G0(ω → iωm),

(44)σ reg (ω) = t2
∑

k

[

sin kx(J1 + J⊥,y + J⊥,z)+ J2 sin(2kx)
]2
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Figure 4.   Plot of σ reg (ω) at T = 0 using SU(3) Schwinger boson theory). We perform the calculations 
for values J1 = −1.0 , J⊥,y = 0.1 , J⊥,z = 0.0 and J2 = 0.2 . The J2 value is near to the phase transition 
0.251 ≤ J2C ≤ 0.252 . The factor (gµB)

2 should be put in case of comparison to experimental data.
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the peak of the spin conductivity, ω ≈ ω0 = 0.03 . In this case, we obtain a monotonically increasing behavior 
for the conductivity as expected.

Conclusions
In brief, we analyze the effect of scattering among electrons with a ferromagnetic wall domain on spin transport 
by electrons and analyze the spin transport by quasi particles in the frustrated Heisenberg ferromagnet with in-
chain and inter-chain interactions which is very important in the field of antiferromagnetic and ferromagnetic 
spintronics. Additionaly, the Meissner effect for the spin superconductivity obtained for many other frustrated 
spin systems is also proposed. We analyze the case of a lattice model described by the isotropic Heisenberg 
model with a ferromagnetic in-chain interaction J1 < 0 between nearest neighbors and an antiferromagnetic 
next-nearest-neighbor in-chain coupling J2 > 0 . We obtain a large variation of the spin conductivity with the 
frustration parameters: J2 , J⊥,y and J⊥,z . There is also a Drude weight for the spin conductivity which exists in 
many other spin models. However, the purpose here is to analyze the effect of phase transition on continuum 
conductivity ω  = 0 where the Drude weight term does not generate any influence. The peak of the spin conduc-
tivity can be determined by measuring of magnetization current44,50. In Ref.51, some experimental techniques 
were proposed and seem to be feasible. Another experimental technique that can be used is the nuclear magnetic 
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relaxation (NMR). The spin transport in the compound AgVP2S6 was experimentally investigated using this 
technique (NMR) in Ref.52, where the experiment was performed at high temperatures where the behavior for 
the spin transport is diffusive.

Appendix: SU(3) Schwinger bosons
We consider the model given by

The SU(3) Schwinger boson theory is a theory proposed in Refs.53,54 and is well adequate to study the anisotropic 
XXZ model with single-ion anisotropy D in the range D > Dc , for N → ∞ limit where three boson operators 
tx , ty and tz are defined as

where |v� is the vacuum state. In terms of these tγ operators ( γ = x, y, z ), we write the spin-S operators as

We introduces other boson operators u† and d† given by

Thus

In addition, we impose the constraint condition u†u+ d†d + t†z tz = 1 . We employ the further condition that 
�tz� = t54 and introduce the Lagrange multiplier µj(T) that is a chemical potential of bosons depending on 
each site j of the lattice and temperature. From the mean-field approximation, we let µj(T) = µ(T) . The other 
parameters in theory: t2 , µ , p1 , p2 , py and pz are obtained numerically by a set of integral equations as following

After performing a Fourier transformation followed by the Bogoliubov transformation

with

we find

(45)
H = J1

∑

�i,j�,x
Si · Sj + J2

∑

[i,j],x

Si · Sj + J⊥,y

∑

�i,j�,y
Si · Sj + J⊥,z

∑

�i,j�,y
Si · Sj + D

∑

i

(Si)
2.

(46)t†x |v� = |x�, t†y |v� = |y�, t†z |v� = |z�,

(47)Sx = −i(t†y tz − t†z ty), S
y = −i(t†z tx − t†x tz), S

z = −i(t†x ty − t†y tx).

(48)u† = 1√
2
(t†x + ity), d

† = 1√
2
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√
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with

and ωk given by

that are the dispersion relation for spin waves. Furthermore, the system present a gap in the spectrum that closes 
at k ∈ (π ,π).
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