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During early post-natal life, neonates must adjust to the transition from the sheltered

intra-uterine environment to the microbe-laden external world, wherein they encounter

a constellation of antigens and the colonization by the microbiome. At this vulnerable

stage, neonatal immune responses are considered immature and present significant

differences to those of adults. Pertinent to innate immunity, functional and quantitative

deficiencies in antigen-presenting cells and phagocytes are often documented. Exposure

to environmental antigens and microbial colonization is associated with epigenetic

immune cell reprogramming and activation of effector and regulatory mechanisms that

ensure age-depended immune system maturation and prevention of tissue damage.

Moreover, neonatal innate immune memory has emerged as a critical mechanism

providing protection against infectious agents. Still, in neonates, inexperience to

antigenic exposure, along with enhancement of tissue-protective immunosuppressive

mechanisms are often associated with severe immunopathological conditions, including

sepsis and neurodevelopmental disorders. Despite significant advances in the field,

adequate vaccination in newborns is still in its infancy due to elemental restrictions

associated also with defective immune responses. In this review, we provide an overview

of neonatal innate immune cells, highlighting phenotypic and functional disparities with

their adult counterparts. We also discuss the effects of epigenetic modifications and

microbial colonization on the regulation of neonatal immunity. A recent update on

mechanisms underlying dysregulated neonatal innate immunity and linked infectious

and neurodevelopmental diseases is provided. Understanding of the mechanisms that

augment innate immune responsiveness in neonates may facilitate the development of

improved vaccination protocols that can protect against pathogens and organ damage.

Keywords: neonates, innate immunity, infections, sepsis, neurodevelopment, brain injury

INTRODUCTION

During early life, newborns encounter a plethora of antigenic challenges derived from pathogens,
commensals, and innocuous environmental antigens (1). In the face of an inexperienced adaptive
immunity, innate immunity is critical for the survival of neonates. Still, deficits in innate immune
cell functions, due to cell-intrinsic hyporesponsiveness concomitant with enhanced activation
of immunosuppressive, tissue-protective mechanisms, render neonates vulnerable to infections,
sepsis, brain damage and neurodevelopmental disorders (2–5). Rapidly-changing environmental
and microbial exposures in the post-natal period, along with epigenetic reprogramming and innate
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immune memory, have also a major impact on neonatal
immune responses (6). Despite significant scientific progress, the
precise cellular and molecular mechanisms underlying defective
neonatal innate immunity remain incompletely defined.

In this review, we present the most recent advances in the
characterization of the phenotype and functions of neonatal
innate immune cells, outlining the disparities with adult
responses. Given that there is limited space to delve into the
extensive series of animal studies, we focus on reports on human
cells. In addition, we provide an overview of the effects of the
microbiome, the metabolome, and epigenetics on the regulation
of neonatal innate immunity. The immunological mechanisms
underlying infections, brain injury, and neurodevelopmental
disorders are also presented. Finally, we discuss future research
directions that may boost neonatal host defense through
targeting innate immune responses.

INNATE IMMUNE RESPONSES IN
NEONATES

Dendritic Cells
Human dendritic cells (DCs) mainly consist of two
developmentally-distinct lineages; conventional (cDCs) that
induce T cell activation and differentiation, and plasmacytoid
DCs (pDCs), which produce type I interferons and mediate
anti-viral responses (7). Neonatal cDCs are decreased in
the peripheral blood and upon pathogen encounter [i.e.,
lipopolysaccharide (LPS) stimulation], secrete low levels of
IL-12, leading to impaired T helper type (Th1) cell polarization
(8). Decreased IL-12 synthesis by neonatal cDCs is associated
with impaired chromatin remodeling in the gene promoter
(9). Notably, neonatal cDCs secrete high levels of Th2 cell-
associated cytokines, such as IL-4 and IL-13, which along
with the anti-inflammatory cytokine IL-10, retain cDCs in
an immature state (10). The expression of human leukocyte
antigen (HLA)-DR and costimulatory molecules, such as
CD40, CD80, and CD86, are also decreased in neonatal cDCs,
reducing their antigen-presenting and T cell stimulatory
functions (11). Defective production of IFN-β and IFN-inducible
chemokine genes, including CXCL9, CXCL10, and CXCL11, by
neonatal DCs is considered to result from decreased expression
of IRF-3-dependent genes (9). Nevertheless, recent studies
using cytometry by time of flight-assisted immunophenotypic
analyses have shown that fetal and adult cDCs have similar
expression of pattern recognition receptors (PRRs) and
secrete equal amounts of GM-CSF, IL-6, CXCL8, and CCL4

Abbreviations: DCs, dendritic cells; cDCs, conventional dendritic cells; pDCs,

plasmacytoid dendritic cells; LPS, lipopolysaccharide; Th1, T helper type 1;

PRRs, pattern recognition receptors; TLR, Toll-like receptor; CpG, cytosine-

phosphate-guanosine; PI:C, polyinosinic-polycytidylic acid; PGN, peptidoglycan;

HSV, herpes simplex virus; HLA-DR, human leukocyte antigen-DR isotype;

BCL-2, B-cell lymphoma 2; MAPK, mitogen-activated protein kinase; NLRP3,

nucleotide-binding domain and leucine-rich repeat containing protein 3; NETs,

neutrophil extracellular traps; NK, natural killer; ILCs, Innate Lymphoid Cells;

NEC, necrotizing enterocolitis; EOS, early-onset sepsis; LOS, late-onset sepsis;

HI, hypoxia-ischemia; HIE, hypoxic-ischemic encephalopathy; CSF, cerebrospinal

fluid; ASD, autism spectrum disorders.

following stimulation with several toll-like receptor (TLR)
agonists [i.e., CL075, cytosine-phosphate-guanosine (CpG)
oligodeoxynucleotides, polyinosinic-polycytidylic acid (PI:C),
peptidoglycan (PGN)] ex vivo (12). These findings suggest
that endogenous immunosuppressive and/or other factors
may restrain neonatal cDC maturation and T cell stimulatory
functions in vivo. Upon stimulation with TLR7 ligands,
cytomegalovirus, herpes simplex virus-1 (HSV-1), or CpG,
pDCs, also release decreased amounts of IFN-α, even though
TLRs, HLA-DR, and costimulatory molecules are expressed at
similar levels to their adult counterparts (13, 14).

Monocytes and Macrophages
Monocytes play a key role in pathogen recognition and
eradication through their phagocytic, antigen-presenting
and cytokine-secreting abilities. Neonatal monocytes express
decreased levels of HLA-DR and CD80, leading to impaired
presentation of antigens, including pathogen-derived molecules
(15). They are also characterized by reduced expression of
membrane attack complex-1 and L-selectin, leading to decreased
adhesion and infiltration to inflamed tissues (16). Interestingly,
although stimulation with LPS enhances TLR4 expression, along
with TNF-α, IL-6, and IL-10 secretion by neonatal macrophages,
downstream TLR4 signaling pathways are impaired, as evidenced
by reduced phosphorylation of NF-κβ-p65 and p38, and this may
account for the overall decreased cytokine responses as compared
to adult cells (17, 18). Neonatal monocytes also exhibit impaired
activation of the nucleotide-binding domain and leucine-rich
repeat containing protein 3 (NLRP3) inflammasome. In fact,
following NLRP3 stimulation, low levels of caspase-1 lead to
decreased pyroptosis and reduced secretion of active IL-1β (19).
In contrast, neonatal monocytes express higher levels of the
anti-apoptotic protein B-cell lymphoma 2 (Bcl-2), that prevents
physiological termination of their responses and can exacerbate
inflammatory processes (20). Additional studies have shown that
macrophages produce high levels of migration inhibitory factor
which enhances mitogen-activated protein kinase (MAPK)
activation, and during sepsis, may lead to excessive cytokine
release (14).

Compared to their adult counterparts, neonatal macrophages
have increased cytoplasmic vacuolization and reduced expression
of lipid residues, CD11b, CD14, and F4/80 (21). Still, upon
pathogen encounter, they produce copious amounts of IL-6
and CCL2/3/4 (21). Given the inhibitory effects of IL-6 on
neutrophil responses, the increased IL-6/TNF-α ratio in neonatal
peripheral blood as described above, may account for the
reduced neutrophilic migration to inflammatory tissue sites (22).
Phagocytic responses of neonatal macrophages are similar to
those of adults (23).

Overall, these studies highlight impaired antigen-presenting
functions, cytokine secretion and T cell stimulatory abilities
of neonatal DCs and monocytes/macrophages upon pathogen
encounter, a phenomenon that renders neonates particularly
vulnerable to infections (Figure 1). Still, it remains elusive
whether the aforementioned defects are due to inherent
immaturity of the neonatal innate immune system, the
activation of endogenous immunosuppressive mechanisms or
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FIGURE 1 | Innate immune responses in neonates. The quantitative and functional characteristics of neonatal innate immune responses are depicted and compared

to those of adults. These features of innate immune cells render newborns vulnerable to severe infections and organ damage.

both, and future studies should further explore these clinically-
relevant questions.

Granulocytes
Neutrophils provide the first line of defense against pathogens
through phagocytosis, release of toxic substances and generation
of neutrophil extracellular traps (NETs). Neonatal neutrophils
exhibit impaired rolling and adhesion capabilities, resulting
from decreased expression of L-selectin, CD11b/CD18, and
P-selectin glycoprotein ligand-1 (24, 25). They are also
characterized by decreased calcium influx and intracellular

calcium mobilization that affect actin polymerization, the
microfilamentous cytoskeleton and chemotactic responses
(26, 27). Moreover, decreased complement receptor 3 and
nicotinamide adenine dinucleotide phosphate expression
further reduce transendothelial migration and correlate with
deficiency in opsonization and phagocytosis (25, 28, 29).
NETosis is impaired compared to adult cells and lactoferrin,
myeloperoxidase granule proteins and azurophilic protein
are reduced in neonatal neutrophil extracts [(29); Figure 1].
Global proteomics analyses of cord and adult blood neutrophils
validated the aforementioned findings showing downregulation
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of key proteins involved in proteasome, lysosome, and
phagosome functions as well as in transendothelial migration
(29). There is limited information pertinent to responses of other
granulocytes. Animal studies have shown that neonatal basophils,
through enhanced IL-4 production, trigger Th2-polarized
responses and downregulate IL-12 release by cDCs (30).

Natural Killer (NK) Cells
NK cells protect against pathogens through cytokine release
and killing of infected cells. Expression of a complex repertoire
of activating (CD94/NKG2C, killer immunoglobulin-like 1
receptor) and inhibitory receptors (CD94/NKG2A) enables NKs
to sense infected and/or transformed cells (31, 32). NK numbers
are increased during gestation, reaching their peak at birth, after
which they decline reaching adult levels (31, 32). Inhibitory
receptors are increased in neonatal NKs, endowing them with a
cytokine-secreting rather than a cytotoxic profile. Nevertheless,
the inhibitory receptor leukocyte immunoglobulin-like receptor-
1, is reduced in newborn NKs (32). Cord blood NKs exhibit
decreased degranulation abilities, as evidenced by reduced
CD107c and lower production of perforin and granzymes, which
result in poor cytotoxicity upon encounter of infected cells
(31). In contrast, antibody-dependent cell-mediated cytotoxicity
(ADCC) is not different to adults, as evidenced by equivalent Fcγ-
RIII/CD16 levels [(32); Figure 1]. IFN-γ release is dampened in
cord blood NKs mainly due to low IL-12 secretion by cDCs (33).
NK adhesion is also impaired due to reduced CD62L/L-selectin
and CD54/ICAM-1, whereas β2-integrin levels are similar to
adult counterparts (34).

Innate Lymphoid Cells (ILCs)
Innate Lymphoid Cells (ILCs) are characterized by the release of
Th cell-associated cytokines and the absence of antigen-specific
receptors. ILCs are classified into three subgroups (ILC1, ILC2,
ILC3), based on their cytokine and transcription factor profile
and represent essential drivers of early host responses during
infection and injury (35). ILCs presence and functionality is
increased during infancy, wherein ILCs contribute to lymphoid
tissue formation and gut homeostasis by regulating microbiome
installation and metabolic processes (36, 37). During intra-
amniotic infection, ILCs migrate to the amniotic fluid and
participate in tissue repair (36). Interestingly, neonatal mouse
ILC3s inhibit lymphopenia-induced proliferation (LIP), a process
that leads to aberrant T cell activation, tissue destruction and
loss of T-cell receptor diversity (37). This creates a diverse
repertoire of naive T cells that is essential for T cell homeostasis
and induction of immunological tolerance (Figure 1). The
human infant oral epithelium exhibits a predominance of ILC2s
that produce Th2 cytokines, important for defense against
extracellular bacteria and parasites (38).

FACTORS INFLUENCING NEONATAL
INNATE IMMUNITY

Epigenetics
Epigenetic modifications, including acetylation, methylation,
ubiquitination, phosphorylation and sumoylation on histones,

and/or DNA, as well as, microRNA-mediated regulation of
translation have a major impact on innate immunity. Studies
conducted during the post-natal period have shown a decrease
of the histone mark H3K4me1 in monocytes, concomitant
with a gradual increase of the H3K4me3 mark, mostly at
promoter regions (39). The decreased H3K4me3 abundance
early-on at pro-inflammatory genes, including CCR2, IL-1β,
and TNF-α, is associated with reduced expression (39). In fact,
the increased ratio H3K4me1/H3K4me3 may also underlie the
impaired antigen-presenting functions of neonatal monocytes
(39). Interestingly, low levels of H3K4me3 at genes encoding
aerobic glycolysis pathways are also observed in neonatal
monocytes (40). Considering that a metabolic shift from
oxidative phosphorylation to glycolysis and/or lipid metabolism
is pivotal for the induction of immune response genes in
macrophages, these observations have important ramifications
for the increased susceptibility of neonates to infections. Another
study showed that monocytes derived from newborns born to
obese mothers display reduced LPS responsiveness, associated
with altered cytokine promoter methylation (41). In contrast,
CpG methylation patterns in cord blood NKs did not differ
from their adult counterparts (42). Pertinent to microRNAs, cord
blood monocytes have increased miR146a that represses TLR4
signaling and pro-inflammatory cytokine secretion (43).

Microbiome
The microbiome plays a catalytic role in the maturation of
neonatal immune responses. In fact, only during juvenility,
wherein the microbiome shifts to the adult composition, the
establishment of a fully-operating immune system occurs (44).
Microbial colonization was considered to occur during and
following delivery (44). However, bacterial DNA was recently
detected in the placental tissue and amniotic fluid, suggesting
that initiation of microbiome colonization occurs prenatally
(41, 45). Several prenatal and perinatal factors, including the
mode of delivery, antibiotics consumption and diet, shape the
microbial community, and consequently, the maturation of
neonatal immunity. The neonatal microbiome exhibits lower
diversity, compared to adults (44). Microbiota mainly consisting
of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria,
Enterobacteriaceae, and Bifidobacterium are essential for the
generation of an anaerobic environment in the neonatal intestine
and compete with pathogens for nutrients, pH, adhesion sites and
production of metabolites (44).

Experimental studies using germ-free mice demonstrated
that the microbiome affects macrophage development and
polarization, granulocyte numbers and haematopoiesis during
early life (46, 47). For example, the presence of Lactobacillus in
the maternal vagina correlates with IL-12 levels in neonatal cord
blood, while an inverse correlation exists between Bacteroides
fragilis and LPS-induced CCL4 and IL-6 production by
mononuclear cells (48). Decreased presence of the Bacteroidetes
phylum is also associated with lower plasma CXCL10 and
CXCL11 levels in infants (48).

Collectively, the aforementioned studies suggest that
epigenetic alterations and the microbiome composition greatly
affect neonatal innate immune responses; however, the precise
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immunological and molecular mechanisms involved remained
incompletely explored. Further animal studies and ex vivo
analyses of human clinical samples are needed to delineate these
intricate interactions and understand how they can be harnessed
for the enhancement of protective immunity in neonates.

Metabolome
The past years, there is an increasing interest in the analysis
of the metabolome of biological fluids, including the amniotic
fluid, the cord and the peripheral blood, the saliva, and the
urine in newborns (49). Neonates exhibit a constantly-changing
metabolomic profile that correlates with alterations in their
environment, diet and the microbiome. For example, glycine
is an essential amino acid that participates in glutathione
synthesis and protects against oxidative stress, promotes the
formation of purines, hemes, collagen and elastin, and enhances
neurotransmission (49). Glycine is increased in neonates, and
especially in preterms and/or newborns with intrauterine growth
restriction, compared to adults, a process possibly associated with
their enhanced metabolic demands (50). Choline, a precursor of
lipoproteins and phospholipids involved in neurotransmission,
is increased in neonates with cerebral damage and sepsis and
contributes to metabolic imbalance (51–53). In contrast, reduced
choline levels are detected in preterm and low birth-weight
neonates and associated with decreased survival and impaired
energy demands (54).

The interdependency of the microbiome, diet and the
metabolome is exemplified by the colonization of the neonatal
intestine early-on during development by the Bifidobacterium
species that plays a key role in the generation of oligosaccharides
through breastfeeding (55). Moreover, recent studies have shown
that the metabolome is significantly altered in germ-free mice
(56), while the administration of probiotics and prebiotics affect
metabolite composition (57, 58). The levels of gluconate, a
fundamental metabolite provided through glucose oxidation
or products of Enterococcus faecalis and Escherichia coli, are
enhanced in preterm neonates with necrotizing enterocolitis
(NEC), which are also characterized by an altered microbiome
composition (59, 60). Considering that the metabolomics field
is still in its infancy, further studies are required to delineate
its precise role in orchestrating innate immune responses in
neonates. Still, the generation of a metabolome “map” is
expected to significantly enhance the identification of new disease
biomarkers, provide crucial opportunities for early diagnosis
and facilitate the understanding of unknown aspects of the
neonatal physiology.

DYSREGULATION OF NEONATAL INNATE
IMMUNITY

Infections
Dysregulated innate immune responses render newborns
susceptible to severe infections. Neonatal sepsis occurs
predominantly in response to respiratory tract infections
and meningitis, and represents a major cause of morbidity
and mortality in the neonatal period, especially in very low
birth-weight preterm infants (61). In utero infection is a

significant risk factor for the development of early onset
(EOS) sepsis (61, 62). EOS and late-onset sepsis (LOS) are
characterized by differences in the time of infection and the way
of transmission (61, 62). Group B Streptococci and Escherichia
coli are predominantly involved in EOS, while Coagulase negative
Staphylococci is observed in LOS (63). Viral infections, including
HSV, enteroviruses, and parechoviruses, are also implicated in
EOS (61).

Accumulating evidence illuminates critical defects of
neonatal innate immunity during sepsis. Septic neonates
present deficiencies in the recognition of pathogen products,
including LPS, and in TNF-α, IFN-γ, IL-12 release that stem
on TLR (especially TLR4) defects and reduced intracellular
signaling by myeloid differentiation primary response protein
88 and MAPK p38 [(43); Figure 2 and Supplemental Table 1].
Moreover, preterms exhibit decreased LPS-induced TNF-α
release, while cDCs secrete reduced amounts of IL-12, compared
to non-septic preterms (5). In contrast, circulating IL-10
concentrations are elevated during EOS and LOS, enhancing
an immunosuppressive milieu and limiting the ability of
innate immune cells to eliminate pathogens (64). High levels
of plasma adenosine trigger intracellular accumulation of
immunosuppressive cAMP and further inhibit LPS-induced
cytokine production (65). C9 levels are approximately 50% of
their adult counterparts and linked to deficient opsonization
and bacterial killing (66). Reduced levels of opsonins, mannose-
binding lectin, bactericidal permeability-increasing protein and
human neutrophil peptide also correlate with a high incidence of
neonatal sepsis (5). Pertinent to cellular responses, macrophages
produce decreased levels of reactive nitrogen intermediates (67),
while monocytes express lower HLA-DR (11). Functional and
quantitative deficiencies of neonatal neutrophils also increase
the risk of development and dissemination of bacterial infections
(65). For example, deficient NET formation and NET-mediated
killing is observed during sepsis (68). Moreover, decreased
circulating levels of TNF-α, IFN-γ, IFN-α, and IL-12 during
neonatal sepsis impair NK cell-mediated cytotoxicity [(62, 69);
Figure 2 and Supplemental Table 1].

Strikingly, neonates can also exhibit exaggerated innate
immune responses that may lead to severe organ damage.
Indeed, systemic inflammation during neonatal infections is
closely linked to brain injury and neurological impairments
(70, 71). The levels of IL-6 (72), CXCL8 (73), and IFN-γ
(72) are elevated in the circulation of septic neonates and
correlate with disease severity, whereas TNF-α and IL-1β
production is more variable (74, 75). In chorioamnionitis,
occurring as a result of intra-uterine infection and/or sterile
inflammation, invasion of microorganisms or release of stress
factors (i.e., danger signals and alarmins) in the amniotic
cavity augments IL-1β, IL-6,TNF-α, CXCL8, and CXCL6
secretion and activates NLRP3 signaling (76, 77). This enhanced
chemotactic gradient stimulates neutrophilic infiltration from
the decidua into the chorioamniotic membranes and may lead to
necrotizing chorioamnionitis, premature rupture of membranes,
NEC, bronchopulmonary dysplasia, and periventricular
leukomalacia [(78); Figure 2 and Supplemental Table 1].
Aberrant macrophage activation is also implicated in this
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FIGURE 2 | Dysregulated neuro-immune communication underlies the pathology of infections and CNS disorders in neonates. Infections, such as chorioamnionitis,

dermatitis, meningitis, necrotizing enterocolitis, and respiratory infections, can lead to systemic inflammation and severe sepsis in newborns. Pathogen associated

molecular patterns (PAMPs), generated during infections, are recognized via PRRs by innate immune cells and this induces cell activation and the production of

pro-inflammatory mediators in the periphery and the CNS. On the other hand, maternal infections during pregnancy and/or EOS, and intrapartum asphyxia can induce

brain injury and HIE, respectively, and further activate innate immune responses. Dysregulated neuro-immune communications underlie the pathogenesis of systemic

infections and brain damage in neonates and may lead to neurodevelopmental and neuropsychiatric disorders.

exaggerated response (77). In the context of preterm labor
induced by chorioamnionitis, fetal inflammatory response
syndrome, severe dermatitis, and pneumonitis may be developed
(78). In contrast, chorioamnionitis is associated with a reduced
risk of LOS, possibly due to the establishment of innate immune
memory that enhances protective immunity upon subsequent
pathogen exposure (78).

Neurodevelopmental Disorders
Several molecules involved in innate immunity, including
cytokines, the complement cascade and adhesion molecules, are
expressed in the healthy brain wherein they play essential roles in
neurogenesis, migration, differentiation, synapse formation, and
plasticity (79, 80). Still, dysregulated expression of these factors
during early life can have deleterious consequences on brain
development and function.

Intrapartum asphyxia causes hypoxia-ischemia (HI) which
induces long-term neurological disorders, including cerebral
palsy, visual impairment, seizures, epilepsy, mental retardation,
and learning disabilities (81). Neonatal hypoxic-ischemic
encephalopathy (HIE) is characterized by extensive neuronal
cell death (81). Danger signals derived from dead and/or
apoptotic neurons, including IL-33, high-mobility group
protein B1 and ATP, are recognized by microglia, astrocytes
and perivascular macrophages and induce their activation and
release of pro-inflammatory cytokines, chemokines, nitric oxide
synthase, ROS and excitatory amino acids (82). Furthermore,
TNF-α, IL-6, IL-1β, and IL-12 release increase the blood-brain
barrier permeability, augmenting the infiltration of DCs, and
monocytes/macrophages into the brain (2). IL-6R, IL-1βR,

and IL-18R activation in brain endothelial cells also increases
production of TNF-α, activator protein 1 and prostaglandins
(82). Altogether, these factors alter neuronal excitability and
neurotransmitter function as they induce an imbalance in
gamma-aminobutyric acid and glutamate, promoting long-term
defects on synapse formation and neurogenesis (73, 74, 77).
Newborns with HIE have elevated expression of TNF-α and
IL-1β in the serum and cerebrospinal fluid (CSF), which
correlate with brain injury severity (83). CXCL8 and IL-6 are
also increased in the blood and CSF during perinatal asphyxia
and correlate with HIE severity and neurological outcome
(83–85). IL-10 is higher in the serum of asphyxiated neonates,
while enhanced neutrophilic infiltration during the first 96 h is
associated with poor neurodevelopmental outcomes [(86, 87);
Figure 2 and Supplemental Table 1].

Autism spectrum disorders (ASD), Alzheimer’s disease, major
depression and schizophrenia, are considered as closely linked to
three interrelated mechanisms; (a) dysregulated neuro-immune
communication, (b) dysbiosis of the gut microbiome, and
(c) early-life infections (3, 4, 88, 89). Animal studies have
demonstrated that maternal viral infections during gestation,
along with aberrant activation of innate immunity, have a long-
lasting impact on offspring brain development and anxiety
behavior, often in a sex-dependent manner, due to the activation
of the hypothalamic-pituitary-adrenal axis (90). Children with
ASD exhibit impaired NK cytotoxicity (91) and elevated
production of TNF-α, IL-2, CXCL8, and IL-6 in the CSF (92).
CCL2 and CCL5 are also increased in the brain of autistic
children and associated with microglial activation and behavioral
changes (92, 93). Increased IL-1β and IL-4 are associated with
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severe ASD (94), while IL-10 and TGF-β are decreased in the
circulation (95). In contrast, neuroprotective factors, including
brain-derived neurotrophic factor and Bcl-2, are decreased in
ASD children [(96, 97); Figure 2 and Supplemental Table 1].
Interestingly, newborns with sepsis exhibit an increased risk
of brain injury compared to those with chorioamnionitis,
suggesting that similar to its protective effects on subsequent
infections, chorioamnionitis preconditions the developing brain
against subsequent injury induced by HI (98).

DISCUSSION

It is becoming increasingly clear that the development of
immune responses in neonates is compromised not only as
a result of immaturity but also as an attempt to maintain
tolerance to innocuous and commensal antigens and prevent
tissue damage. Still, once neonatal immune responses are
activated, their magnitude is often such that they can cause
severe immune pathology and morbidity, especially during
infections and HI (Figure 2 and Supplemental Table 1). Hence,
the provision of broadly-active innate immune stimuli during
early life may protect against the detrimental consequences of
uncontrolled inflammation, concomitant with the establishment
of protective immunity. Vaccine-induced immune responses
in neonates are impaired in terms of quantity and quality
and multiple boosters are required to promote immunological
memory (99, 100). On the other hand, vaccination with
Bacille Calmette-Guerin (BCG) decreases neonatal mortality
caused by infections by promoting heterologous lymphocyte
activation against antigenically diverse and unrelated pathogens
and through enhancing innate immune memory (101). Still,
apart from BCG, hepatitis B and oral poliovirus, there are
no other vaccines given after birth, highlighting a critical
unmet need for this vulnerable young population (99, 102).
It becomes evident that future studies should focus on
enhancing vaccine effectiveness through stimulation of innate
immune responses, for example, via administration of synthetic
TLR8 agonists, including imidazoquinolines and single-stranded
RNAs (99, 100). Alternatively, targeting TLR-independent
pathways and bypassing immunosuppressive networks can

also boost protective immunity without compromising crucial
homeostatic functions.

Intricate interactions between the microbiome and the
nervous and the immune systems affect neonatal responses
during infections and brain injury. As such, alterations
in the microbial composition, for example through
dietary supplementation, may modulate key pathways of
neuroimmune communication and enhance regulatory
mechanisms that prevent neuronal damage. Interventions,
including corticosteroids, melatonin, erythropoietin, anti-
TNF-α antibodies, and IL-1rα administration, in clinical use
for other diseases, may be also utilized for the control of
neurological disorders in susceptible neonates (103–107).
Finally, advances in systems-based approaches, including high-
resolution genomic, proteomic, and metabolomic technologies
are expected to provide new insight into the mechanisms
underlying gut, brain and immune system interactions, and
guide the development of more accurate diagnostic tests and
therapeutic interventions.
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