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Abstract: Single mutations can confer resistance to antibiotics. Identifying such mutations can help
to develop and improve drugs. Here, we systematically screen for candidate quinolone resistance-
conferring mutations. We sequenced highly diverse wastewater E. coli and performed a genome-wide
association study (GWAS) to determine associations between over 200,000 mutations and quinolone
resistance phenotypes. We uncovered 13 statistically significant mutations including 1 located at the
active site of the biofilm dispersal gene bdcA and 6 silent mutations in the aminoacyl-tRNA synthetase
valS. The study also recovered the known mutations in the topoisomerases gyrase (gyrA) and
topoisomerase IV (parC). In summary, we demonstrate that GWAS effectively and comprehensively
identifies resistance mutations without a priori knowledge of targets and mode of action. The results
suggest that mutations in the bdcA and valS genes, which are involved in biofilm dispersal and
translation, may lead to novel resistance mechanisms.

Keywords: E. coli; quinolones; antibiotic resistance; genome-wide association study (GWAS)

1. Introduction

In the 1960s, an impurity during the synthesis of the antimalarial chloroquine led to the
discovery of nalidixic acid [1,2]. Two years after its introduction to the market, resistances
were observed, but it took even more years before the drug’s targets and mechanism
of action were understood [1,3]. In 1964 and 1990, gyrase (gyrA) and topoisomerase IV
(parC) were discovered as the drug’s primary and secondary targets, respectively [1].
Subsequently, improved derivatives of nalidixic acid were found, such as norfloxacin,
ciprofloxacin, and then levofloxacin. Today, there are over 20 fluoroquinolones on the
market. Generally, fluoroquinolones act by converting their targets, gyrase (gyrA) and
topoisomerase IV (parC), into toxic enzymes that fragment the bacterial chromosome [4].
With the wide use of quinolones, however, bacteria developed resistances through several
routes such as increased expression of efflux pumps, which transport drugs outside the
bacterial cell, or horizontal gene transfer of resistance genes, whose gene products bind to
the quinolone targets [4]. However, the most direct route to resistance is mutations in the
drug targets gyrA and parC. Specifically, changes in the amino acids Ser83 and Asp87 of
gyrA and Ser80 of parC confer resistance [4,5] to quinolones.

The discovery of these mutations was driven by a deep understanding of the mecha-
nism of action of quinolones. Already over 50 years ago, Crumplin et al. suggested that
“a comparative study of [ . . . ] mutants and otherwise isogenic bacteria should facilitate
identification of the hitherto unknown [ . . . ] target” [3], which was at the time not possible
on a genome-wide scale. This changed with the advent of deep sequencing technology.
Thus, we want to complement the original hypothesis-driven approach to understand re-
sistance [3] with a hypothesis-free, high-throughput approach, in which we systematically
evaluate the mutational landscape of resistant and susceptible bacteria. In the other words,
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we screen entire bacterial genomes of many isolates and correlate them to patterns of the
isolates’ susceptibility and resistance. This approach termed genome-wide association
study, GWAS, rose with the advent of deep sequencing and was initially applied to human
genomes and disease phenotypes [6]. Recently, the success of human GWAS sparked
interest in microbial GWAS [7,8]. Genome-wide associations in bacteria are challenging, as
clonal reproduction in bacteria leads to a nonrandom association of alleles at different loci
(linkage disequilibrium (LD)) and population structure [8,9].

As an example for the dependencies of loci (linkage disequilibrium), the mutations in
gyrA and parC correlate with each other, as they belong to the same resistance mechanism.
However, following terminology from cancer biology, all of them are driver mutations,
which cause clonal expansion in contrast to passenger mutations, which do not influence
the fitness of a clone [10]. Driver mutations may impact clonal expansion directly by
changing the amino acid sequence (nonsynonymous mutations) and thus protein structure
or function, or they may act indirectly as synonymous mutations without changes to
the amino acid sequence. Synonymous mutations may affect splicing, RNA stability,
RNA folding, translation, or cotranslational protein folding [11]. Kimchi et al. showed
that a synonymous mutation in the multidrug resistance gene MDR1 altered drug and
inhibitor interactions [12]. Thus, a genome-wide association study aiming to uncover novel
resistance mechanisms should consider both nonsynonymous and synonymous mutations,
whose loci are not in linkage disequilibrium with those of already known mechanisms.

The population structure of E. coli is predominantly clonal, allowing the delineation
of major phylogenetic groups, the largest being A (40%), B2 (25%), and B1 and D (both
17%) [13]. Therefore, any model of a genome-wide association study in E. coli should
accommodate these groups. Interestingly, the groups also relate to pathogenicity: commen-
sal E. coli, as e.g., found in human intestines, are more likely to belong to A and B1, and
pathogenic E. coli are more likely to belong to B2 and D.

Generally, E. coli genomes vary in size between 4000 and 5500 genes, of which only
half are shared by all E. coli [14]. These genes, which are common to all E. coli, define
the core genome. In contrast to the core genome, the pan-genome is defined as the entire
set of genes in a population appearing at least in one genome. The E. coli pan-genome
exceeds 13,000 genes and has possibly no limit due to the bacteria’s ability to absorb genetic
material [14]. Besides the pan-genome and core genome, Chattopadhyay et al. [15] used
the term “core variome” to refer to the core genes’ variome, for E. coli and Salmonella.
Additionally, in a nonbacterial context, the term “pan-cancer variome” is used to refer to
the variomes shared by several types of cancer [16]. However, we define the pan-variome
and core-variome in a manner similar to the pan-genome and core-genome. The former
is defined as the mutations shared by all genomes, and the latter refers to the mutations
present in at least one genome. Mutations correlating with resistance will—by definition—
not be part of the core-variome. Hence, it is important for a genome-wide association study
that there is a significant gap in size between core-variome and pan-variome.

E. coli pathotypes are well recognized as one of the major sources of human infec-
tion. Their effectiveness as pathogens has been linked to their development of antibiotic
resistance. To date, it is not fully understood, how antibiotic resistance develops. It is
ancient and inherent to bacteria [17] and can therefore be found in the natural environment.
However, with the wide use of antibiotics, major sources of resistant bacteria are clinics
and wastewater [18]. In particular, the latter plays an important role, since treatment plants
act as melting pots for bacteria of human, clinical, animal, and environmental origin [18].
The high genetic diversity of a clinical E. coli population was substantially exceeded by
a wastewater population [19], which makes wastewater E. coli a suitable source for a
GWAS analysis.

In this study, we collected 1178 E. coli isolates from the municipal wastewater treatment
plant in Dresden, Germany. The resistance of these isolates against 20 antibiotics, including
quinolones, was measured using the agar diffusion method. Finally, 103 sequences that are
representative in terms of resistance for the 20 antibiotics were sequenced. In our previous
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work, Mahfouz et al. [19] correlated genes in this dataset with a resistance phenotype.
However, here, we looked for the variants associated with the resistance. To do so, we
employed a computational approach and implemented variant calling on these genomes
and then determined associations between the identified mutations and resistance levels of
four quinolones covering first to third generations (nalidixic acid, norfloxacin, ciprofloxacin,
and levofloxacin). We also considered population structure and dependencies among
mutations. Building on the gyrA and parC mutations as positive controls, we characterized
the quantity and quality of the mutational resistance landscape. We investigated whether
there are resistance mutations beyond the ones in gyrA and parC and whether they may
open new avenues for future drug discovery. In summary, we aimed to show that a
bacterial genome-wide association study can effectively and comprehensively identify
targets relevant to antibiotic resistance (see Figure 1).

1 
 

 
Figure 1. Wastewater E. coli were phenotyped and sequenced. Variants were called and correlated to quinolone resistance
in a GWAS study resulting in novel candidate resistance mutation.

2. Results

We aimed to identify mutations that correlate with quinolone resistance. After ex-
tracting raw variants from 99 wastewater E. coli genomes, we reduced raw to high-quality
variants. We also evaluated the variome diversity of our samples (the pan-variome analysis)
as a prerequisite for GWAS. Next, we explored the population structure of our samples to
be considered in our GWAS. Then, we applied association analysis between variants and
antibiotic resistance phenotypes to reduce high-quality to highly significant variants. The
highly significant variants consist of the known mutations in gyrA and parC (our positive
control) and some novel synonymous and nonsynonymous mutations. Next, we verified
that the loci of new mutations are not in linkage disequilibrium with those of positive
control. Finally, we looked into the biological function of the genes with novel variants. For
the novel nonsynonymous mutation, we investigated its 3D structure and also checked its
frequency among other antibiotics as well as the complete E. coli genomes available from
the NCBI and other Gammaproteobacteria from Eggnog.

2.1. From Raw to High-Quality Variants

From the genomes, we extracted 457,554 raw variants, which we subjected to quality
control steps resulting in 206,633 high-quality variants. Filtering rare variants, which
appear in less than 5% of isolates, led to the greatest reduction in mutations of nearly 50%
(see Table 1). This is an indication of a big gap between the pan-variome and core variome,
which we discuss next.
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Table 1. Quality control (QC): reduction of some 457,000 raw variants to 206,633 high-quality variants. Filtering the rare
variants (based on MAF) is the main filter.

Step Change Mutations Description and Configuration

1. Variant calling 457,554
Call germline SNPs and indels via local reassembly of haplotypes

Using GATK (HaplotypeCaller)
–sample-ploidy 1

2. Hard filters −2% 449,017

Filter the resulting callset
Using GATK (VariantFiltration and SelectVariants)

For SNPs:
–filter-expression ”QUAL < 30.0”

Qual is the Phred-scaled probability that a REF/ALT
polymorphism exists at this site given sequencing data.

–filter-expression ”QD < 2.0”
QD is variant confidence (from the QUAL field) normalized by

unfiltered depth of variant samples.
–filter-expression ”FS > 60.0”

FS is the strand bias estimated using Fisher’s exact test.
For INDELs:

–filter-expression ”QUAL < 30.0”
–filter-expression ”QD < 2.0”

–filter-expression ”FS > 200.0”

3. Filtering by GQ and
missingness −15% 382,922

Filter variants with low-quality assigned genotype (GQ) and high
missingness (>15%)

Using GATK (VariantFiltration and SelectVariants)
–filter-expression ”GQ < 20”

–max-nocall-fraction 0.15

4. Splitting alternative
alleles +8% 413,283

Split variants with multiple alternative alleles into multiple records
Using BCFtools

norm –m

5. Filtering by MAF −50% 206,633

Exclude rare variants with minor allele frequency
(MAF < 5%)
Using Pyseer
–min-af 0.05

2.2. Pan-Variome and Core Variome

For a genome-wide association study, it is vital that the mutations spread across the
isolates. To characterize the distribution and diversity of the high-quality mutations, we
computed the core-variome and the pan-variome (see Figure 2). The core-variome reflects
the number of variants shared by a given number of genomes. In contrast, the pan-variome
is the number of variants that exist in at least one genome within the given number of
genomes, thus reflecting the total diversity of variants present in all genomes. As expected,
the pan-variome grows fast, and the core-variome tails off fast. As seen in the same figure,
for 20 genomes, the pan-variome consists already of some 256,000 variants, while the
core-variome is reduced to some 600 variants. This means that there are only very few
variants that are shared across many or even all of the genomes. Similarly, the graph for
the pan-variome continually grows. Each added genome contributes new variants until
the pan-variome reaches 413,283 variants (206,633 high-quality plus 206,650 rare variants)
in total. Overall, the distribution of variants is thus suitable for GWAS as the core-variome
and pan-variome are significantly different in size.
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on distances between isolates, calculated based on high-dimensional vectors of all muta-
tions, as well as hierarchal clustering on the vectors of presence and absence of variants. 
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Figure 3. (a) Multidimensional scaling plot (MDS) on distances between isolates, calculated based on high-dimensional 
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2.4. From High-Quality to Highly Significant Variants 

Figure 2. (a) Pan-variome (union of variants) and (b) core-variome (intersection of variants) of 206,633 high-quality and
206,650 rare variants (413283 in total). The standard deviation is added as error bars around the mean value for 1000
iterations. Most variants appear only in a few of the isolates.

2.3. Phylogenetic Groups and Population Structure

A key ingredient of the GWAS model is the population structure. We applied MDS on
distances between isolates, calculated based on high-dimensional vectors of all mutations,
as well as hierarchal clustering on the vectors of presence and absence of variants. We
identified four clusters (Figure 3), which broadly correspond to phylogenetic groups A,
B1, B2, and D. Thus, our GWAS model correctly caters to the main E. coli lineages. After
applying GWAS, we assessed the control of our study over the population structure using
QQ plots.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 15 
 

 

in total. Overall, the distribution of variants is thus suitable for GWAS as the core-variome 
and pan-variome are significantly different in size. 

  

(a) Pan-variome (b) Core variome 

Figure 2. (a) Pan-variome (union of variants) and (b) core-variome (intersection of variants) of 206,633 high-quality and 
206,650 rare variants (413283 in total). The standard deviation is added as error bars around the mean value for 1000 
iterations. Most variants appear only in a few of the isolates. 

2.3. Phylogenetic Groups and Population Structure 
A key ingredient of the GWAS model is the population structure. We applied MDS 

on distances between isolates, calculated based on high-dimensional vectors of all muta-
tions, as well as hierarchal clustering on the vectors of presence and absence of variants. 
We identified four clusters (Figure 3), which broadly correspond to phylogenetic groups 
A, B1, B2, and D. Thus, our GWAS model correctly caters to the main E. coli lineages. After 
applying GWAS, we assessed the control of our study over the population structure using 
QQ plots. 

 
Figure 3. (a) Multidimensional scaling plot (MDS) on distances between isolates, calculated based on high-dimensional 
vectors of all mutations. Four clusters are found, which reflect the population structure in the GWAS model and which 
broadly coincide with phylogroups A, B1, B2, and D. (b) Hierarchical clustering on the vectors of presence/absence of 
variants for different isolates, where the presence of a variant is shown by black and its absence by gray. 

2.4. From High-Quality to Highly Significant Variants 

Figure 3. (a) Multidimensional scaling plot (MDS) on distances between isolates, calculated based on high-dimensional
vectors of all mutations. Four clusters are found, which reflect the population structure in the GWAS model and which
broadly coincide with phylogroups A, B1, B2, and D. (b) Hierarchical clustering on the vectors of presence/absence of
variants for different isolates, where the presence of a variant is shown by black and its absence by gray.

2.4. From High-Quality to Highly Significant Variants

We carried out a GWAS study to determine associations between the high-quality
variants and resistance levels of the four quinolones investigated (nalidixic acid, norfloxacin,
ciprofloxacin, and levofloxacin). To check for the control of our GWAS over the population
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structure, we plotted p-values expected under randomness against observed p-values (see
QQ plots in Figure 4). The plots confirm that the correction for population structure was
satisfactory, as a deviation from the null hypothesis (the identity line) is only evident
at the tail of the plots. Next, we visualized the results of the GWAS using Manhattan
plots, which reveal that there are some highly significant variants passing the rigorous
Bonferroni-corrected p-value (the horizontal line).
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In total, we obtained 13 highly significant variants, 3 in gyrA (position = 2339162,
allele = T, effect = D87N; position = 2339173, allele = A, effect = S83L) and parC
(position = 3165735, allele = A, effect = S80I) and 10 novel candidate variants in the
five genes bdcA (position = 4473651, allele = T, effect = G135S), valS (position = 4481639,
allele = A, effect = R733; position = 4481393, allele = A, effect = N815; position = 4481216,
allele = T, effect = E874; position = 4482482, allele = A, effect = D452; position = 4482443,
allele = A, effect = V465; position = 4482440, allele = T, effect = L466), lptG (position = 4487635,
allele = A, effect = V106), lptF (position = 4486808, allele = A, effect = Q197), and ivy (posi-
tion = 240711, allele = T, effect = T123) (see Table 2). The variant in bdcA leads to an amino
acid change, while the remaining nine do not. Across all four quinolones, the mutations in
gyrA and parC ranked highest, thus confirming the validity of the approach taken (Table 2).
As shown in the table, the frequency and effect sizes of the novel candidate variants are on
a par with the positive controls. This means that the existence of an effect (p-value) and
the size of the effect (beta) are both given. While all variants pass the Bonferroni-corrected
p-value threshold (5.21 × 10−7), the positive controls exceed it very substantially (Table 2).
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Table 2. Mutations significantly correlating with quinolone resistance. The dotted line separates synonymous and
nonsynonymous variants. Freq. is the relative frequency among isolates, beta is the effect size, and SE is the standard error
of the fit on beta. Effect size is similar for all, and p-values differ.

Quinolone Position Allele Gene Effect Freq. Beta SE Call Rate p-Value

3165735 A parC S80I 0.08 −1.56 0.20 100% 2.43 × 10−12

2339162 T gyrA D87N 0.08 −1.56 0.20 100% 2.43 × 10−12

2339173 A gyrA S83L 0.15 −1.20 0.16 99% 4.47 × 10−12

4473651 T bdcA G135S 0.05 −1.58 0.29 90% 1.35 × 10−7

Levofloxacin 4481639 A valS R733 0.07 −1.15 0.24 100% 4.09 × 10−9

4481393 A valS N815 0.12 −1.11 0.20 100% 6.79 × 10−8

4481216 T valS E874 0.16 −1.61 0.29 100% 7.09 × 10−8

4482482 A valS D452 0.05 −1.58 0.29 100% 1.35 × 10−7

4482443 A valS V465 0.05 −1.58 0.29 100% 1.35 × 10−7

4482440 T valS L466 0.05 −1.58 0.29 100% 1.35 × 10−7

4486808 A lptF Q197 0.05 −1.58 0.29 100% 1.35 × 10−7

4487635 A lptG V106 0.05 −1.58 0.29 100% 1.35 × 10−7

3165735 A parC S80I 0.08 −2.29 0.22 100% 1.10 × 10−18

2339162 T gyrA D87N 0.08 −2.29 0.22 100% 1.10 × 10−18

2339173 A gyrA S83L 0.15 −1.59 0.19 99% 9.25 × 10−14

4473651 T bdcA G135S 0.05 −2.01 0.36 90% 7.56 × 10−8

Norfloxacin 4481639 A valS R733 0.07 −1.85 0.30 100% 5.24 × 10−9

4481216 T valS E874 0.16 −2.03 0.35 100% 4.36 × 10−8

4481393 A valS N815 0.12 −1.39 0.25 100% 5.40 × 10−8

4482482 A valS D452 0.05 −2.01 0.36 100% 7.56 × 10−8

4482443 A valS V465 0.05 −2.01 0.36 100% 7.56 × 10−8

4482440 T valS L466 0.05 −2.01 0.36 100% 7.56 × 10−8

4486808 A lptF Q197 0.05 −2.01 0.36 100% 7.56 × 10−8

4487635 A lptG V106 0.05 −2.01 0.36 100% 7.56 × 10−8

240711 T ivy T123 0.05 −2.00 0.36 100% 1.04 × 10−7

3165735 A parC S80I 0.08 −1.90 0.25 100% 7.37 × 10−12

Ciprofloxacin 2339162 T gyrA D87N 0.08 −1.90 0.25 100% 7.37 × 10−12

2339173 A gyrA S83L 0.15 −1.22 0.22 99% 7.13 × 10−8

Nalidixic acid 2339173 A gyrA S83L 0.15 −1.57 0.24 99% 1.32 × 10−9

2.5. Loci of Novel Candidate Variants Are Not in LD with Loci of Positive Controls

To check the independence of the significant variants from one another, we measured
the linkage disequilibrium (LD) for the loci of these variants (see Figure 5). The loci of
known quinolone resistance-conferring variants, gyrA S83L, gyrA D87N, and parC S80I, are
in LD. They are located at the sites where the drugs bind to gyrA and parC and ensure the
correct function of the gene products despite treatment. The loci of 10 novel variants are
not in LD with those of known resistance-conferring variants, which suggests that they
confer resistance by a different mechanism from gyrA and parC. Among the novel loci,
there are dependencies. In particular, the locus of the nonsynonymous variant in bdcA is in
LD with loci of synonymous mutations in valS. This may mean that these novel variants
act in a shared mechanism, which raises the question of whether the biological functions of
the novel mutations can be linked to antibiotic resistance.
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2.6. Biological Function of bdcA

The bdcA gene plays a role in biofilm dispersal [20,21], and biofilm formation generally
increases antimicrobial resistance [22,23]. It could be hypothesized that a variant in this
gene disrupts biofilm dispersal and leads to biofilm formation and resistance. However,
while this may happen in nature, it is unclear whether this effect is also present in the
disk diffusion assay underlying the present data. This gene is present in nearly all isolates
(85–90% in our data and NCBI data), which means that it is close to being a core gene, but
that it is not essential for survival.

2.7. Biological Function of valS

The valS gene product is an aminoacyl-tRNA synthetase (aaRS), which charges tRNA
encoding valine with the valine amino acid. The aaRS enzymes are promising targets for
antimicrobial development [24,25] as targeting them can inhibit the translation process,
cell growth, and finally cell viability. Although aaRS enzymes are not known as direct
quinolone targets, there is evidence that nonsynonymous mutations in aaRS enzymes
increase ciprofloxacin resistance by upregulating the expression of efflux pumps [26]. In
our data, we found synonymous valS mutations for ciprofloxacin to just miss satisfying the
p-value cut-off (Supplementary data). For levofloxacin and norfloxacin, they passed the
cut-off. valS provides a very basic function and is a core gene present in all isolates.

2.8. Biological Function of ivy

The gene product of ivy is a strong inhibitor of lysozyme C. Expression of ivy protects
porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is
a response against the permeabilizing effects of the innate vertebrate immune system.
As such, ivy acts as a virulence factor for a number of Gram-negative bacteria infecting
vertebrates [27].

2.9. Biological Function of lptG and lptF

The gene products of lptG and lptF are part of the ABC transporter complex LptBFG
involved in the translocation of lipopolysaccharide from the inner membrane to the outer
membrane. Thus, there is no direct connection to antibiotic resistance; however, the link to
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transport is in line with other resistance mechanisms such as increased expression of efflux
pumps [28].

2.10. Analyzing the Novel Nonsynonymous Mutation (bdcA G135S)
2.10.1. Structural Analysis

To shed more light on the nonsynonymous variant bdcA G135S, we explored its protein
structures (Figure 6). The variant Gly135Ser in bdcA is in the vicinity of the active site
residues Ser132 and Tyr146 [20]. Serine is bigger than glycine, and it may influence a loop
formed by the residues 136–144 and thus regulate the active site, which may influence
biofilm dispersal.
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2.10.2. Variant bdcA G135S Wrt. Other Antibiotics

For bdcA G135S, we wanted to understand whether its role in antibiotic resistance is
limited to quinolones or not. For 16 other antibiotics, there were variants that significantly
correlated with resistance (see Supplementary data). For all antibiotics but tobramycin, the
bdcA mutation is not significant. This suggests that bdcA G135S may act independently
of fluoroquinolone, which would be consistent with biofilm formation being a general
mechanism independent of fluoroquinolone.

2.10.3. Variant bdcA Wrt. E. coli

Next, we wanted to know whether the prevalence of bdcA G135S in our data is
representative of other E. coli genomes. In 1340 complete E. coli genomes available from the
NCBI, we could find the bdcA gene in 1209 genomes and bdcA G135S in 24. Thus, about 2%
of genomes carry this mutation, which is slightly less than but still comparable to the 5%
present in our data.

2.10.4. Variant bdcA Wrt. Other Gammaproteobacteria

BdcA is present in other bacteria. We investigated Gammaproteobacteria, which
comprise Pseudomonadaceae besides enterobacteria. We analyzed 152 bdcA sequences
retrieved from Eggnog 5.0 and found alanine most frequently (65%) and glycine less
frequently (24%). Serine appeared in 2% of the species, which may mean that the resistance
mechanism is not limited to E. coli.

3. Discussion

It took around 30 years to move from the discovery of nalidixic acid to the discovery of
its targets and mechanism of action. Here, we have shown that sequencing and phenotyp-
ing data of a small number of genomes from a single site are sufficient for a GWAS model
to reveal the quinolone targets (gyrA and parC) with a very high statistical significance
(p-value in the range of 1 × 10−18 to 7 × 10−8). Besides gyrA and parC, which passed
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our p-value cut off (5.21 × 10−7), we could find mutations in less-studied genes involved
in modifying target enzymes, such as gyrB and parE, as well as in the genes involved in
alterations of permeation, such as acrB, ompC, mdtK (norE), and mdfA, which did not pass
our p-value cutoff but were mildly significant (p-value around 5 × 10−3). We believe that
having a bigger dataset could lead to a more significant association between mutations in
these genes and quinolone resistance.

Furthermore, our GWAS model revealed 10 new mutations, whose significance in
relation to quinolone resistance passed our p-value cut-off. The most promising mutation
is G135S in the biofilm dispersal gene bdcA, which is present in nearly all isolates but is not
essential for E. coli survival [29]. Mapping the bdcA mutation onto a protein structure of
BdcA revealed its location on the surface of the protein and close to the active site. Hence,
this suggests an impact on enzymatic activity, which may influence biofilm dispersion
and hence indirectly relate to antibiotic resistance. Ma et al. showed that E. coli BdcA
controls biofilm dispersal in Pseudomonas aeruginosa [30], which were the most abundant
Gammaproteobacteria containing bdcA in our analysis. This indicates that mutations in
E. coli bdcA may act indirectly on antibiotic resistance. If BdcA consequently emerges as
a novel drug target, then the next steps in drug development could target the active site
with residues S132 and Y146, which are in direct proximity to the mutation bdcA G135S.
Importantly, bdcA G135S is a novel candidate resistance mutation as its locus is not in LD
with loci of the known mutations in gyrA and parC.

We found bdcA G135S in 5% of the analyzed genomes, which appears in line with a
prevalence of 2% in 1209 other E. coli genomes obtained from the NCBI. We also checked
the presence of these mutations in other Gammaproteobacteria and revealed that bdcA is
present and well conserved but that the mutation appears specific to E. coli. Furthermore,
we also checked whether bdcA G135S correlates with resistance to non-quinolone antibiotics.
This was the case for tobramycin, an aminoglycoside, but not for all other examined
antibiotics. Isolates with the bdcA G135S mutation belonged to the phylogenetic group A,
which is less likely to contain pathogenetic isolates. Phylogroup A is equally abundant
in human feces and wastewater [31], which may point to an origin of the mutation in a
human rather than a natural environment.

Besides bdcA G135S, we found nine synonymous mutations whose mechanism of
action is likely to be indirect. Most interesting are the abundant mutations in the aminoacyl-
tRNA synthetase valS, which has an essential role in protein synthesis and is part of the
core genome and therefore present in all isolates. Furthermore, it is classified as an essential
gene [29]. It may be a suitable drug target [32] due to its evolutionary divergence between
prokaryotic and eukaryotic enzymes and high conservation across different bacterial
pathogens, as well as its solubility, stability, and ease of purification. However, since the
mutations in valS were synonymous, they will not exert a direct structural or functional
effect on their gene product but may act indirectly.

In summary, bdcA G135S and the discovered silent mutations are statistically signifi-
cantly correlated with quinolone resistance (p-value in the range of 4 × 10−9 to 1 × 10−7)
in wastewater E. coli. They appear to be mostly specific to E. coli and to quinolones and
independent of known resistance-conferring mutations. Further research is needed to
corroborate the correlation between these mutations and quinolone resistance and to shed
light on the molecular mechanism leading to resistance.

4. Materials and Methods
4.1. Sampling, Phenotyping, and Sequencing

We collected 1178 E. coli isolates from the inflow and outflow of the municipal wastew-
ater treatment plant in Dresden, Germany [19]. The isolates were phenotyped using
the agar diffusion method for 20 commonly prescribed antibiotics, including the four
quinolones nalidixic acid, norfloxacin, ciprofloxacin, and levofloxacin. Considering the iso-
lates’ resistance to these 20 antibiotics, 103 phenotype-representative isolates were selected
for whole-genome sequencing with Illumina MiSeq (available from NCBI’s SRA database,
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PRJNA380388: https://www.ncbi.nlm.nih.gov/sra/PRJNA380388); see [19] for more de-
tails. The unbiased sampling and selection of representative phenotypes were important
for the subsequent GWAS analysis, which required both resistant and susceptible isolates.

4.2. Sequence Processing and Quality Control

Reads were mapped onto E. coli K12 MG1655 with the Burrow-Wheeler Aligner
(BWA) v0.7.12 and sorted with Picard v1.105. Variants were called using the genomic
analysis toolkit GATK 4.1.1.0 [33] with E. coli K12 MG1655 as reference. We filtered
variants following standard protocols [34] and the GATK best practices (for SNPs: QD < 2.0,
QUAL < 30.0, or FS > 60.0; for INDELs: QD < 2.0, QUAL < 30.0, or FS > 200.0). Variants
with low genotype quality (GQ < 20) and variants with high missingness among samples
(>15%) were removed. For more details regarding the filtering steps, see Table 1. To analyze
the association of each alternative allele separately, variants with multiple alternative alleles
were split into multiple records with BCFtools 1.7 [35]. Rare variants with minor allele
frequency (MAF) < 5% were excluded using Pyseer 1.3.0. Finally, variants were functionally
annotated using SnpEff 4.3T [36].

4.3. Pan-variome and Core-variome

In [37,38], a procedure was introduced to compute the pan-genome and core genome.
We extended this procedure to calculate the pan-variome and core-variome. The x-axis
in the pan-variome and core-variome plots (Figure 2) represents the number of randomly
selected genomes, from 1 to 99. The y-axis shows the size of the union (pan) and intersection
(core) of the variants for these randomly selected genomes. It should be noted that for each
number of the selected genomes, the process is repeated randomly over 1000 iterations.
Afterward, the average and standard deviation for the 1000 iterations are computed.

4.4. Phylogenetic Tree and Population Structure

We built a phylogenetic tree from the VCF file with VCF-kit 0.1.6 [39]. To detect
the outlier samples, we applied multidimensional scaling (MDS) on the distances in the
phylogenetic tree, and four isolates were detected as outliers. These isolates were removed
for the subsequent GWAS analysis. Next, the number of important components was
determined. To do so, we drew a scree plot for the eigenvalues of the MDS model. The
scree plot revealed component number 4 as the knee point. Therefore, we picked four
components to be used as covariates for the regression model to control for population
structure. To compare the results of the phylogenetic tree, built based on the variant
file (VCF file), and the phylogroups, constructed previously [19] based on the classical
classification by Clermont et al. [37,40], we visualized the MDS plot using the scatter3d
function of the plot3d R package and colored the samples based on the phylogroups. For
more verification, we applied hierarchical clustering with a dendrogram on the binary
matrix of presence/absence of variants for different samples and a side color based on
phylogroups using the heatmap function from the R package stats.

4.5. Genome-Wide Association Study (GWAS)

Generalized linear models were developed using Pyseer 1.3.0 [41] to determine the
significance of the association between each variant and each antibiotic. To do so, we
ran the fixed effects (SEER) model in this package to correlate our antibiotic resistance
data (diameter of inhibition zone in disk diffusion method) with the presence/absence of
our variants. We also added some covariates to our linear regression model to take the
population structure into account (see Section 4.4). To address the problem of multiple
comparisons, we calculated a Bonferroni-corrected significance threshold for our GWAS
analysis using the same tool. We visualized GWAS results with quantile–quantile (QQ) and
Manhattan plots using the R package qqman. We calculated the linkage disequilibrium
(LD) between the loci of significant variants using PLINK v1.90b6.10 [42]. The R package
LDheatmap [43] was used to visualize LD results.

https://www.ncbi.nlm.nih.gov/sra/PRJNA380388
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4.6. Analyzing the Novel Nonsynonymous Mutation (bdcA G135S)

The 3D structure of BdcA was retrieved from protein databank PDB (4PCV) and
visualized using PyMOL 2.2.0. To check the frequency of bdcA G135S in other E. coli
genomes, we downloaded 1340 E. coli genomes from NCBI (https://www.ncbi.nlm.nih.
gov/) (accessed on 27 October 2020) and identified the locus in each genome by searching
for an exact match of the 10-nucleotide-long sequence ATTCACGGAG, which follows
after the locus of the bdcA mutation and is conserved across all the retrieved genomes.
We also retrieved the multiple sequence alignment ENOG50 1RQ0S for bdcA across all
Gammaproteobacteria from Eggnog 5.0 [44]. Residue 135 in the ungapped bdcA sequence
was shifted to position 207 in the gapped multiple sequence alignment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22116063/s1, Supplementary data, spreadsheets, includes the top 100 most significantly
associated variants for 20 commonly prescribed antibiotics. The results for each antibiotic are shown
in one separate sheet.
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