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Influenza and pneumonia independently lead to high morbidity and mortality annually among the human population globally;
however, a glaring fact is that influenza pneumonia coinfection is more vicious and it is a threat to public health. Emergence of
antiviral resistance is a major impediment in the control of the coinfection. In this paper, a deterministic mathematical model
illustrating the transmission dynamics of influenza pneumonia coinfection is formulated having incorporated antiviral resistance.
Optimal control theory is then applied to investigate optimal strategies for controlling the coinfection using prevalence reduction
and treatment as the system control variables. Pontryagin’s maximum principle is used to characterize the optimal control. The
derived optimality system is solved numerically using the Runge–Kutta-based forward-backward sweep method. Simulation
results reveal that implementation of prevention measures is sufficient to eradicate influenza pneumonia coinfection from a given
population. The prevention measures could be social distancing, vaccination, curbing mutation and reassortment, and curbing
interspecies movement of the influenza virus.

1. Introduction

Clinical evidence points out that infection with a par-
ticular combination of pathogens results in an aggravated
infection with more severe clinical outcome compared
with infection with either pathogen alone [1]. This is
specially true for influenza virus and bacterium Strepto-
coccus pneumoniae [2–4]. Influenza and pneumonia each
contributes greatly to the global burden of morbidity and
leads to high death toll, typically over a relatively short
period of time [5–8]. Streptococcus pneumoniae, Hae-
mophilus influenzae, and Staphylococcus aureus are the
most common causes of pneumonia, the chief being
Streptococcus pneumoniae [9, 10]. Coinfection resulting

from influenza virus and Streptococcus pneumoniae fur-
ther increases morbidity and mortality and is a major
public health concern. These two pathogens rank among
the chief pathogens affecting humans, and their ability to
work together presents a major threat to world health [11].
Coinfection greatly impairs the host’s immune system,
increases antibacterial therapy intolerance, and can be
detrimental to the diagnosis of the disease [12]. According
to [13], it can be difficult to identify influenza patients
experiencing bacterial coinfections due to symptom
overlap of influenza and bacterial infections. In [14], it is
indicated that a strong index of suspicion and additional
diagnostic testing may be required for diagnosis and
treatment of the infections.
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The morbidity, mortality, and economic burden
resulting from the lethal synergism that exists between in-
fluenza virus and pneumococcus are of major concern
globally. The catastrophic 1918 influenza pandemic is an
extreme example of the impact that results from this co-
operative interaction [11]. Lung tissue samples examined
from those who died during this pandemic revealed that the
majority of deaths were as a result of secondary bacterial
pneumonia. Data from the subsequent 1957, 1968, and 2009
influenza pandemics are consistent with these findings
[15, 16]. In addition, during seasonal influenza outbreaks,
coinfections resulting from influenza and Streptococcus
pneumoniae have been associated with high morbidity and
mortality rates [17–19]. According to [11], influenza virus
alters the lungs in such a way that predisposes them to
invasion by pneumococcus rendering a mild influenza in-
fection severe or even fatal. This could be through several
ways such as epithelial damage, changes in airway function,
upregulation and exposure of receptors, dampening of the
immune response, or amplification of inflammation. Several
studies have been carried out to investigate the time course
of susceptibility to Streptococcus pneumoniae after influenza
virus infection. Results revealed that on average, individuals
developed coinfection within 6 days after influenza virus
infection [20–23].

Emergence of drug resistance, which has become a global
concern, complicates influenza pneumonia coinfection even
more. Drug resistance refers to the ability of disease-causing
agents to resist the effects of drugs, thereby making the
conventional treatment procedure ineffective. This leads to
persistence of infections in the body, hence increasing the
risk of spread to other individuals [24, 25]. The evolution of
drug resistance is accelerated by overuse and misuse of
antimicrobials, inappropriate use of antimicrobials, sub-
therapeutic dosing, and patient noncompliance with the
recommended course of treatment [26]. There are two
classes of antiviral drugs that are approved to treat influenza
infections; these are M2 ion-channel inhibitors and neur-
aminidase (NA) inhibitors. However, due to antiviral drug
resistance in influenza virus, neuraminidase (NA) inhibitors
are the only class of antiinfluenza drugs currently in use as
most of the circulating influenza viruses have acquired re-
sistance to M2 ion-channel inhibitors [27, 28]. Moreover,
many circulating influenza viruses have also acquired re-
sistance to neuraminidase (NA) inhibitors [28, 29] raising an
alarm in the health sector. Drug resistance continues to
threaten effective prevention and treatment of influenza
pneumonia coinfection. In addition, the cost of health care
for patients with resistant infections is much higher than
care for patients with nonresistant infections especially due
to longer duration of illness.

Strategies such as vaccination, isolation, and treatment
among others are necessary in order to curb the spread of
various infectious diseases. However, if they are not ad-
ministered at the right time and in the right amount,

curtailing the spread of the infectious diseases remains a
difficult task. The application of optimal control is therefore
very vital since it is a necessary tool in making decisions of
the viable control strategies to be employed in eradicating
diseases. Optimal control theory has been applied in the
study of influenza, for instance, in [30–34], and in the study
of pneumonia, for instance, in [35]. Given that influenza
pneumonia coinfection is more disastrous than either of the
single infections alone, this paper seeks to investigate op-
timal control strategies for the influenza pneumonia coin-
fection and in the emergence of antiviral resistance.

2. Model Formulation

The model presented in this paper has the total population
subdivided into eight compartments. These are susceptible
(S), infected with wild-type influenza strain (Iw), infected
with resistant influenza strain (IR), infected with both wild-
type influenza strain and pneumonia (Iwp), infected with
both resistant influenza strain and pneumonia (IRp), re-
covered from influenza (Rz), recovered from pneumonia
(Rp), and recovered from both influenza and pneumonia
(Rzp). In the model, individuals are first infected with in-
fluenza virus and then contract bacterial pneumonia. An
assumption is made that there is no primary bacterial
pneumonia infection. Individuals enter the population via
immigration at the rate of π, and all recruited individuals are
assumed to be susceptible.The susceptible can either become
infected with wild-type influenza strain or resistant influenza
strain at the rates of λ1 and λ2, respectively, where λ1 �

βw(Iw + η1Iwp), while λ2 � βr(IR + η2IRp), where βr �

f(βr, b), in which parameter b refers to the rate of devel-
oping drug resistance while parameters βw and βr refer to the
transmission rate of wild-type strain and resistant strain,
respectively. Parameters η1 and η2 are modification pa-
rameters accounting for the relative infectiousness of in-
dividuals in Iwp and IRp classes in comparison with those in
Iw and IR, respectively. Those infected with influenza wild-
type strain can recover at a rate of α1 while those infected
with influenza resistant strain recover at the rate of α2. The
model incorporates development of antiviral resistance;
hence, individuals infected with influenza wild-type strain
progress to the IR class at a rate of b. Those infected with
influenza wild-type strain and those infected with influenza
resistant strain can contract secondary bacterial pneumonia
at the rate of λ3 with the force of infection of pneumonia
being βp(Iwp + IRp). Parameter βp refers to the transmission
rate of pneumonia. Individuals in Iw and IR classes also
suffer disease-induced death at the rates of δ1 and δ2, re-
spectively. Individuals infected with both the wild-type
influenza strain and pneumonia and those infected with
both resistant strain and pneumonia can recover from either
influenza alone at rates of α3 and α4, respectively, or
pneumonia alone at rates of ϕ1 and ϕ2, respectively, or
recover from both influenza and pneumonia at rates of ω1
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and ω2, respectively. This means that the Rz class contains
some individuals from Iwp and IRp classes that have only
recovered from influenza but may still have pneumonia. Rz

class is however considered noninfectious given that bac-
terial pneumonia is considered weakly infectious after an-
timicrobials are administered. On the other hand, the Rp

class contains some individuals from Iwp and IRp classes that
have only recovered from pneumonia but may still have
influenza. Given that the infectious period of influenza is
about seven days after symptoms onset, Rp is considered
noninfectious. Individuals in Iwp and IRp suffer disease-
induced death at the rate of δ3 and δ4, respectively. Those
infected with both wild-type influenza strain and pneumonia
could also develop antiviral resistance and progress to IRp

class at a rate of b. Individuals who have recovered from
influenza, pneumonia, and both influenza and pneumonia
lose their immunity and become susceptible again at rates of
ϑ1, ϑ2, and ϑ3, respectively. Individuals in all the epidemi-
ological compartments suffer natural death at the rate of μ.
Figure 1 shows the population flow between the different
compartments.

2.1. Model Equations. Given the dynamics described in
Figure 1, the following system of nonlinear ordinary dif-
ferential equations, with nonnegative initial conditions,
describes the dynamics of influenza pneumonia
coinfection:

dS

dt
� π + ϑ1Rz(t) + ϑ2Rp(t) + ϑ3Rzp(t) − λ1 + λ2 + μ( 􏼁S(t)

dIw

dt
� λ1S(t) − λ3 + b + α1 + μ + δ1( 􏼁Iw(t)

dIR

dt
� λ2S(t) + bIw(t) − λ3 + α2 + μ + δ2( 􏼁IR(t)

dIwp

dt
� λ3Iw(t) − α3 + ϕ1 + ω1 + b + μ + δ3( 􏼁Iwp(t)

dIRp

dt
� λ3IR(t) + bIwp(t) − α4 + ϕ2 + ω2 + μ + δ4( 􏼁IRp(t)

dRz

dt
� α1Iw(t) + α2IR(t) + α3Iwp(t) + α4IRp(t) − ϑ1 + μ( 􏼁Rz(t)

dRp

dt
� ϕ1Iwp(t) + ϕ2IRp(t) − ϑ2 + μ( 􏼁Rp(t)

dRzp

dt
� ω1Iwp(t) + ω2IRp(t) − ϑ3 + μ( 􏼁Rzp(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

where

λ1 � βw Iw + η1Iwp􏼐 􏼑,

λ2 � βr IR + η2IRp􏼐 􏼑,

λ3 � βp Iwp + IRp􏼐 􏼑.

(2)

We assume that all the model parameters are positive
and the initial conditions of model system (1) are given by

S(0)> 0,

Iw(0)≥ 0,

IR(0)≥ 0,

Iwp(0)≥ 0,

IRp(0)≥ 0,

Rz(0)≥ 0,

Rp(0)≥ 0,

Rzp(0)≥ 0.

(3)
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Table 1 gives the description of the various parameters
used in the model.

3. Coinfection Model with Controls

In order to identify optimal control strategies that mini-
mize the number of infected individuals and the cost of
implementing the controls, a mathematical optimal control
problem is formulated and analysed. Influenza pneumonia
coinfection model (1) is extended to include time-depen-
dent control measures. Let ui(t), i � 1, 2, 3, 4, 5, represent
the time-dependent controls whereby controls u1(t), u2(t),
and u3(t) relate to prevalence reduction of wild-type in-
fluenza strain, resistant influenza strain, and pneumonia,
respectively. The infection prevalence reduction could be
through social distancing, vaccination, curbing mutation

and reassortment, and curbing interspecies movement of
the influenza virus. Controls u4(t) and u5(t) relate to
treatment of the wild-type and resistant influenza strains,
respectively.

Time is specified and is given by t ∈ [0, T], where T is the
final time. Given that there is a limitation on the maximum
rate of treatment and prevalence reduction controls,
bounded Lebesgue measurable control set is introduced and
defined as

U � u1, u2, u3, u4, u5( 􏼁, 0≤ ui ≤ ui max , i � 1, 2, 3, 4, 5􏼈 􏼉.

(4)

To identify the required level of effort to control the
infection, an objective functional to be minimized is given
by

S
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Figure 1: Schematic diagram showing population flow between different epidemiological classes for influenza pneumonia coinfection.

Table 1: Description of parameters used.

Parameters Description
π Recruitment rate
βw Transmission rate of wild-type influenza strain
βr Transmission rate of resistant influenza strain
βp Transmission rate of pneumonia
α1 Recovery rate of influenza for individuals in Iw class
α2 Recovery rate of influenza for individuals in IR class
α3 Recovery rate of influenza for individuals in Iwp class
α4 Recovery rate of influenza for individuals in IRp class
ϕ1 Recovery rate of pneumonia for individuals in Iwp class
ϕ2 Recovery rate of pneumonia for individuals in IRp class
ω1 Recovery rate of both influenza and pneumonia for individuals in Iwp class
ω2 Recovery rate of both influenza and pneumonia for individuals in IRp class
ϑ1, ϑ2, ϑ3 Rate of losing immunity for influenza, pneumonia, and influenza and pneumonia, respectively
b Rate of developing antiviral resistance
δ1, δ2, δ3, δ4 Disease-induced death rates in Iw,IR,Iwp, and IRp classes, respectively
μ Natural death rate
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J u1, u2, u3, u4, u5( 􏼁

� 􏽚
T

0
A1Iw + A2IR + A3Iwp + A4IRp +

1
2

􏽘

5

i�1
qiu

2
i

⎛⎝ ⎞⎠dt,

(5)

subject to the differential system:

dS

dt
� π + ϑ1Rz(t) + ϑ2Rp(t) + ϑ3Rzp(t) − 1 − u1( 􏼁λ1 + 1 − u2( 􏼁λ2 + μ( 􏼁S(t)

dIw

dt
� 1 − u1( 􏼁λ1S(t) − 1 − u3( 􏼁λ3Iw(t) − α1 + u4( 􏼁Iw(t) − b + μ + δ1( 􏼁Iw(t)

dIR

dt
� 1 − u2( 􏼁λ2S(t) + bIw(t) − 1 − u3( 􏼁λ3IR(t) − α2 + u5( 􏼁IR(t) − μ + δ2( 􏼁IR(t)

dIwp

dt
� 1 − u3( 􏼁λ3Iw(t) − α3 + ϕ1 + ω1 + b + μ + δ3( 􏼁Iwp(t)

dIRp

dt
� 1 − u3( 􏼁λ3IR(t) + bIwp(t) − α4 + ϕ2 + ω2 + μ + δ4( 􏼁IRp(t)

dRz

dt
� α1 + u4( 􏼁Iw(t) + α2 + u5( 􏼁IR(t) + α3Iwp(t) + α4IRp(t) − ϑ1 + μ( 􏼁Rz(t)

dRp

dt
� ϕ1Iwp(t) + ϕ2IRp(t) − ϑ2 + μ( 􏼁Rp(t)

dRzp

dt
� ω1Iwp(t) + ω2IRp(t) − ϑ3 + μ( 􏼁Rzp(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

The coefficients A1, A2, A3, and A4 represent the costs
associated with minimizing the infected population. On the
other hand, the expression 1/2qiu

2
i represents costs associ-

ated with controls ui, i � 1, 2, 3, 4, 5. Quadratic expressions
of the cost of controls are considered because costs follow a
nonlinear representation especially at high intervention
levels. The objective of minimizing the infected population
and the cost of controls can be achieved through proper
implementation of the controls over a time interval given by

[0, T]. Therefore, we seek an optimal control set (u∗1 , u∗2 ,

u∗3 , u∗4 , u∗5 ) such that

J u
∗
1 , u
∗
2 , u
∗
3 , u
∗
4 , u
∗
5( 􏼁 � min

u1 ,u2 ,u3 ,u4 ,u5
J u1, u2, u3, u4, u5( 􏼁􏼈 􏼉.

(7)

The necessary conditions for the existence of an optimal
solution come from Pontryagin’s Maximum Principle [36].
This principle converts (5)–(6) into a problem of minimizing
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pointwise HamiltonianH, with respect to (u1, u2, u3, u4, u5),
and is obtained as

H � A1Iw + A2IR + A3Iwp + A4IRp +
1
2

q1u
2
1 +

1
2

q2u
2
2 +

1
2

q3u
2
3 +

1
2

q4u
2
4 +

1
2

q5u
5
1

+ p1(t) π + ϑ1Rz(t) + ϑ2Rp(t) + ϑ3Rzp(t) − 1 − u1( 􏼁λ1 + 1 − u2( 􏼁λ2 + μ( 􏼁S(t)􏽮 􏽯

+ p2(t) 1 − u1( 􏼁λ1S(t) − 1 − u3( 􏼁λ3Iw(t) − α1 + u4( 􏼁Iw(t) − b + μ + δ1( 􏼁Iw(t)􏼈 􏼉

+ p3(t) 1 − u2( 􏼁λ2S(t) + bIw(t) − 1 − u3( 􏼁λ3IR(t) − α2 + u5( 􏼁IR(t) − μ + δ2( 􏼁IR(t)􏼈 􏼉

+ p4(t) 1 − u3( 􏼁λ3Iw(t) − α3 + ϕ1 + ω1 + b + μ + δ3( 􏼁Iwp(t)􏽮 􏽯

+ p5(t) 1 − u3( 􏼁λ3IR(t) + bIwp(t) − α4 + ϕ2 + ω2 + μ + δ4( 􏼁IRp(t)􏽮 􏽯

+ p6(t) α1 + u4( 􏼁Iw(t) + α2 + u5( 􏼁IR(t) + α3Iwp(t) + α4IRp(t) − ϑ1 + μ( 􏼁Rz(t)􏽮 􏽯

+ p7(t) ϕ1Iwp(t) + ϕ2IRp(t) − ϑ2 + μ( 􏼁Rp(t)􏽮 􏽯

+ p8(t) ω1Iwp(t) + ω2IRp(t) − ϑ3 + μ( 􏼁Rzp(t)􏽮 􏽯

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)

where pi(t), i � 1, . . . , 8 are the corresponding adjoint or
costate variables to be determined by applying Pontryagin’s
Maximum Principle as in Theorem 1.

Theorem 1. Given optimal control set (u∗1 , u∗2 , u∗3 , u∗4 , u∗5 )

and the corresponding solutions S∗∗, I∗∗w , I∗∗R , I∗∗wp,I∗∗Rp,

R∗∗z , R∗∗p , andR∗∗zp of system (6) that minimizes J(u1,

u2, u3, u4, u5) over U, there exist adjoint variables pi,

i � 1, . . . , 8, such that

dp1

dt
� −

zH

zS
,

dp2

dt
� −

zH

zIw

,

dp3

dt
� −

zH

zIR

,

dp4

dt
� −

zH

zIwp

,

dp5

dt
� −

zH

zIRp

,

dp6

dt
� −

zH

zRz

,

dp7

dt
� −

zH

zRp

,

dp8

dt
� −

zH

zRzp

,

(9)

with transversality condition pi(T) � 0 for i � 1, . . . , 8.
Evaluating (9) leads to the following adjoint system:
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dp1

dt
� −p1 −μ − 1 − u2( 􏼁βR IR + η2IRp􏼐 􏼑 − 1 − u1( 􏼁βw Iw + η1Iwp􏼐 􏼑􏼐 􏼑 −

p3 1 − u2( 􏼁βR IR + η2IRp􏼐 􏼑 − p2 1 − u1( 􏼁βw Iw + η1Iwp􏼐 􏼑,

dp2

dt
� −A1 − p2 −α1 − b − δ1 − μ − 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 + 1 − u1( 􏼁βwS − u4􏼐 􏼑 − bp3

+ p1 1 − u1( 􏼁βwS − p6 α1 + u4( 􏼁 − p4 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑,

dp3

dt
� −A2 − p3 −α2 − δ2 − μ − 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 + 1 − u2( 􏼁βRS − u5􏼐 􏼑 +

p1 1 − u2( 􏼁βRS − p5 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 − p6 α2 + u5( 􏼁,

dp4

dt
� −A3 − p5 b + 1 − u3( 􏼁βpIR􏼐 􏼑 − p4 −α3 − b − δ3 − μ + 1 − u3( 􏼁βpIw − ω1 − ϕ1􏼐 􏼑

− α3p6 + p3 1 − u3( 􏼁βpIR + p1βwη1S 1 − u1( 􏼁 − p2 βwη1S 1 − u1( 􏼁 − 1 − u3( 􏼁βpIw􏼐 􏼑 − p8ω1 − p7ϕ1

dp5

dt
� −A4 − α4p6 + βRη2p1S 1 − u2( 􏼁 − p3 βRη2S 1 − u2( 􏼁 − 1 − u3( 􏼁βpIR􏼐 􏼑 + p2 1 − u3( 􏼁βpIw

−p5 −α4 − δ4 − μ + 1 − u3( 􏼁βpIR − ω2 − ϕ2􏼐 􏼑 − p4 1 − u3( 􏼁βpIw − p8ω2 − p7ϕ2

dp6

dt
� −p6 −μ − ϑ1( 􏼁 − p1ϑ1

dp7

dt
� −p7 −μ − ϑ2( 􏼁 − p1ϑ2

dp8

dt
� −p8 −μ − ϑ3( 􏼁 − p1ϑ3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (10)

Following the results in [37, 38], the existence of optimal
control is stated and proved using Theorem 2.

Theorem  . There exists optimal controls (u∗1 , u∗2 , u∗3 , u∗4 , u∗5 )

which minimizes J over the region U satisfying the optimality
condition:

u
∗
1 � min max 0, u1􏼈 􏼉, u1 max􏼈 􏼉,

u
∗
2 � min max 0, u2􏼈 􏼉, u2 max􏼈 􏼉,

u
∗
3 � min max 0, u3􏼈 􏼉, u3 max􏼈 􏼉,

u
∗
4 � min max 0, u4􏼈 􏼉, u4 max􏼈 􏼉,

u
∗
5 � min max 0, u5􏼈 􏼉, u5 max􏼈 􏼉,

(11)

where

u1 �
βwS∗∗( 􏼁 p2 − p1( 􏼁 I∗∗w + η1I∗∗wp􏼐 􏼑

q1
,

u2 �
βRS∗∗􏼐 􏼑 p3 − p1( 􏼁 I∗∗R + η2I∗∗Rp􏼐 􏼑

q2
,

u3 �
βp I∗∗wp + I∗∗Rp􏼐 􏼑I∗∗w p4 − p2( 􏼁 + p5 − p3( 􏼁βp I∗∗wp + I∗∗Rp􏼐 􏼑I∗∗R

q3
,

u4 �
p2 − p6( 􏼁I∗∗w

q4
,

u5 �
p3 − p6( 􏼁I∗∗R

q5
.

(12)
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Proof. The Hamiltonian H is minimized with respect to the
controls u1, u2, u3, u4, and u5 at the optimal control func-
tions. This is done by differentiating the Hamiltonian
function H with respect to each of the control variables on
the set U; that is,

zH

zui

� 0. (13)

The following set of optimality conditions is thus
obtained:

zH

zu1
� p1S

∗∗βw I
∗∗
w + η1I

∗∗
wp􏼐 􏼑 − p2S

∗∗βw I
∗∗
w + η1I

∗∗
wp􏼐 􏼑 + q1u1 � 0,

zH

zu2
� p1S

∗∗βR I
∗∗
R + η2I

∗∗
Rp􏼐 􏼑 − p3S

∗∗βR I
∗∗
R + η2I

∗∗
Rp􏼐 􏼑 + q2u2 � 0,

zH

zu3
� p3βpI

∗∗
R I
∗∗
wp + I

∗∗
Rp􏼐 􏼑 − p5βpI

∗∗
R I
∗∗
wp + I

∗∗
Rp􏼐 􏼑 + p2βpI

∗∗
w I
∗∗
wp + I

∗∗
Rp􏼐 􏼑

− p4βpI
∗∗
w I
∗∗
wp + I

∗∗
Rp􏼐 􏼑 + q3u3 � 0,

zH

zu4
� −p2I

∗∗
w + p6I

∗∗
w + q4u4 � 0,

zH

zu5
� −p3I

∗∗
R + p6I

∗∗
R + q5u5 � 0,

(14)

at u1 � u∗1 , u2 � u∗2 , u3 � u∗3 , u4 � u∗4 , and u5 � u∗5 , respec-
tively. Solving for u∗1 , u∗2 , u∗3 , u∗4 , and u∗5 and using the
bounds for the controls in U, that is,

u
∗
i �

0, if ui ≤ 0,

ui, if 0< ui < ui max

ui max , if ui ≥ ui max

⎧⎪⎪⎨

⎪⎪⎩
(15)

in compact notation yields,

u
∗
1 � min max 0,

βwS∗∗ p2 − p1( 􏼁 I∗∗w + η1I∗∗wp􏼐 􏼑

q1

⎛⎝ ⎞⎠, u1 max
⎧⎨

⎩

⎫⎬

⎭,

u
∗
2 � min max 0,

βRS∗∗ p3 − p1( 􏼁 I∗∗R + η2I∗∗Rp􏼐 􏼑

q2

⎛⎝ ⎞⎠, u2 max
⎧⎨

⎩

⎫⎬

⎭,

u
∗
3 � min max 0,

βp I∗∗wp + I∗∗Rp􏼐 􏼑I∗∗w p4 − p2( 􏼁 + p5 − p3( 􏼁βp I∗∗wp + I∗∗Rp􏼐 􏼑I∗∗R

q3

⎛⎝ ⎞⎠, u3 max
⎧⎨

⎩

⎫⎬

⎭,

u
∗
4 � min max 0,

p2 − p6( 􏼁I∗∗w
q4

􏼠 􏼡, u4 max􏼨 􏼩,

u
∗
5 � min max 0,

p3 − p6( 􏼁I∗∗R
q5

􏼠 􏼡, u5 max􏼨 􏼩.

(16)
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Next, the optimality system is obtained as

dS

dt
� π + ϑ1Rz + ϑ2Rp + ϑ3Rzp − 1 − u

∗
1( 􏼁λ1 + 1 − u

∗
2( 􏼁λ2 + μ( 􏼁S,

dIw

dt
� 1 − u

∗
1( 􏼁λ1S − 1 − u

∗
3( 􏼁λ3Iw − α1 + u

∗
4( 􏼁Iw − b + μ + δ1( 􏼁Iw,

dIR

dt
� 1 − u

∗
2( 􏼁λ2S + bIw − 1 − u

∗
3( 􏼁λ4IR − α2 + u

∗
5( 􏼁IR − μ + δ2( 􏼁IR,

dIwp

dt
� 1 − u

∗
3( 􏼁λ3Iw − α3 + ϕ1 + ω1 + b + μ + δ3( 􏼁Iwp,

dIRp

dt
� 1 − u

∗
3( 􏼁λ4IR + bIwp − α4 + ϕ2 + ω2 + μ + δ4( 􏼁IRp,

dRz

dt
� α1 + u

∗
4( 􏼁Iw + α2 + u

∗
5( 􏼁IR + α3Iwp + α4IRp − ϑ1 + μ( 􏼁Rz,

dRp

dt
� ϕ1Iwp + ϕ2IRp − ϑ2 + μ( 􏼁Rp,

dRzp

dt
� ω1Iwp + ω2IRp − ϑ3 + μ( 􏼁Rzp,

dp1

dt
� −p1 −μ − 1 − u2( 􏼁βR IR + η2IRp􏼐 􏼑 − 1 − u1( 􏼁βw Iw + η1Iwp􏼐 􏼑􏼐 􏼑

− p3 1 − u2( 􏼁βR IR + η2IRp􏼐 􏼑 − p2 1 − u1( 􏼁βw Iw + η1Iwp􏼐 􏼑,

dp2

dt
� −A1 − p2 −α1 − b − δ1 − μ − 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 + 1 − u1( 􏼁βwS − u4􏼐 􏼑 − bp3

+ p1 1 − u1( 􏼁βwS − p6 α1 + u4( 􏼁 − p4 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑,

dp3

dt
� −A2 − p3 −α2 − δ2 − μ − 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 + 1 − u2( 􏼁βRS − u5􏼐 􏼑

+ p1 1 − u2( 􏼁βRS − p5 1 − u3( 􏼁βp Iwp + IRp􏼐 􏼑 − p6 α2 + u5( 􏼁,

dp4

dt
� −A3 − p5 b + 1 − u3( 􏼁βpIR􏼐 􏼑 − p4 −α3 − b − δ3 − μ + 1 − u3( 􏼁βpIw − ω1 − ϕ1􏼐 􏼑 − α3p6

+ p3 1 − u3( 􏼁βpIR + p1βwη1S 1 − u1( 􏼁 − p2 βwη1S 1 − u1( 􏼁 − 1 − u3( 􏼁βpIw􏼐 􏼑 − p8ω1 − p7ϕ1,

dp5

dt
� −A4 − α4p6 + βRη2p1S 1 − u2( 􏼁 − p3 βRη2S 1 − u2( 􏼁 − 1 − u3( 􏼁βpIR􏼐 􏼑 + p2 1 − u3( 􏼁βpIw

− p5 −α4 − δ4 − μ + 1 − u3( 􏼁βpIR − ω2 − ϕ2􏼐 􏼑 − p4 1 − u3( 􏼁βpIw − p8ω2 − p7ϕ2,

dp6

dt
� −p6 −μ − ϑ1( 􏼁 − p1ϑ1,

dp7

dt
� −p7 −μ − ϑ2( 􏼁 − p1ϑ2,

dp8

dt
� −p8 −μ − ϑ3( 􏼁 − p1ϑ3.

(17)
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with pi(T) � 0 for i � 1, . . . , 8 and S(0) � S0, Iw(0) � Iw0,

IR(0) � IR0, Iwp(0) � Iwp0, IRp(0) � IRp0, Rz(0) � Rz0,

Rp(0) � Rp0, andRzp(0) � Rzp0. □

4. Numerical Simulation

In this section, the optimal solution of optimality system (17)
is investigated. Given that there are initial conditions for the
state variables and terminal conditions for the adjoints, the
optimality system is a two-point boundary value problem
with separated boundary conditions at times t � 0 and t � T.
The forward-backward sweepmethod described in [39, 40] is
hence used for the numerical solution of the optimal control
problem. The method is named based on how the algorithm
solves the problem’s state and adjoint equations. The state
variables are solved using the forward difference scheme
while the adjoint variables are solved using the backward
difference scheme. The solution iterative scheme makes an
initial guess of the controls and using that guess solves the
state system forward in time using a 4th-order Runge–Kutta
scheme. Next, using the stored values of the controls and the
solution of the state system, the adjoint system is solved
backward in time using a 4th-order Runge–Kutta scheme.
The RK4 method has to be adapted to account for solving
backward in time. The controls are then updated using a
convex combination of the previous controls and the values
obtained using the characterizations. The updated controls
are then used to repeat the solution of the state and adjoint
systems. This process is repeated with values in the current
iteration being tested for convergence against a user pro-
vided tolerance and depending on that, the algorithm either
starts the process over again using the updated control or the
algorithm terminates. The final approximations for the
control, state, and adjoint systems are considered to be the
solution to the optimal control problem.

4.1. Simulation Results. The numerical simulations were
carried out using the MATLAB software and the parameter
values in Table 2. There is however paucity of published
estimates of morbidity and mortality rates resulting from
influenza pneumonia coinfection in the middle- and low-
income countries. On the other hand, in high-income,
temperate countries where influenza surveillance has been
done for years, these rates are well documented [47]; hence
the data used in this research study are from these countries.
The population under consideration is children <5 years
and adults >60 years. Studies show that influenza pneu-
monia coinfection affects people of all ages; however, the
morbidity and mortality rates of the high risk group which
includes the immunocompromised, children <5 years, and
adults >60 years are disproportionately high [9, 47, 48].

Most of the parameter values have a range as indicated in
the references given in Table 2. Given that this research study
focuses on a deterministic mathematical model to give an
indication of the likely dynamics of influenza pneumonia
coinfection, baseline parameter values were used for the
simulations.

4.1.1. Control by Treatment Only. Figures 2 and 3 show the
effect of using treatment efforts only in an attempt to curb
the spread of influenza pneumonia coinfection.

From Figure 2, it can be observed that with and without
the treatment efforts, the wild-type influenza and pneu-
monia coinfection persists in the population.

Without any controls, it can be observed from Figure 3
that the number of individuals coinfected with resistant
influenza and pneumonia increases initially and then de-
creases slowly but not to zero. With the treatment control
strategies in place, the number of the infected individuals is
lower but not significant and does not decrease to zero by

Table 2: Description and values of the different parameters used.

Parameter Description Value Reference.
π Recruitment rate 0.0381 Assumed
βw Transmission rate of wild-type influenza strain 0.0102 day−1 Assumed
βr Transmission rate of resistant influenza strain 0.00026 day−1 Assumed
βp Transmission rate of pneumonia 0.000162 day−1 Reference [41]
α1 Recovery rate of influenza for individuals in Iw class 0.07143 day−1 Reference [42]
α2 Recovery rate of influenza for individuals in IR class 0.0333 day−1 Assumed
α3 Recovery rate of influenza for individuals in Iwp class 0.04762 day−1 Reference [43].
α4 Recovery rate of influenza for individuals in IRp class 0.0222 day−1 Assumed
ϕ1 Recovery rate of pneumonia for individuals in Iwp class 0.033 day−1 Reference [41]
ϕ2 Recovery rate of pneumonia for individuals in IRp class 0.033 day−1 Reference [41]
ω1 Recovery rate of both influenza and pneumonia for individuals in Iwp class 0.0166 day−1 Assumed
ω2 Recovery rate of both influenza and pneumonia for individuals in IRp class 0.0166 day−1 Assumed
ϑ1 Rate of losing immunity for influenza 0.00833 day−1 Reference [44]
ϑ2 Rate of losing immunity for pneumonia 0.00833 day−1 Assumed
ϑ3 Rate of losing immunity for influenza pneumonia coinfection 0.00833 day−1 Assumed
b Rate of developing antiviral resistance 0.0118 Assumed
δ1 Wild-type influenza strain-induced death rate 0.01 Reference [45]
δ2 Resistant influenza strain-induced death rate 0.021 Assumed
δ3 Iwp class disease-induced death rate 0.05 Assumed
δ4 IRp class disease-induced death rates 0.05 Assumed
1
μ Average human lifespan 70 × 365 days Reference [46]
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day 30. This shows that use of treatment alone as a control
strategy is not effective in curbing the spread of influenza
pneumonia coinfection. As explained in details in [4, 49–51],
treatment is often rendered ineffective because it is not
always possible to administer the drugs at the right time and
the diagnosis of the coinfection can be challenging because
of timing of sample collection and false negative results
when viruses replicate in the lower respiratory tract. In
addition, treatment often aggravates development of
resistance.

4.1.2. Control by Prevention Measures Only. Simulations are
done when there is no control strategy in place and when

there are controls involving prevention of wild-type influ-
enza strain, prevention of influenza resistant strain, and
prevention of pneumonia. Figures 4 and 5 show the results.

It can be observed from Figure 4 that when preventive
efforts are implemented as control strategies, the number of
individuals coinfected with wild-type influenza and pneu-
monia decreases to zero.

Similarly, from Figure 5, it can be observed that with
preventive efforts as control strategies, the number of in-
dividuals coinfected with resistant influenza strain and
pneumonia decreases drastically right from the beginning to
zero by day 30.

The prevention measures help to reduce the transmis-
sion of the coinfection. Comparing Figures 2 and 3 with
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Figure 2: Individuals coinfected with wild-type influenza and pneumonia.
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Figure 3: Individuals coinfected with resistant influenza and pneumonia.
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Figures 4 and 5, it can be observed that the preventive
control strategies are more effective in curbing the spread of
the coinfection compared to treatment control strategies.

4.1.3. Control with Prevention and Treatment of Influenza.
Simulations are carried out to investigate the effect of
implementing control strategies involving the prevention
and treatment of influenza. Figures 6 and 7 show the results.

It can be observed from Figure 6 that with the prevention
and treatment of influenza as control strategies, the number
of individuals coinfected with wild-type influenza and

pneumonia decreases right from the beginning and it is at
zero by about day 25.

Figure 7 shows that with the implementation of these
control strategies, the number of individuals coinfected with
resistant influenza and pneumonia significantly decreases
and it is inconsequential at day 30 implying that it is unlikely
for the coinfection to persist in the population.

The prevention and treatment of influenza as control
strategies aid in reducing the transmission and in treatment
of those who are already infected; however, the treatment
poses a danger of development of drug resistance. Therefore,
caution should be taken during drug administration.
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Figure 4: Individuals coinfected with wild-type influenza and
pneumonia.
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Figure 5: Individuals coinfected with resistant influenza and
pneumonia.
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Figure 6: Individuals coinfected with wild-type influenza and
pneumonia.
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Figure 7: Individuals coinfected with resistant influenza and
pneumonia.
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4.1.4. Control with All Strategies. When all the control
strategies are applied, the number of infected individuals
decreases as shown in Figures 8 and 9. From Figure 8, it can
be observed that with all the control strategies in place, the
number of individuals coinfected with wild-type influenza
and pneumonia decreases to zero by day 30.

It can also be observed from Figure 9 that when all the
control strategies are applied, the number of individuals
coinfected with resistant influenza and pneumonia drasti-
cally decreases, and by about day 28, the number is already at
zero.

5. Conclusion

As observed from Figures 2–9, different intervention
mechanisms produce different results. Of great importance
to public health is the control strategy that will help eradicate
the diseases. Given that availability of resources is always a
factor to consider when implementing control strategies, it is
paramount to have a strategy with maximum benefit. From
the results of this study, with the implementation of pre-
vention measures only, which include and not limited to
social distancing, vaccination, curbing mutation and reas-
sortment, and curbing interspecies movement of the in-
fluenza virus, influenza pneumonia coinfection can be
eradicated from a given population. Compared to the other
control strategies investigated and discussed in Section 4.1,
these preventive control strategies are more effective in
curbing the spread of influenza pneumonia coinfection;
hence, the public health sector and other stake holders could
apply them to eradicate the coinfection within a given
population.
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