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a b s t r a c t 

Dataset contains results of multiple parallel calculations us- 

ing the tugHall simulator. Output data of simulations are 

variant allele frequencies for four genes (APC, KRAS, TP53, 

and PIK3CA) related to colorectal cancer. During each simu- 

lation tugHall stochastically reproduces Darwinian evolution 

for cancer cells and calculates clonal heterogeneity. The prob- 

abilities of stochastic processes depend on a correspondence 

matrix between genome information and cancer hallmarks. 

As a result, tugHall records variant allele frequencies for the 

final stage of evolution. The number of trials is several mil- 

lion to get rich statistics of stochastic processes. These data 

can be used for approximate Bayesian computation and other 

statistical methods to get personalized coefficients for pa- 

tients with colorectal cancer. The procedure of usage data is 

explained in our paper [Bioinformatics, 36, 11 (2020) 3597] 

in which the part of these data was used. 
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pecifications Table 

Subject Bioinformatics 

Specific subject area Colorectal oncology and Mathematical modeling 

Type of data Statistical simulation for variant allele frequencies of clonal evolution of 

colorectal cancer 

How data were acquired The dataset is a set of results of 9.6 millions of simulations using tugHall 

simulator. To get a large number of simulations we used the resources of the 

supercomputer “SHIROKANE” of the Human Genome Center of the University 

of Tokyo [ https://supcom.hgc.jp ]. 

Data format Simulation data (tabular format), Modeling workflow (figure) 

Parameters for data collection Identification number of simulation, names of models, initial conditions, the 

format of input parameters, weights for hallmarks and genes, compaction 

factors, probabilities of stochastic processes, as well as results of simulations 

(variant allele frequencies, numbers of primary tumor cells and metastatic 

cells, last time-step, number of clones). 

Description of data collection Data were collected as a result of multiple simulations. Parallel calculations 

with 40 nodes and 960 cores were used to perform 9,60 0,0 0 0 trials for 4 

models, 3 types of initial clones, and 2 types of input data. In total there are 

24 combinations with 40 0,0 0 0 trials for each. 

Data source location Institution: National Cancer centre Japan, Research Institute, Division of 

Bioinformatics 

City/Town/Region: Tokyo 

Country: Japan 

Data accessibility Nagornov, Iurii; Nishino, Jo; Kato, Mamoru (2020), “Dataset of tugHall 

simulations of cell evolution for colorectal cancer ”, Mendeley Data, V1, 

doi: 10.17632/spszxd8r3z.1 

http://dx.doi.org/10.17632/spszxd8r3z.1 

Related research article Iurii S. Nagornov, Mamoru Kato, tugHall: a simulator of cancer-cell evolution 

based on the hallmarks of cancer and tumor-related genes, Bioinformatics, 

Vol. 36, N 11 (2020) 3597–3599. 

doi: https://doi.org/10.1093/bioinformatics/btaa182 

alue of the Data 

• Dataset has the usage potential to predict the target gene for the treatment of colorectal

cancer in personalized medicine. 

• Dataset can be useful in the field of bioinformatics and biostatistics to choose the target

gene, and it is complementary to survival analysis to improve the probability of survival for

a patient using genome information. 

• Approximate Bayesian computation allows us to extract the weights of the relations between

driver genes and cancer hallmarks in the tugHall model for a particular patient. Using the

personalized weights, it is possible to predict which gene should be blocked to stop cancer

development. 

• The accuracy of the prediction depends on the size of the dataset. That’s why it has results

of several million simulations, and it will continue growing in the future. 

. Data Description 

The dataset provides results of 9.6 million calculations using the tugHall simulator. Out-

ut data of simulations are variant allele frequencies (VAF) for four genes APC, KRAS, TP53,

nd PIK3CA related to colorectal cancer [1] . During each simulation tugHall stochastically re-

roduces Darwinian evolution for cancer cells and calculates clonal heterogeneity [2] . Calcu-

ations of VAF were performed at last time-step of simulation as well as statistical data like

umbers of the primary tumor and metastatic cells, final time-step and number of clones.

he VAFs were calculated for two cases. First one is VAF for all cell in the simulation pull,

https://supcom.hgc.jp
http://dx.doi.org/10.17632/spszxd8r3z.1
http://dx.doi.org/10.17632/spszxd8r3z.1
https://doi.org/10.1093/bioinformatics/btaa182
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Table 1 

Description of files in the dataset. 

File Name Size Content of the file 

Analyze_MODELS_PRIMARY.txt 1 Kb file with analytic data of simulations: number of successful 

simulations and simulations with non zero output for each 

type of simulation (corresponds to Table 2 ). 

data_base_MODELS_ALL.txt 700.7 

Mb 

output file with VAF for all cells (including metastatic 

cells) at last time-step. 

data_base_MODELS_PRIMARY.txt 166.1 

Mb 

output file with VAF for primary tumor cells only at last 

time-step. 

data_base_STATISTICS.txt 113 Mb output file with statistical data for each simulation like 

number of clones, numbers of primary tumor and 

metastatic cells, and time of simulation’s stopping. 

Compaction_Factor_Continuous_ALL.txt 

16.5 

Mb 

input file with data of compaction factors for each 

simulation for continuous type of data. 

Compaction_Factor_Discrete_ALL.txt 

10.3 

Mb 

input file with data of compaction factors for each 

simulation for discrete type of data. 

Initial_parameters_Continuous_ALL.txt 

68.5 

Mb 

input file with input data for each simulation 

with continuous type of parameters. 

Initial_parameters_Discrete_ALL.txt 

46.9 

Mb 

input file with input data for each simulation 

with discrete type of parameters. 

Table 2 

Analytical data for different types of simulations. 

name_weights name_model name_init success non_Zero 

Discrete STRONG Mutated_cell 6757 6672 

Discrete STRONG Thousand_cells 17,308 17,290 

Discrete STRONG Mutated_cell_in_Thousand_cells 34,602 34,059 

Discrete WEAK Mutated_cell 279,994 9335 

Discrete WEAK Thousand_cells 155,889 44,533 

Discrete WEAK Mutated_cell_in_Thousand_cells 217,965 86,083 

Discrete CF_STRONG Mutated_cell 606 598 

Discrete CF_STRONG Thousand_cells 3301 3300 

Discrete CF_STRONG Mutated_cell_in_Thousand_cells 6962 6832 

Discrete CF_WEAK Mutated_cell 99,560 719 

Discrete CF_WEAK Thousand_cells 21,741 6383 

Discrete CF_WEAK Mutated_cell_in_Thousand_cells 48,347 19,949 

Continuous STRONG Mutated_cell 60 60 

Continuous STRONG Thousand_cells 142 142 

Continuous STRONG Mutated_cell_in_Thousand_cells 10,516 10,476 

Continuous WEAK Mutated_cell 296,449 16 

Continuous WEAK Thousand_cells 137,629 10,822 

Continuous WEAK Mutated_cell_in_Thousand_cells 203,408 20,982 

Continuous CF_STRONG Mutated_cell 2 2 

Continuous CF_STRONG Thousand_cells 12 12 

Continuous CF_STRONG Mutated_cell_in_Thousand_cells 459 453 

Continuous CF_WEAK Mutated_cell 104,189 3 

Continuous CF_WEAK Thousand_cells 17,573 1417 

Continuous CF_WEAK Mutated_cell_in_Thousand_cells 42,708 4536 

 

 

 

 

 

 

 

second is VAF only for primary tumor cells. These results are divided into two files with the

same structure (data_base_MODELS_ALL.txt and data_base_MODELS_PRIMARY.txt respectively). 

The file data_base_STATISTICS.txt contains the statistical data of simulations. In total the dataset

has 8 files: 3 files with output data, 4 files with input data and file with analytic data ( Table 1 ).

Table 1 shows the short description of each file as well it’s size. 

Table 2 shows analytical data for different types of simulations. Each simulation can finish

with two possible cases: the first one is when all cells died and without any output data (un-

successful), another case is a simulation with output data (column “success” in Table 2 ). The

successful simulations consist of two subsets: with zero output for all VAFs and with non-zero
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Table 3 

The results of simulations in the file “data_base_MODELS_PRIMARY.txt”. 

name_weights name_model name_init ID_Simulation APC_max_1 KRAS_max_1 TP53_max_1 PIK3CA_max_1 

Discrete STRONG Mutated_cell 159 0 0.0 0.5 0 

Discrete STRONG Mutated_cell 175 0 0.0 0.5 0 

Discrete STRONG Mutated_cell 222 0 0.5 0.0 0 

Discrete STRONG Mutated_cell 267 0 0.0 0.5 0 

Discrete STRONG Mutated_cell 430 0 0.5 0.0 0 

Discrete STRONG Mutated_cell 522 0 0.5 0.0 0 

Discrete STRONG Mutated_cell 622 0 0.5 0.0 0 

Discrete STRONG Mutated_cell 654 0 0.5 0.0 0 

Discrete STRONG Mutated_cell 663 0 0.0 0.5 0 

Discrete STRONG Mutated_cell 670 0 0.5 0.0 0 
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AF at least for one gene (column “non_Zero” in Table 2 ). Hereinafter, VAF means VAF for pri-

ary tumor cells. In total the dataset has 1,706,179 records with 284,674 non-zero outputs from

,60 0,0 0 0 trials of 24 types of simulations. 

Correspondence between input and output data is connected with an identification num-

er of simulation (ID_Simulation). Table 3 shows the first several rows of the dataset for the

esults of simulations. It has information about the names of models, initial cells, the format

f input parameters, and identification number of simulation as well as results of simulations.

he results are summary statistics such as variant allele frequencies that are used in bulk-cell

ignaling data [1] and represented in the descending order of VAF for each driver gene. The

ataset has the 5 largest values of VAF for each gene (APC, TP53, APC, and PIK3CA) but in

able 3 we have shown only the first values of VAFs for each gene. The structure of data in

he file “data_base_MODELS_ALL.txt” is the same. 

• name_weights - “Discrete” or “Continuous” values of weights for initial parameters. 

• name_model - name of the model: “STRONG”, “WEAK”, “CF_STRONG” or “CF_WEAK”. 

• name_init - name of initial clones: “Mutated_cell”, “Thousand_cells” or

“Mutated_cell_in_Thousand_cells”. 

• ID_Simulation - the identification number of a simulation. 

• APC_max_1, APC_max_2, etc. - variant allele frequencies for APC gene with descending order.

• KRAS_max_1, KRAS_max_2, etc. - variant allele frequencies for KRAS gene with descending

order. 

• TP53_max_1, TP53_max_2, etc. - variant allele frequencies for TP53 gene with descending

order. 

• PIK3CA_max_1, PIK3CA_max_2, etc. - variant allele frequencies for PIK3CA gene with de-

scending order. 

Table 4 shows the first several rows of the dataset for initial parameters for each sim-

lation. It has information about probabilities of the environment death, parameters of sig-

oid function for apoptosis death, etc. and also weights between cancer hallmarks and driver

enes [2 , 3] . The file “Initial_parameters_Discrete_ALL.txt” has the same structure but the data

re discrete. Table 5 shows how the weights from input file correspond to the hallmarks of

ancer. The weights here are a quantitative representation of qualitative dependencies from

he dataset of somatic cancer genetics at high-resolution (COSMIC) [3] . For each simulation,

he values of weights from Table 5 are written as a row vector in Table 4 . The files “Com-

action_Factor_Discrete_ALL.txt” and “Compaction_Factor_Continuous_ALL.txt” have the same

tructure and contain the input data of compaction factors ( Table 6 ). The hallmarks are denoted

s an abbreviation, for example, Ha – apoptosis hallmark (see Table 5 ). 

• ID_Simulation - identification number of a simulation. 

• Mutated_Gene – the name of a driver gene for an initial cell. 

• coefficients and initial probabilities in the simulator tugHall [2] : 
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Table 4 

The dataset of initial parameters from the file “Initial_parameters_Continuous_ALL.txt”. 

ID_Simulation Mutated_Gene E0 F0 m0 uo us s0 k0 d0 w_Ha_APC w_Ha_KRAS 

1 APC 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.2331 0.0452 

2 KRAS 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.2331 0.0452 

3 TP53 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.2331 0.0452 

4 PIK3CA 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.2331 0.0452 

5 APC 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.5064 0.0909 

6 KRAS 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.5064 0.0909 

7 TP53 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.5064 0.0909 

8 PIK3CA 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.5064 0.0909 

9 APC 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.4810 0.0673 

10 KRAS 1e-04 10 0 0.5 0.5 10 0.2857143 0.5 0.4810 0.0673 

Columns from 13 to 20 of dataset 

w_Ha_TP53 w_Ha_PIK3CA w_Hb_KRAS w_Hb_TP53 w_Hb_PIK3CA w_Hd_APC w_Hd_KRAS w_Hd_TP53 

0.2948 0.4269 0.7011 0.0443 0.2546 0.4575 0.0053 0.4664 

0.2948 0.4269 0.7011 0.0443 0.2546 0.4575 0.0053 0.4664 

0.2948 0.4269 0.7011 0.0443 0.2546 0.4575 0.0053 0.4664 

0.2948 0.4269 0.7011 0.0443 0.2546 0.4575 0.0053 0.4664 

0.0501 0.3526 0.5761 0.3964 0.0275 0.0628 0.4 84 8 0.2487 

0.0501 0.3526 0.5761 0.3964 0.0275 0.0628 0.4 84 8 0.2487 

0.0501 0.3526 0.5761 0.3964 0.0275 0.0628 0.4 84 8 0.2487 

0.0501 0.3526 0.5761 0.3964 0.0275 0.0628 0.4 84 8 0.2487 

0.2829 0.1688 0.0586 0.7028 0.2386 0.4786 0.0091 0.2528 

0.2829 0.1688 0.0586 0.7028 0.2386 0.4786 0.0091 0.2528 

Columns from 21 to last one of dataset 

w_Hd_PIK3CA w_Hi_KRAS w_Hi_TP53 w_Him_APC w_Him_KRAS w_Him_TP53 w_Him_PIK3CA 

0.0708 0.0448 0.9552 0.1350 0.3402 0.3727 0.1521 

0.0708 0.0448 0.9552 0.1350 0.3402 0.3727 0.1521 

0.0708 0.0448 0.9552 0.1350 0.3402 0.3727 0.1521 

0.0708 0.0448 0.9552 0.1350 0.3402 0.3727 0.1521 

0.2037 0.2881 0.7119 0.5486 0.2305 0.1311 0.0898 

0.2037 0.2881 0.7119 0.5486 0.2305 0.1311 0.0898 

0.2037 0.2881 0.7119 0.5486 0.2305 0.1311 0.0898 

0.2037 0.2881 0.7119 0.5486 0.2305 0.1311 0.0898 

0.2595 0.6228 0.3772 0.1176 0.0958 0.2540 0.5326 

0.2595 0.6228 0.3772 0.1176 0.0958 0.2540 0.5326 

Table 5 

Keys for the weights between hallmarks and genes. 
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Table 6 

The dataset of the values of compaction factors from the file “Compaction_Factor_Continuous_ALL.txt”. 

ID_Simulation Ha Hb Hd Hi Him 

1 0.4319 0.4327 0.9394 0.9400 0.5426 

2 0.6446 0.7303 0.9352 0.9964 0.2173 

3 0.3657 0.3544 0.4082 0.3846 0.9489 

4 0.5659 0.2147 0.3671 0.7229 0.6605 

5 0.8507 0.8126 0.4048 0.8700 0.1073 

6 0.3378 0.1917 0.3279 0.7194 0.1554 

7 0.5588 0.8295 0.3076 0.4590 0.5643 

8 0.1922 0.6409 0.8168 0.2721 0.3254 

9 0.3163 0.7428 0.9025 0.8220 0.5055 

10 0.5653 0.1143 0.2902 0.5740 0.6546 

Fig. 1. Flowchart of the procedure for simulations, using 4 models, 3 initial conditions and 2 types of values. 
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◦ E0 – the environmental variable gives the maximum number for logistic growth as 1/E0, 

◦ F0 – this parameter serves to extend the maximum cell number defined by E0, through

angiogenesis, 

◦ m0 – parameter to define the probability of point mutation, 

◦ uo, us – the probabilities that oncogenes and suppressor genes are impaired by point

mutations, respectively, 

◦ s0 – coefficient in sigmoid function, 

◦ k0 - the probability of environmental death, 

◦ d0 – the initial probability of division. 

• w_Ha_KRAS, w_Ha_TP53, w_Ha_PIK3CA, w_Hb_KRAS, etc. – the weights between cancer hall-

marks and genes (kindly see Table 5 ). 

. Experimental Design, Materials and Methods 

Fig. 1 shows the flowchart of the procedure for simulations, using 4 models, 3 initial con-

itions and 2 types of input data. Therefore, there are 24 types of simulations ( Table 2 ). The

rocedure includes 4 models with a common part that are fully described in the supplementary

aterials of the manuscript [2] . There are differences in a few conditions for hallmarks and the

nitial clones. Models are divided by two criteria: 
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Table 7 

Relations between models’ names and parameters of models: the condition of invasion/metastasis transformation and 

presence or absence of compaction factors. 

With compaction factor Without compaction factor 

Condition i m 

′ = 1 CF_STRONG STRONG 

Condition i m 

′ 
> 0 CF_WEAK WEAK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- The compaction factor c - with or without compaction factor. The c ∈ [0.1; 1] is compaction

factor in the dependencies H x = c x ·
N genes ∑ 

k =1 

g k · w k , where g k = 1 when function of gene k is de-

stroyed, and g k = 0 for normal state, w k is a weight for related gene. The index x relates to

the hallmarks [4] : H x = { H a , H b , H i , H d , H im 

} and c x = { c a , c b , c i , c d , c im 

} . 
- The invasion/metastasis transformation condition: i m 

′ = 1 (strong condition) or i m 

′ > 0

(weak condition). 

So, there are 4 models: with and without compaction factors, and with the strong

or weak condition of invasion/metastasis transformation ( Table 7 ). Discrete and continu-

ous weights define the value type of weights ( Fig. 1 ). Firstly, the generation of initial

parameters occurs with the saving them to the files “Initial_parameters_Discrete.txt” and

“Initial_parameters_Continuous.txt”, also the files “Compaction_Factor_Continuous.txt” and 

“Compaction_Factor_Discrete.txt” include the values of compaction factors for each simulation. 

The dataset has three cases for initial clones: 

CASE I: “Mutated_cell” with few exceptions, the tumor cell population(s) in a human, in-

cluding metastatic one, are originated from only one cell (clonal mutations) [5] . So, the clones

usually have a single common ancestor. That is why we set one possibility to start from just one

primary cell. If we start from 1 cell in simulation, however, the cell population becomes extinct

in most cases. In the case of extinction, we have to automatically “restart” the simulation (by

default we set 100 as the number of restarting). The restarting function is implemented as an

additional part of this case. To accelerate the simulation the initial primary cell should have a

driver mutation at one gene (the column “Mutated_Gene” in Table 4 ). 

CASE II: “Thousand_cells” another case is to start from 10 0 0 primary cells in order to in-

crease the probability of mutation in one simulation and decrease computational cost. However

in this case there are possibly several tumors originated from different normal cells and the

tumors do not share any mutations. 

CASE III: “Mutated_cell_in_Thousand_cells” and the third case is a combination of two pre-

vious cases. We start with 10 0 0 primary cells, where one cell has a driver mutation. 

The flowchart in Fig. 1 shows the procedure of each simulation. tugHall gets initial parame-

ters and (if it is needed) compaction factors related to simulation ID. The weights for hallmarks-

genes relations are generated in accordance with statistics data of the Catalogue of Somatic Mu-

tations in Cancer [3] . Then it chooses the case of the initial cell and a model. After the simulation

tugHall saves VAF to the file. Finally, Approximate Bayesian computation (ABC) uses the dataset

of VAF to get personalized weights related to the VAF of a patient, for example, in our works

[2 , 6] we used VAF of patients from the open datasets of the Cancer Genome Atlas [7] . 

For calculations, the supercomputer SHIROKANE was used [8] . To get a large number of sim-

ulations, we designed a new version of tugHall v.2.1 [6] that allows to accelerate the calculations

up to 10 4 times in comparison with version 1.0. In R script the parallel library was used, which

allows making parallel simulation in one node/computer with many cores. For usage of multiple

nodes, an array job was used (one job for each node with parallel simulations at each node). The

number of jobs was 40 with 10,0 0 0 simulations for each type of simulation. The computational

cost was around 44 −47 h per job or node with 24 cores. In total 960 processors for 47 h were

used for 9.6 million trials of 24 types of simulations. 
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