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Abstract: Accurate outcome detection in neuro-rehabilitative settings is crucial for appropriate
long-term rehabilitative decisions in patients with disorders of consciousness (DoC). EEG measures
derived from high-density EEG can provide helpful information regarding diagnosis and recovery in
DoC patients. However, the accuracy rate of EEG biomarkers to predict the clinical outcome in DoC
patients is largely unknown. This study investigated the accuracy of psychophysiological biomarkers
based on clinical EEG in predicting clinical outcomes in DoC patients. To this aim, we extracted a set
of EEG biomarkers in 33 DoC patients with traumatic and nontraumatic etiologies and estimated their
accuracy to discriminate patients’ etiologies and predict clinical outcomes 6 months after the injury.
Machine learning reached an accuracy of 83.3% (sensitivity = 92.3%, specificity = 60%) with EEG-
based functional connectivity predicting clinical outcome in nontraumatic patients. Furthermore, the
combination of functional connectivity and dominant frequency in EEG activity best predicted clinical
outcomes in traumatic patients with an accuracy of 80% (sensitivity = 85.7%, specificity = 71.4%).
These results highlight the importance of functional connectivity in predicting recovery in DoC
patients. Moreover, this study shows the high translational value of EEG biomarkers both in terms of
feasibility and accuracy for the assessment of DoC.

Keywords: disorders of consciousness; traumatic brain injury; electroencephalography; brain
plasticity and connectivity; post-anoxic coma; severe acquired brain injury; acquired brain
damage; linear discriminant analyses; brain functional impairment; neurocognitive disorders

1. Introduction

After acute brain injury and coma, a large number of surviving patients develop
severe disorders of consciousness (DoC), such as unresponsive wakefulness syndrome
(UWS) or minimally conscious state (MCS). UWS patients preserve basic functions, such
as eye-opening and reflexive movements [1–3], but remain unresponsive to the external
environment. MCS patients instead show minimal but reliable behavioral evidence (i.e.,
visual fixation or visual pursuit, verbalizations, etc.) of self and environmental conscious-
ness [4,5]. UWS and MCS can be persistent states or can evolve toward varying degrees of
recovery of consciousness. The assessment of the rehabilitative potential and the prediction
of the possible clinical outcome of DoC patients are crucial for clinical and ethical reasons,
and they allow for the identification of rehabilitative needs and the design of customized
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rehabilitative programs. Although standard clinical scales and innovative neurophysio-
logical methods can help diagnose and predict the clinical outcome in DoC patients, these
still represent complex challenges for clinicians. Indeed, even the distinction among UWS,
MCS, and the emergence from MCS is based on clinical and behavioral evidence which
might be hard to identify.

Behavioral and clinical scales such as the Coma Recovery Scale (CRS-R) and the Glas-
gow Outcome Scale (GOS) provide criteria for the diagnosis of DoC [6,7] and allow for
longitudinal monitoring of the behavioral responsiveness of these patients. However, sev-
eral fMRI and EEG studies [8–12] showed that ~15–20% of DoC patients with no evidence of
overt behavioral responsiveness may nevertheless show signs in the brain activity of covert
consciousness. Moreover, the prediction of patients’ clinical outcomes, solely based on
clinical scales, is not reliable (misdiagnosis rate up to 40% [13–15]), especially in DoC after
traumatic etiologies, where the prediction of the clinical outcome can be even less accurate
compared to post anoxic/ischemic etiologies [13]. Therefore, accurate diagnostic tools that
rely on brain activity [12] and on patients’ characteristics have become a critical need. In
this sense, the EEG can be a useful tool. Indeed, the EEG already has numerous applications
in clinical settings for the prediction of recovery in neurological patients [16] and after the
application of specific protocols [17,18]. Moreover, new robust statistical methodologies,
such as machine learning, have been already implemented in EEG studies to help with
clinical and rehabilitative decision making [16,17,19–21]. Accordingly, recent studies inves-
tigated the sensitivity and accuracy of quantitative EEG (qEEG) and EEG-based functional
connectivity measures to predict the clinical outcome in DoC patients [20–22]. Specifically,
patients with reactive EEG signal to external stimuli, larger EEG amplitudes, and stronger
activity in the higher-frequency bands (i.e., alpha 7–13 Hz and beta 14–25 Hz) are more
likely to have a positive outcome after 3–6 months [23–25].

Furthermore, the complexity of the EEG signal in terms of diversity and integration
is considered an important proxy of the consciousness level [26,27]. Indeed, measures
that quantify the complexity of information content in the brain activity, such as the
evoked EEG activity after transcranial magnetic stimulation [28–30] and the permutation
entropy (PeEN), is reduced in patients with DoC [31–34] and in patients with worse
clinical outcome [21,35]. Another important finding suggests that the level of functional
connectivity in the brain, reflecting information sharing within different cortical areas [36],
is an accurate index for discriminating different degrees of consciousness and predicting
recovery in DoC patients [20–22]. In particular, EEG-based measures of connectivity are
larger in healthy participants compared to DoC patients and in MCS compared to UWS
patients [20,21,37,38]. Lastly, DoC patients with stronger global connectivity [21], anterior
forebrain connectivity [39,40], and thalamic–cortical connectivity [41] can have a better
long-term outcome in terms of disability and level of consciousness [42].

However, most of the studies reported above recorded brain activity using different
paradigms and EEG configurations or high spatial sampling of scalp electrodes (i.e., high-
density EEG). Albeit promising, these methodologies are often time-demanding, requiring
specific protocols and apparatuses, thus preventing a large-scale implementation in clinical
settings where, more likely, only standard EEGs with the 10–20 EEG montage density are
available. Thus, implementing new methodologies with high feasibility in clinical settings
becomes fundamental in terms of clinical usefulness and to exploit the potential of EEG-
based measures in predicting the clinical outcome of DoC patients. From this perspective,
the recent literature has started to highlight the relevance of quantitative EEG measures
and specifically how the dominant frequency [23] and alpha power [22] extracted from
standard clinical EEG can predict clinical outcome in DoC patients. On this basis, in the
present study, we hypothesized that quantitative measures and measures of functional
connectivity derived from standard clinical EEG can reliably predict the clinical outcome of
DoC patients after traumatic and nontraumatic brain injury.

To test this hypothesis, we set two steps of analyses with the main goal of identifying
EEG predictors of functional outcome in DoC patients. The first step of the study was to
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identify and characterize the role of EEG biomarkers in discriminating the etiology and the
clinical outcome in DoC patients. Specifically, we identified those EEG measures which can
discriminate DoC patients as a function of the etiology of their brain injury (i.e., traumatic
or nontraumatic) and clinical outcome 6 months after the injury (i.e., improved patients
or nonimproved patients) using a standard clinical resting-state EEG. The study’s second
step was to investigate the accuracy of the EEG biomarkers to predict clinical outcomes
separately in traumatic and nontraumatic brain injury patients. To this end, we integrated
etiological and outcome information using a machine learning approach. Specifically, the
identification of EEG biomarkers of etiology serves to quantify the differential contribution
of EEG parameters in the prediction of the clinical outcome separately in the two etiological
groups. Therefore, in the two etiology groups, we investigated the accuracy of the EEG
biomarkers, as identified in the first step of analyses, to discriminate DoC patients who
improved vs. those who did not.

To summarize, the present study can offer several novel insights:

1. Translational value: We highlight the translational value and feasibility of EEG
biomarkers based on standard clinical EEG in the assessment of functional outcome
in DoC patients;

2. Methodological value: We directly compare DoC patients with different etiologies to
identify those EEG biomarkers able to predict the clinical outcome in traumatic and
nontraumatic DoC patients;

3. Computational value: we propose a machine learning model, based on those dis-
criminative EEG biomarkers, for the classification of the functional outcome in DoC
patients.

2. Materials and Methods

Step 1: To identify EEG biomarkers of different etiologies and clinical outcomes in
DoC patients.

In this retrospective study, electrophysiological measures extracted from a standard
clinical EEG recorded at 1 month after acute brain injury (T0) were used to discriminate
the etiology of the brain injury and to predict clinical outcome 6 months after the injury
(T1) in DoC patients. Specifically, we first investigated which EEG measures (i.e., qEEG
and functional connectivity measures) can discriminate patients on the basis of their brain
injury etiology (i.e., traumatic or nontraumatic) and the corresponding clinical outcome at
6 months (i.e., improved or nonimproved patients) to identify those EEG measures able
to predict clinical changes (i.e., outcome) of the level of consciousness as measured by a
specific clinical scale (i.e., the GOS) [6,43].

2.1. Participants

Inclusion criteria for all patients were as follows: (1) severe acquired brain injury after
traumatic or nontraumatic etiologies; (2) diagnosis of disorder of consciousness (i.e., MCS
or UWS) with the use of specific clinical scales (GOS < 3 or GOSE < 3 or CRS-R < 23); (3)
EEG and clinical data availability at 1 and 6 months after brain injury; (4) age between 18
and 80 years old. Exclusion criteria were as follows: (1) diagnosis of locked-in syndrome
(patients with LiS present total paralysis, but intact consciousness); (2) diagnosis of brain
death, which implies a persistent state; (3) infectious lesions of the brain (i.e., abscess and
encephalitis).

All procedures were conducted in accordance with the Declaration of Helsinki and
approved by the Ethical Committee Area Vasta Emilia Centro (CE num. 841-2021-OSS-
AUSLBO) Bologna, Italy. Data were acquired during routine clinical care by trained
clinicians between 2005 and 2020.

2.2. Intervention: EEG Data Acquisition

Resting-state EEG data were recorded according to the Italian guidelines [44] for the
clinical use of the EEG. A total of 19 Ag/AgCl-cup electrodes were positioned according



Biomedicines 2022, 10, 1897 4 of 18

to the 10/20 system and referenced to the linked ear lobes. Impedance for EEG and
electrooculogram (EOG) electrodes were kept below 10 kΩ. EEG data were continuously
recorded at a sampling rate of 1024 Hz. All electrodes were offline resampled to 500 Hz
and filtered with a 1–30 Hz bandpass filter. A single EEG session lasted 20 min. Offline,
EEG artefacts were eliminated using the pop_autorej function on EEGLAB [45], which
automatically detects and eliminates artefact data. This function first identifies extremely
large potential fluctuations in order to detect artefacts from scalp electrodes data or other
unreasonably large amplitude events. Then, it rejects data epochs containing data values
outside a given standard deviation (3 SD). Lastly, the EEG data were re-epoched in segments
of 1 s with the function pop_repoch on EEGLAB [46], and linear trends were corrected with
the function ‘detrend’ on EEGLAB.

2.3. Control

No control for the intervention was planned as all participants underwent EEG as-
sessment. However, comparisons between patients with different etiologies and clinical
outcomes were planned.

2.4. Outcome Measures
2.4.1. Clinical Measures

Patients’ demographic information and the date of the brain injury were collected
and reported in specific case report forms. Moreover, brain injury etiologies were used to
distinguish between traumatic and nontraumatic brain injury patients.

The Glasgow Outcome Scale (GOS) [14,21,47–49], a specific scale used to discriminate
between different levels of functional outcome in DoC patients, was administered 1 month
and 6 months after the brain injury. All patients underwent usual care during the 6 months
after brain injury. The difference between the GOS score at 1 month after brain injury
(T0) and the score at 6 months after brain injury (T1) was used to estimate changes in
the functional outcome (i.e., clinical outcome). Score differences were used to distinguish
patients with an improvement in the clinical outcome (GOS score difference of at least
+1 point between T0 and T1) from those with a lack of improvement in the clinical outcome
(i.e., those who did not show any change in the GOS score between T0 and T1 or an
impairment) [21,50]. As the GOS directly assesses the functional outcome in terms of
consciousness and disability, it is a suitable clinical test to reach our goal to predict clinical
outcome in DoC patients [14,48,51–55].

2.4.2. Quantitative EEG Measures

Four quantitative EEG (qEEG) measures were extracted: z-scored power spectral
density, dominant frequency peak, permutation entropy, and mean amplitude. First,
power spectral data from the averaged electrodes and epochs were calculated using the
“pop_spectopo” function on EEGLAB. The power spectral data expressed in µv2/Hz were
transformed in z points to identify the frequency peak (i.e., dominant frequency) in Hertz
(Hz) and the power spectral density (z-scored PSD) divided into specific frequencies: delta
(1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), and beta (14–30 Hz) [38,56]. The power was
calculated as the mean value in each frequency band. Furthermore, in order to evaluate
permutation entropy (i.e., PeEn) on single electrodes and on the average of all electrodes,
the “pec” function of EEGLAB was applied to the EEG data [33]. Similarly, the “mean”
function was applied to estimate the mean amplitude (Amp) in µv [23].

2.4.3. Functional Connectivity Measures

EEG-based functional connectivity estimates the association between electrode sig-
nals. There are several methods for quantifying functional connectivity on the basis of
EEG data [20,21]. In particular, methods can be based on associations between phases
(e.g., weighted phase lag index), between power in specific frequency bands (e.g., partial
coherence), and in the complexity of the EEG signal (e.g., mutual information). For the
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connectivity analyses, the EEG signal was first filtered with a spatial filter (i.e., Laplacian
filter) [57]. The Laplacian filter allows subtracting the activity of contiguous electrodes
from each electrode and reduces the risk of false positive connectivity due to the effects of
common neural sources on contiguous electrodes. The connectivity indices were calculated
for each pair of electrodes, which resulted in 19 × 19 connectivity matrices. Connectivity
measures were then extracted in specific regions of interest (ROI): right frontoparietal, left
frontoparietal, frontal interhemispheric, central interhemispheric, and posterior interhemi-
spheric ROIs.

In the present study, three functional connectivity measures were considered: (a) weighted
phase lag index (wPLI), (b) partial coherence (PCoh), and (c) mutual information (MI).

(a) For the weighted phase lag index (wPLI), the time–frequency data were first calculated
via convolution with complex Morlet wavelets. Convolution was performed via
frequency-domain multiplication [58,59]. In order to prevent the artefact of the
“edges”, the signal was re-epoched in epochs of 2 s. The wPLI evaluates the consistency
of the phase differences between two timeseries [60] (e.g., EEG signal over specific
electrodes). The wPLI was calculated on the individual EEG dominant frequency [46].
wPLI values can range from 0 to 1, where a higher value indicates a relationship
between the phases of two signals. A correct threshold for each participant was set to
detect residual false positive connectivity [61].

(b) The partial coherence (PCoh) values were calculated on the entire EEG signal with
the “pop_newcrossf” function on EEGLAB and on the individual EEG dominant
frequency (to improve frequency resolution, the pad ratio parameter was set to 8) [62].
Absolute correlations were extracted for each pair of electrodes and corrected for
multiple comparisons. The PCoh values can range from 0 to 1. Larger values indicate
a stronger relationship between the two signals at a specific frequency.

(c) The mutual information (MI) is a functional connectivity index that estimates the level
of information shared between two variables or time series. The MI is calculated by
adding the individual entropies (H) of the two timeseries and subtracting the joint
entropy. For MI analyses, data were first divided into 10 bins on the basis of the
Freedman–Diaconis rule [58]. The MI values were extracted with the “mutualinfor-
mationx” function on MATLAB for each pair of electrodes. Higher values indicate
higher levels of information shared between two signals in terms of oscillations and
similarity in the waveforms.

2.5. Statistical Analyses

For the first step, between-group statistical analyses were performed to identify EEG
biomarkers of different etiologies and clinical outcomes. Specifically, analyses were sepa-
rately performed on two between-subject factors: etiology (traumatic (TBI) vs. nontrau-
matic (non-TBI) etiologies) [21] and clinical outcome (improved vs. nonimproved pa-
tients) [21–23,63]. For both etiology and clinical outcome, we employed the same analytical
strategy. In particular, mixed-model ANOVAs with repeated measures on the between-
subject variable group (TBI vs. non-TBI for factor etiology and improved vs. nonimproved
patients for the factor clinical outcome) were performed. For the functional connectivity
indices, the additional within-subject variable ROI (right frontoparietal, left frontopari-
etal, frontal interhemispheric, central interhemispheric, and posterior interhemispheric)
was considered. Between-group planned comparisons were performed using two-tailed
t-tests with 1000 bootstrap corrections. To compensate for violations of sphericity in the
ANOVA, Greenhouse–Geisser corrections were applied [64], and corrected p-values were
reported. Effect sizes were estimated with partial eta squared (ηp2) and Cohen’s d (d) for
between-group comparisons. A preliminary Shapiro–Wilk test for normality distribution
was performed for all measures [65]. For similar statistical procedures, see also [66–70].

Step 2: Accuracy of EEG biomarkers to predict clinical outcome in traumatic and
nontraumatic brain injury.
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For the second step, we integrated results from step 1 using a machine learning
procedure (see also [46]) to maximize the informative value provided by the combinations
of EEG biomarkers in predicting the clinical outcome at the level of the individual patient
for the TBI and non-TBI groups.

2.5.1. Features Extraction and Data Aggregation

The initial total number of features examined in aim 1 was 43. The most discriminative
features were then selected on the basis of the statistical analyses and results of step 1. In
particular, for the EEG feature extraction procedure, we extracted the following information
from each participant’s recording: qEEG features (dominant frequency, permutation en-
tropy, mean amplitudem and delta, theta, alpha, and beta zPSD) and functional connectivity
features (wPLI, PCoh, and MI). The selected features were aggregated in matrices where
the rows represented participants (i.e., instances) and the columns represented the values
of the features. The instances were used to feed a machine learning algorithm, as explained
in the next section.

2.5.2. Classification Method

For this step of the analysis, a stepwise linear discriminant analysis (LDA) was applied
with a leave-one-subject-out cross-validation. The goal of LDA is to discriminate two classes
of data in low-dimensional space by retaining the features with the higher discriminative
power. LDA was already used in previous research studies, and it was recommended by
the International Federation of Clinical Neurophysiology for EEG research [71] and for
the assessment of DoC [72,73]. However, we additionally used a traditional multivariate
logistic regression as a control for the LDA as suggested in previous studies [74–76]. Within
the leave-one-subject-out cross-validation, each feature array was used once as validation
data, with the remaining data as the training data [3,77]. Then, the percentage of correctly
classified instances was calculated. While this percentage reflects the classification accuracy,
we also calculated sensitivity and specificity. For the classification, we used the clinical
outcome (i.e., improved vs. nonimproved patients) as a categorical grouping variable and
the etiology (i.e., TBI vs. non-TBI) as a factor. In this way, the accuracy of EEG biomarkers
of the clinical outcome was estimated separately for TBI and non-TBI patients. Moreover,
given the retrospective nature of the study, we could deal with imbalanced classifiers [78];
thus, we calculated additional metrics, such as the balanced accuracy (the average of
sensitivity and specificity) and the precision (the number of positive class predictions
divided by the sum of true-positive and false-positive instances). Only EEG variables that
showed sensitivity to distinguish between groups in the analyses performed to address the
first step entered the LDA.

It is important to note that, for the study purpose, we needed an independent clinical
indicator (i.e., the GOS) which could discriminate between two groups of patients, with a
relative lower and higher outcome. In other words, we needed a binary indicator to show
the potential of EEG biomarkers to discriminate individuals on the basis of their outcome,
without any pretense to make an accurate diagnosis of the level of consciousness for each
individual. Thus, for the purpose of the study, we regard the GOS a sufficient and adequate
clinical indicator [79].

2.5.3. Sample Size Estimation and Statistical Software Employed

The preliminary sample size for step 1 was calculated with the G*Power software,
version 3.1 (Heinrich Heine University Düsseldorf, Düsseldorf, Germany) [80]. Parameters
used in the analyses were derived from previous studies on the primary endpoint z-score
PSD on the alpha band [22]. The following parameters were used: α (two-tailed) = 0.05
(threshold probability for rejecting the null hypothesis; type I error rate), β = 0.2 (probability
of failing to reject the null hypothesis under the alternative hypothesis), and ηp2 = 0.56
(effect size calculated on preliminary studies). The minimum estimated sample size, using
these parameters, was 28 subjects.
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All statistical analyses for steps 1 and 2 were performed with the SPSS software (IBM
Corp., Armonk, NY, USA) (Version 13). The feature extraction was performed using custom-
made routines in MATLAB 2015 b (The MathWorks, Inc., Natick, MA, USA) and EEGLAB
(v. 13.0.1).

3. Results

Step 1: To identify EEG biomarkers of different etiologies and clinical outcomes in
DoC patients.

3.1. Clinical Results

Thirty-three DoC patients (21 males aged 19–71) were included in this study. Descrip-
tive statistics (Table 1) showed that 15 patients suffered from traumatic brain injury, while
18 patients had a nontraumatic etiology (i.e., vascular and anoxic brain injury). In particular,
within the non-TBI group, nine patients suffered from an ischemic or hemorrhagic stroke
while nine patients had a post-anoxic etiology. Lesion locations were extracted for each
participant according to the most recent CT or MRI scan. The visual inspection of non-TBI
patients’ lesion profiles showed a maximal lesion overlap over the basal ganglia and the tha-
lamus. Fifteen patients presented diffuse axonal damages after TBI; specifically, according
to the Marshall classification of traumatic brain injury [81], eight patients were classified as
“diffuse injury” (IV), and seven patients were classified as “evacuated mass lesion” (V). All
patients underwent usual care and received symptomatic treatments. Whenever necessary,
patients were treated with decompressive craniectomy to reduce high intracranial pressure.
Demographic data show that non-TBI patients were about 15 years older than TBI patients
(t(31) = 2.62, p = 013, d = 0.46). At baseline, no differences emerged between groups in
the severity of brain injury as revealed by the analyses of the Glasgow Coma Scale (GCS)
at admission (i.e., baseline) (t(31) = 0.57, p = 575, d = 0.11). Lastly, clinical changes were
comparable between the two etiological groups as the proportion of patients improved at
T1, albeit numerically larger in the TBI group, was not statistically different between TBI
(50%) and non-TBI patients (29.5%; independent samples Mann–Whitney U test; p = 215).

Table 1. Demographic and clinical data.

TBI Non-TBI

N 15 18
Gender
Males

Females
11
4

10
8

Mean age in years (SD) 34.3 (4.4) 49.1 (3.59)
Glasgow Coma Scale at baseline 4.73 (0.5) 4.22 (0.7)

Clinical outcome at T1
Improved

Nonimproved
8
7

5
13

Patients’ etiologies were divided into traumatic (TBI) and nontraumatic brain injury. Diagnostic classifications at
1 month after brain injury (T0) are reported as unresponsive wakefulness syndrome (UWS) and minimal conscious
states (MCS). Clinical outcomes at 6 months after the injury (T1) are reported as improved (i.e., patients showing
positive changes in the GOS > +1) or nonimproved patients (patients showing no changes or negative changes in
the GOS < 0). Standard errors of the mean (SD) are in brackets.

3.2. Etiology Biomarkers

EEG data were analyzed for the between-subject factor etiology. As demographic
results showed that TBI patients were younger than non-TBI patients (see above), the
variable age was used as a covariate in the subsequent analyses of covariance (ANCOVAs).
The ANCOVA (similar to the ANOVA) examined the effects of independent variables
on dependent variables while factoring out the effect of the covariate “age”. A visual
assessment of Figure 1A,B reveals the generally slower dominant frequency in TBI patients
compared to non-TBI, which additionally showed stronger residual connectivity expressed
by the wPLI. Statistical analyses confirmed these impressions. Specifically, qEEG results
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showed a faster dominant frequency (one-way ANCOVA F(2,30) = 3.763, one-tailed p = 031,
ηp2 = 111) in the non-TBI group (M = 5.966 Hz, standard error of the mean SE = 0.606 Hz)
compared to the TBI group (M = 3.997 Hz, SE = 0.621 Hz) (t(31) = 2.26, p = 031, d = 0.39), as
shown in Figure 1A. Similar analyses on the other qEEG measures did not show further
significant results (all p ≥ 228).
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range (1–30 Hz) divided into traumatic (TBI) and nontraumatic (non-TBI) etiologies. The circles
identify the dominant frequency peaks showing a distribution of the peaks toward slower frequencies
in the TBI group. (B) Connectivity matrices between scalp electrodes of the weighted phase lag
index (wPLI) for TBI and non-TBI groups showing stronger global connectivity in the non-TBI group.
Topographies show the grand mean wPLI connectomes for each electrode.

Analyses on the functional connectivity indices showed larger connectivity in the wPLI
for the non-TBI group (M = 053 PLI, SE = 012 PLI) in all the considered ROIs (main effect of
etiology in the repeated measures ANCOVA; F(1,30) = 6.862, p = 007, ηp2 = 186) compared
to the TBI group (M = 047 PLI, SE = 014 PLI) (Figure 1B). No further significant between
groups or interaction effects were found in the other functional connectivity indices (all
F < 0.344, all p > 562, all ηp2 < 011).

3.3. Outcome Biomarkers

EEG data were analyzed for the between-subject factor ‘clinical outcome’ (improved
vs. nonimproved patients). A visual assessment of the Figure 2A,B shows that EEG-
based connectivity (expressed by the PCoh and the MI) calculated at T0 was stronger for
those patients who showed at T1 functional outcome improvements. Statistical analyses
confirmed these impressions. Analyses on the functional connectivity indeed showed a
general stronger connectivity both for the MI (main effect of group, F(1,31) = 5.36, p = 027,
ηp2 = 147) and for the PCoh (main effect of group, F(1,31) = 5.81, p = 022, ηp2 = 158) indices
in the improved outcome group (MI mean = 326, SE = 046; PCoh mean = 464, SE = 042)
compared to the nonimproved outcome group (MI mean = 188, SE = 037; PCoh mean = 333,
SE = 034) Figure 2A,B. To further confirm the relative improvement in DoC patients at
6 months (T1), we ran two control analyses on the factor clinical outcome, controlling for
the initial severity of the brain injury. To this aim, we first used the GCS score at baseline
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and then the GOS score at 1 month (T0) as covariate variables in two separate analyses of
covariance (ANCOVAs). The results of the ANCOVAs with the within-subject factor ROI,
the between-subject factor clinical outcome, and the covariate GCS or GOS at T0 confirmed
our main findings. In particular, both analyses showed a significant effect of the between-
subject factor clinical outcome for the MI (all F(1,30) > 4.62, p < 04, ηp2 > 133) and PCoh (all
F(1,30) > 4.95, p < 034, ηp2 > 142), thus confirming again that patients with higher general
connectivity at T0 have a higher probability of a better clinical outcome at T1 regardless of
the initial GCS or GOS levels. No further significant between groups or interaction effects
were found for the functional connectivity indices (all F < 1.138, all p > 339, all ηp2 < 035).
However, main effects of the factor ROI (all F > 4.842, all p < 008, all ηp2 < 135) were
found for all the functional connectivity indices (wPLI, PCoh and MI), indicating a general
stronger interhemispheric connectivity (i.e., frontal, central, and posterior interhemispheric
ROIs) in all groups compared to the intrahemispheric connectivity (i.e., right and left
frontoparietal ROIs).
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Figure 2. Outcome biomarkers. Connectivity matrices between scalp electrodes of the (A) partial
coherence (PCoh) and the (B) mutual information (MI) for improved and nonimproved patients. Both
figures show stronger connectivity for improved patients. Topographies show grand mean PCoh and
MI connectomes for each electrode.

Lastly, between-group comparisons for the qEEG measures did not show any signifi-
cant difference (all p ≥ 308).

Step 2: Accuracy of EEG biomarkers to predict clinical outcome in traumatic and
nontraumatic brain injury.

3.4. Linear Discriminant Analysis

Instances used for LDA analyses were 15 for TBI patients and 18 for non-TBI patients.
Four features were selected for the LDA analyses on the basis of the results of step 1: one
qEEG feature (i.e., dominant frequency) and three functional connectivity features (i.e.,
wPLI, MI, and PCoh) calculated as the mean values across ROIs. The data partition and
LDA procedure are described in Figure 3. Results and ROC curves for sensitivity and
specificity of the LDA are reported in Figure 4 and Table 2.
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Figure 3. EEG features selected for traumatic (TBI) and nontraumatic (non-TBI) patients and included
in the linear discriminant analysis (LDA) for clinical outcome prediction. LDA parameters were
as follows: discriminant type = diagLinear (all classes had the same diagonal covariance matrix),
gamma = 1, and delta = 0. PCoh = partial coherence, Freq = dominant frequency, MI = mutual
information, ML = machine learning.

Table 2. LDA results.

Etiology Features
LDA Clinical Outcome [95% CI]

Acc Sens Spec Non-Improved Improved

TBI Pcoh and Freq 80.0% 85.7% 71.4% [−1.262, 0.306] [−0.523, 1.420]
Non-TBI PCoh and MI 83.3% 92.3% 60.0% [−1.179, 0.304] [−0.099, 2.199]

The best accuracy results in the discrimination of the clinical outcome between improved and nonimproved patients
are reported separately for traumatic (TBI) and nontraumatic (non-TBI) etiologies. The 95% confidence intervals (CI)
are reported for the feature combinations. LDA = linear discriminative analyses, Acc = accuracy, Sens = sensitivity,
Spec = specificity, PCoh = partial coherence, Freq = dominant frequency, MI = mutual information.

The accuracy of the EEG features to discriminate between the improved and non-
improved patients in the two etiological groups was analyzed. In the TBI group, the
combination between global PCoh (i.e., mean of PCoh across ROIs) and the dominant
frequency measures resulted in the best discrimination accuracy for the 6 month outcome
(accuracy = 80%, balanced accuracy = 78.55%, and precision = 77.7%) with a sensitivity
(i.e., patients correctly classified as nonimproved patients) of 85.7% and a specificity (i.e.,
patients correctly classified as improved patients) of 71.4%. The other considered measures,
taken alone or in conjunction, resulted in an overall discrimination accuracy < 73.3%. In
the non-TBI group, the best discrimination accuracy was evinced for the combination of
two functional connectivity indices (MI and PCoh accuracy = 83.3%, balanced accuracy
= 76.65%, and precision = 85.7%), calculated as the mean connectivity across ROIs, with
sensitivity = 92.3% and specificity = 60.0%. The other considered measures, taken alone
or in conjunction, resulted in an overall discrimination accuracy < 83.3%. Multivariate
logistic regression on the same EEG features further confirmed the accuracy results of LDA
in discriminating improved and nonimproved patients in both TBI (accuracy = 80%) and
non-TBI patients (accuracy = 83.3%).
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Figure 4. ROC curves. The ROC curves for sensitivity and specificity of the linear discriminant
analyses on the patients’ clinical outcome (TBI vs. non-TBI patients).

4. Discussion

The present study investigated the accuracy of psychophysiological measures ex-
tracted from standard clinical EEG for the prediction of the clinical outcome in traumatic
and nontraumatic patients with DoC. Our findings described how EEG-derived measures
of connectivity and qEEG measures are associated with clinical characteristics and 6 month
outcomes. In particular, our results highlighted that DoC patients with a traumatic etiology
show reduced dominant frequencies and lower connectivity based on wPLI compared to
patients with vascular and anoxic etiologies. Furthermore, we showed that higher connec-
tivity in the EEG brain network can predict behavioral changes in the functional outcome
as measured by the GOS. Lastly, we demonstrated that the combination of different EEG
features (quantitative and connectivity measures) can reliably predict 6 month clinical
outcome of DoC patients after both TBI and non-TBI etiologies.

Previous studies have highlighted that quantitative EEG measures and functional
connectivity within critical brain networks can provide diagnostic and predictive infor-
mation for the assessment of DoC [20–22]. For instance, the most common EEG change
associated with severe brain injury is frequency slowing with predominant delta and theta
activity [45,82,83]. However, the neuropathological patterns of DoC after TBI and non-TBI
are different. Several studies have reported that the pathologic substrate in DoC patients
after TBI is a diffuse axonal damage, while, in non-TBI patients, lesions can be more focal
especially for vascular etiologies [62,63]. In TBI, the diffuse axonal damage can cause a dis-
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connection between cortical and subcortical structures, such as the brainstem, the thalamus,
and the cerebral cortex, which are involved both in the emergence of consciousness and in
the genesis of EEG rhythms [64,65], as in both cognitive (i.e., memory and learning) and
social functioning [84,85]. Indeed, partial deafferentations of cortical and subcortical areas
can also produce EEG rhythms within slower bands [66]. In contrast, non-TBI DoC patients
with a vascular etiology show more focal cortical and subcortical lesions, with structural
connectivity relatively preserved [62,63], but altered motor and behavioral abilities [86].
Thus, different neuropathological and connectivity profiles may be responsible for diverse
EEG patterns. Accordingly, our results show differences in the brain patterns for TBI and
non-TBI patients; thus, we can hypothesize that lower wPLI connectivity and dominant
frequency in TBI presumably reflect the typical diffuse axonal damage.

Furthermore, our results confirmed that resting-state EEG-based connectivity is an
accurate proxy of patients’ long-term clinical outcomes [20,21]. The notion that connectivity
is important for the recovery in DoC patients after brain injury is consistent with evidence
from PET [50,87,88], functional MRI [89–91], and high-density EEG [20,21,56]. In particular,
DoC patients often show severe functional and structural thalamocortical lesions and
disconnections with a drop in the EEG coherence in the damaged hemispheres [92,93]. The
decrease in EEG coherence seems to be partially determined by damages of the neuronal
network implicated in the emergence of consciousness [27,31,92,93] and could reflect an
impairment in information sharing within the brain networks [36,94–96]. Indeed, levels of
EEG coherence, as measured by partial coherence (PCoh) and mutual information (MI), are
lower in UWS and MCS patients and in patients with a poor clinical outcome [20,36,92,97].
Accordingly, our results show that a larger levels of PCoh and of distributed information
sharing (as calculated by the MI) within brain networks can support the processes needed
to achieve functional improvements in DoC patients. However, while previous studies
identified thalamocortical [98,99] and frontoparietal [36,100] connectivity as crucial hubs
for the emergence of consciousness, we did not replicate these results here. This is probably
related to the low spatial resolution of the standard clinical EEG, which provides a reduced
number of scalp electrodes. Most importantly however, standard EEG protocols are easier
to implement, and the accuracy of global connectivity indices to predict patients’ clinical
outcome is still high (~80–83.3%) and comparable to the accuracy of other EEG settings
and high-density EEG (~75–87%) [20,21,25,72]. However, the mentioned studies used
different machine learning algorithms for classification and outcome prediction of DoC
patients. Thus, our results cannot be directly compared with studies that used different
EEG settings and statistical approaches. Importantly, here, we further validated those EEG
biomarkers which can better predict functional outcome in DoC patients and excluded
other biomarkers that show lower accuracy when a standard clinical EEG is used.

Lastly, it is important to notice that the etiology is an essential factor for clinicians
evaluating EEG predictors of the clinical outcome in DoC patients. Specifically, while
coherence in both etiological groups has a high predictive value, the global frequency of the
EEG activity is a relevant feature for the prediction of the potential clinical outcome only
in TBI patients. EEG features such as the dominant frequency, which presumably reflects
structural damages as we and previous studies report [49], could influence the functional
outcome of TBI patients [22]. Indeed, a recent study, using a standard EEG setting, showed
that relative larger activity at faster frequencies, specifically in the alpha band, is a sign of
potential functional improvement in TBI patients. Thus, we could hypothesize that diffuse
axonal injury and the related measures are additional crucial factors to predict the outcome
of DoC patients after TBI. This highlights the need for the integration of different indices
and methodologies to optimize the predictive accuracy in different etiological groups.

Study Limitations

The results of this study should be considered in light of some limitations. Different
studies applied LDA for the classification of clinical outcomes in neurological, cognitive,
and psychiatric conditions [101–106]. However, replication of the analysis using a larger



Biomedicines 2022, 10, 1897 13 of 18

sample size collected within prospective multicentric studies and using multiple assessment
timepoints (e.g., 3 months, 6 months, and 1 year follow-up) is desirable to support the
stability and generalizability of the present results. In this sense, the applicability of the
standard resting-state EEG in different clinical settings represents a great advantage in
terms of feasibility and replicability of the data. Furthermore, although the GOS is a
frequently used coma-to-community assessment tool and is largely used for outcome
prediction [20,24,43,50], it is more prone to random errors of measurement being a single-
item scale. Indeed, despite the GOS being able to provide a general evaluation of the level
of consciousness, it is known to be less responsive to clinical changes than summative
rating scale such as the Disability Rating Scale [107]. In particular, measurement errors can
be larger in TBI patients compared to non-TBI [108–110]. Thus, the limitation of the GOS
measure could explain the lower overall accuracy of the EEG features in the prediction
of the clinical outcome in TBI patients as evinced by our results. Future studies could
eventually highlight the diagnostic accuracy of standard EEG using different clinical scales,
such as the Coma Recovery Scale—Revised [7], as the reference for the clinical outcome.

5. Conclusions

This study presented three main outcomes. The most important outcome of this
study allowed us to describe the advantages and limitations of a standard EEG as a tool for
clinical assessment and classification of patients with DoC after severe acquired brain injury.
Secondly, measures based on standard EEG, such as qEEG and functional connectivity,
are promising tools for predicting and classifying DoC patients in terms of rehabilitative
potentials and functional recovery. Although spontaneous functional improvements can be
observed in TBI and non-TBI patients, the identification of those EEG biomarkers able to
predict possible improvements is a valuable effort. Lastly, our results demonstrated that
different measures extracted from the standard EEG could be beneficially combined to
discriminate the patients’ potential clinical outcome using a machine learning approach.
Hence, EEG biomarkers may prove highly relevant in supporting clinical and rehabilitative
decision making.
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Abbreviations

DoC Disorders of consciousness
EEG Electroencephalography
TBI Traumatic brain injury
wPLI Weighted phase lag index
PCoh Partial coherence
MI Mutual information
LDA Linear discriminant analyses
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