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Abstract

Colorectal cancer (CRC) is still the third most common cancer and the second most common causes of cancer-related death
around the world. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been shown to
have a suppressive effect on CRC risk and mortality, but not all laboratory studies suggest that metformin has antineoplastic
activity. Here, we investigated the effect of metformin and AMPK activator AICAR on CRC cells proliferation. As a result,
metformin did not inhibit cell proliferation or induce apoptosis for CRC cell lines in vitro and in vivo. Different from
metformin, AICAR emerged antitumor activity and sensitized anticancer effect of 5-FU on CRC cells in vitro and in vivo. In
further analysis, we show that AMPK activation may be a key molecular mechanism for the additive effect of AICAR. Taken
together, our results suggest that metformin has not antineoplastic activity for CRC cells as a single agent but AMPK
activator AICAR can induce apoptosis and enhance the cytotoxic effect of 5-FU through AMPK activation.
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Introduction

Colorectal cancer (CRC) is still a leading cause of cancer-related

morbidity and mortality around the world, although a lot of

progress has been made in the treatment of CRC over the past

years [1,2]. Epidemiologic studies have shown that diabetes

mellitus (DM) increases incidence and mortality of cancers,

especially gastrointestinal malignancy [3,4]. There is increasing

evidence linking diabetes mellitus with an increased risk of

colorectal cancer [5,6]. However, some other studies have not

supported this view. A multi-center, double-blind, placebo-

controlled, randomized controlled trial showed that there was no

statistically significant difference in colon-cancer specific survival

in those who with diabetes [7]. So, the relationship between DM

and CRC risk remains controversial.

Metformin (1,1-dimethylbiguanide hydrochloride), a biguanide

derivative which is widely used for treating diabetes mellitus, has

been shown to exert potentially important anticancer effects [8,9],

but others have not supported this view [10,11]. The mechanisms

involved in the antineoplastic effects of metformin are probably

very diverse, including activation of adenosine monophosphate

kinase (AMPK) [12], phosphatidylinositol-3 kinase (PI3K) muta-

tion [13], p53 deficiency [14] and so on. Among these

mechanisms, the AMPK- mammalian target of rapamycin

(mTOR) axis plays a central role for the antineoplastic effects of

metformin. Both metformin and 5-amino-imidazol-4-carboxa-

mide-1-b-4-ribofuranoside (AICAR) can activate AMPK pathway.

AMPK is a serine/threonine kinase and a cellular fuel sensor

pathway sensitive to the increase of the AMP/ATP ratio, which

has been connected to several human tumor suppressors [15]. The

effects of metformin are mainly explained by the activation of

AMPK, which inhibits protein synthesis and gluconeogenesis

during cellular stress [16].

So far 5-Fluorouracil (5-FU) remains a widely used chemother-

apeutic drug in the treatment of colorectal carcinoma. Recently,

metformin is reported to have a synergistic effect in combination

with some chemotherapeutic agents [17,18]. However, it remains

unclear whether metformin or AICAR can be used in combina-

tion with 5-FU to enhance the anticancer effect, since there is no

study on the correlation between the metformin/AICAR and 5-

FU treatment in vitro and in vivo.

We investigated the impact of metformin and AMPK activator

AICAR on CRC cell proliferation. Here we demonstrate that use
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of metformin alone is not associated with survival outcomes of

colorectal cancer cell but AICAR can induce apoptosis and

enhance the cytotoxic effect of 5-FU through AMPK activation,

which should be considered in the ongoing clinical trials where

metformin are used in the treatment of colorectal cancer.

Results

Metformin did not Inhibit Colorectal Cancer Cell Growth
In order to examine whether metformin affects human

colorectal cancer cell proliferation we investigated the effect of

the drug on three cancer cell lines: HCT116, RKO and HT29

cells. Cells were grown in 10% fetal bovine serum (FBS), treated

with metformin (1 and 5 mM) and AICAR (5 mM) as a control.

AICAR is known to induce apoptosis. The MTT viability assay

was performed after the addition of the agents for 24 h. As a result,

AICAR reduced cell viability by 50–70% in the three cell lines, but

little decrease of cell viability was found in the three cell lines

treated with metformin (Figure 1A), indicating metformin might

have no effect on colorectal cancer cell growth. To determine

whether metformin inhibits anchorage-independent growth, we

performed a soft-agar colony formation assay in absence or

presence of 5 mM metformin renewed daily. After 2 weeks, the

cells were counted under a microscope. In agreement with MTT

viability assay results, metformin did not decrease the number and

the size of the colonies (Figure 1B). These results suggest that

metformin did not possess growth inhibitory activity in colorectal

cancer cell.

Metformin did not Induce Apoptosis, Autophagy and Cell
Cycle Arrest

To investigate whether metformin induce apoptosis and

autophagy, three cancer cell lines were treated with different

concentrations of metformin (1, 5 and 10 mM) for various time,

then, the expression of active caspase-3 and LC3-II/I ratio was

assessed by western blotting. As shown in Figure 1C, apoptosis and

autophagy were not activated in dose- and time-dependent

manner when the cells were treated with metformin. For further

confirmation, all these treated cells were analyzed by electron

microscopy and flow cytometry. These three cells displayed

extensive apoptotic cells (Figure 2A) and an increased sub-G1

population (Figure 2B) after AICAR treatment. In contrast, very

few apoptosis were seen in metformin treated cells. We then asked

whether metformin affects cell cycle. As seen in Figure 2B, we

observed the same percentage of cells in G0/G1, G2and S phase

in metformin treated cells compared to their controls. Taken

together, our data demonstrate that metformin did not induce

apoptosis, autophagy and cell cycle arrest.

AICAR Potentiated Anti-cancer Effect of 5-FU in vitro and
in vivo

It has been acknowledged that 5-FU is usually used in

combination with other chemotherapeutic drugs to enhance its

therapeutic efficacy for CRC patients. In order to examine

whether AICAR can sensitize anticancer effect of 5-FU, we

evaluated the effect of AICAR on 5-FU-induced apoptosis. We

found that the viability of cells treated by AICAR in combination

with 5-FU was significantly lower than that of controls (Figure 3A).

Flow cytometry showed that the percentage of apoptotic cells was

significantly higher in cells treated by AICAR in combination with

5-FU compared to controls (Figure 3B). These results suggest that

AICAR enhances 5-FU-induced apoptosis in colorectal cancer

cells.

To examine if metformin and AICAR could affect tumor

growth in vivo, we then injected nude mice subcutaneously with

HT29 cells. The mice with tumor xenografts reaching 100 mm3

were randomly divided in to 5 experimental groups: control group,

metformin 200 mg/ml/d (in drinking water, which corresponds to

15 mg/kg) group, AICAR 400 mg/kg/2 days group, 5-FU

40 mg/kg/2 days group and AICAR plus 5-FU group for 5

weeks. Treatment was administered via intratumoral injection. All

mice tolerated this treatment well without significant toxicity and

had stable body weights. First, metformin levels were assayed (3 h

and 15 h after metformin injection) by using high-performance

liquid chromatography and the metformin levels in mice sera were

on average 1.15 (60.31) mg/ml for peak which equaled about

human peak levels for 500 mg p.o. (orally) daily. The experiments

were performed in triplicate and the result showed that the levels

of metformin in the plasma of female nude mice were usually

achieved in the humans. Then the tumor sizes from the xenografts

were measured. As a result, tumor size from the xenografts of

AICAR group not metformin group was smaller compared to

control group. Moreover, the sizes of AICAR plus 5-FU group

were significantly smaller compared to AICAR alone or 5-FU

group, suggesting that AICAR could potentiate 5-FU-induced

anticancer effect of HT29 (Figure 4A).

AICAR Might Enhance Anticancer of 5-FU through AMPK
Activation

It has been acknowledged that the effects of AICAR are mainly

explained by the activation of AMPK, which regulates cellular

energy metabolism. To investigate whether AMPK activation

might be associated with the additive effect of AICAR, phosphor-

ylation of AMPK and mTOR were assessed by western blotting

using specific antibodies. We found that p-AMPK induced by 5-

FU were enhanced by AICAR, together with decreased p-mTOR

and increased active caspase-3 (Figure 4B), indicating that

activation of AMPK by AICAR potentiated 5-FU-induced

apoptosis.

Discussion

Although increasing evidence support the idea that hyperinsu-

linemia and hyperglycemia promote carcinogenesis in patients

with diabetes mellitus [19,20], it remains controversial whether the

risk of colorectal cancer is also associated with diabetes mellitus

and metformin treatment might reduce risk of CRC [10].

Metformin, a biguanide derivative, is an extensively used and

well-tolerated drug for treatment of type 2 diabetes mellitus. The

effectiveness of metformin as an antidiabetic drug is explained by

its ability to decrease hepatic gluconeogenesis and stimulate

glucose uptake in muscle, resulting in reduced circulating glucose

concentrations [21]. Metformin levels in humans are in micro

molar levels but gut may or may not see mili-molar levels. Recent

data suggest that metformin could protect from cancer including

CRC and has anti-tumor effects in mouse xenografts [22,23].

Interestingly, there is a conflicting report regarding the potential

role of metformin and cancer. Bodmer and colleagues found that

use of metformin was not associated with a decreased risk of

colorectal cancer and metformin also did not alter the risk of lung

cancer [10,24]. It is also reported that there was no statistically

significant association between metformin exposure and dissem-

inated colorectal cancer at diagnosis [25]. Metfromin may not

work on regular tumor cells but work on stem cells. It has been

shown that metformin could selectively target cancer stem cells

[26], and act together with chemotherapy to block tumor growth

and prolong remission in multiple cancer cell types [26,27].
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Metformin can also inhibit the inflammatory response associated

with cellular transformation and cancer stem cell growth [28]. In

addition, metformin can accelerate the growth of BRAF V600E-

driven melanoma by upregulating VEGF-A [29] and promote the

angiogenic phenotype in the ERalpha negative MDA-MB-435

breast cancer model [30]. Overall, metformin may only have

effects in preventing tumor initiation but after the cancer has been

established it may not have an effect. Our data also showed that

metformin exposure did not inhibit colorectal cancer cell growth,

induce apoptosis or autophagy and cell cycle arrest. In agreement

with in vitro, in vivo study revealed that metformin did not

suppress tumor growth but AMPK activator AICAR emerged

antitumor activity. Therefore, metformin might have no antineo-

plastic activity for CRC cells as a single agent.

The anticancer effects of AICAR are mediated by the activation

of AMPK and reduction of mTOR signaling [31]. AMPK

activation can suppress mTOR pathway to inhibit cell growth

and proliferation. AICAR have been reported to enhance the

efficacy of conventional chemotherapeutic agents in the treatment

of local and metastatic nasopharyngeal carcinoma (NPC) [32].

AMPK activators such as AICAR provide a therapeutic strategy

for hematological malignancies [33,34]. First, AICAR can induce

apoptosis in B-cell chronic lymphocytic leukemia cells [35] and kill

chronic myelogenous leukemia (CML) cells through PKC-depen-

dent induction of autophagic cell death [36]. Second, AICAR has

antileukemic effects on BCR-ABL-expressing cells [37] and

childhood acute lymphoblastic leukemia (ALL) cells [38]. Third,

AICAR can induce G(1)/S arrest and Nanog downregulation via

p53 and enhance erythroid differentiation [39]. Finally, AICAR

can also induce apoptosis independently of AMPK and p53

through up-regulation of the BH3-only proteins BIM and NOXA

in chronic lymphocytic leukemia cells [40]. In addition to NPC

Figure 1. Metformin did not inhibit colorectal cancer cell growth and induce apoptosis or autophagy. (A) HCT116, RKO and HT29 were
seeded in 96-well plates. After 24 h, metformin (1 and 5 mM) and AICAR (5 mM) were added to the culture media. 24 h after the addition of the
agents, the effect of metformin on colorectal cancer cell survival was performed a cell viability assay (MTT). (B) Photographs of soft agar colonies of
HCT116, RKO and HT29 cells 2 weeks after the treatment with 5 mM metformin and 5 mM AICAR. (3) Cancer cell lines were treated with different
concentrations of metformin (1, 5 and 10 mM) for various time, then, the expression of active caspase-3 and LC3-II/I ratio was assessed by western
blotting.
doi:10.1371/journal.pone.0097781.g001
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Figure 2. Metformin did not induce apoptosis and cell cycle arrest. (A) 24 h after the addition of 5 mM metformin and 5 mM AICAR, the
effect of metformin on colorectal cancer cell survival was observed. Representative cell morphological changes detected by light microscopy;
characteristic morphological features of apoptosis were observed, including detachment and cell shrinkage. (B) Fractions of cells in the sub-G1, G0/
G1, S or G2/M phases of the cell cycle are investigated after the treatment with metformin and AICAR.
doi:10.1371/journal.pone.0097781.g002

Figure 3. AICAR potentiated anti-cancer effect of 5-FU in vitro. (A) HCT116, RKO and HT29 were seeded in 96-well plates. After 24 h,
metformin (5 mM), AICAR (5 mM), 5-FU (20 mM) and AICAR plus 5-FU were added to the culture media. 24 h after the addition of the agents, the
effect of metformin and AICAR on colorectal cancer cell survival was performed a cell viability assay (MTT). (B) Representative results of annexin V-
FITC/PI staining and quantitative analysis; values are mean 6 SD of three independent experiments; *p,0.05.
doi:10.1371/journal.pone.0097781.g003
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and leukemia, AICAR is involved in neural stem cell growth

suppression and cell cycle arrest by down-regulating phospho-

retinoblastoma protein and cyclin D [41]. AICAR can inhibit the

growth of retinoblastoma by decreasing angiogenesis and inducing

apoptosis [42] or activation of AMPK [43]. AICAR is also

demonstrated to inhibit the proliferation of EGFRvIII expressing

glioblastoma through AMPK pathway [44]. Moreover, AICAR

can be used in clinical trials as a cardioprotectant under ATP-

depleted conditions and has been shown to be an exercise mimetic

in animals [45]. In agreement with these results, we reported that

AICAR can induce apoptosis to emerge antineoplastic activity.

Furthermore, AICAR enhanced the cytotoxic effect of 5-FU

through AMPK activation.

In conclusion, our study revealed that use of metformin alone is

not associated with survival outcomes of colorectal cancer cell but

AMPK activator AICAR can induce apoptosis and emerge

antineoplastic activity. Furthermore, activation of AMPK might

be a key cause that AICAR can enhance the cytotoxic effect of 5-

FU in colorectal cancer cells.

Materials and Methods

Cell Culture
The human colorectal carcinoma cell lines HCT116, RKO and

HT29 were purchased from ATCC (LGC Standards SLU,

Barcelona, Spain). The cell lines were maintained in McCoy’s

5A or Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL,

Rockville, MD, USA) with 10% fetal bovine serum (FBS), 100

units/mL penicillin, 100 mg/mL streptomycin (Invitrogen), and

2mmol/L L-glutamine at 37uC in a humidified atmosphere of

95% air and 5% CO2.

Figure 4. AICAR potentiated anti-cancer effect of 5-FU in vivo and AMPK activation mediated by AICAR. (A) Growth curve of xenograft
tumors treated with indicated drugs. (B) The effect of AICAR on AMPK activation. The expression of active caspase-3, p-AMPK and p-mTOR were
analyzed by Western blotting.
doi:10.1371/journal.pone.0097781.g004
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Materials
5-FU was purchased from Jinyao Amino Acid Co., Ltd.

(Tianjin, China). AICAR and metformin were purchased from

Sigma-Aldrich. Anti-phospho-eIF2a and phosphor-AMPK were

purchased from Cell Signaling.

Measurement of Cell Viability and Apoptosis
Cell viability was determined by MTT assay. Cells were seeded

in 96-well flat bottom microtiter plates at a density of 16104 cells

per well. The agents were added at the concentrations indicated

for 24 h. The absorbance was measured on a microplate reader

(Synergy HT, Bio-Tek, USA) at 570 nm.

Phartmingen annexin V-FITC Apoptosis Ddtection Kit I (BD,

USA) was used to detect apoptosis and the estimation procedure

was performed according to the manufacturer’s instructions.

26106 cells were seeded into a 6 cm dish. After attachment

overnight, cells were washed twice with PBS and the medium was

replaced medium with 5 mM metformin or 20 mg/ml 5-FU. All

cells including the floating cells in the culture medium were

harvested. The cells were resuspended in ice-cold 16binding

buffer at a concentration of 16106 cells/ml. 100 ml of cell

suspension were each mixed with 5 ml FITC Annexin V and 5 ml

PI. The mixture was incubated for 15 min at room temperature in

the dark and then analyzed by FACSCalibur Flow Cytometer (BD

Biosystems, Heidelberg, Germany).

Soft-agar Colony Formation Assay
500 cells were suspended in medium containing 0.3% low-melt

agarose, seeded into a six-well plate that was overlaid with 0.5%

low-melt agarose, and allowed to grow for 2 weeks at 37uC in 5%

CO2. The colonies containing more than 50 cells were counted

under a microscope. Three wells were analysed for each

experiment.

Cell-cycle Analysis
Cells were trypsinized, washed twice in ice-cold PBS, and

resuspended in 200 ml citrate buffer (250 mM sucrose, 40 mM

Tri-sodium citrate, 5% dimethyl sulfoxide (DMSO) adjusted to

pH 7.6 with 40 mM acetic acid). Propidium iodide (40 mg/ml)

solution was added to the cells and incubated for 45 min in the

dark at 4uC prior to analysis.

Western Blot Analysis
Cells were harvested from cultured dishes and were lysed in a

lysis buffer [20 mM Tris-HCl pH 7.6, 1 mM EDTA, 140 mM

NaCl, 1% NP-40, 1% aprotinin, 1 mM phenylemethylsulfonyl

fluoride (PMSF), 1 mM sodium vanadate]. Protein concentration

was determined using a BCA Protein Assay Kit (Pierce). Cell

lysates (40 mg protein/line) were separated on a 5 to 20% Tris-

Tricine Ready Gel SDS-PAGE (Bio-Rad) for nitrocellulose

membrane blotting. The blotted membranes were blocked with

5% skim milk for 1 h and were incubated with primary antibodies.

The immunoreactive bands were visualized by enhanced chemi-

luminescence using horseradish perox-idase-conjugated IgG sec-

ondary antibodies. Band density was measured by densitometry,

quantified using gel plotting macros of NIH image 1.62, and

normalized to an indicated sample in the identical membrane.

In vivo Subcutaneous Tumor Model
All of the in vivo experimental protocols were approved by the

animal care committee of Sir Run Run Shaw Hospital, Zhejiang

University. Viable HCT116 cells (16107cells in 0.1ml phosphate

buffer saline) were injected subcutaneously into right dorsal flank

of 6-week-old female BALB/c nude mice (six mice per group).

Tumor volume was assessed every 2 days for 4 weeks. Tumor

volume was calculated by the following formula: (short diame-

ter)26(long diameter)/2.

Statistical Analyses
Results are expressed as values of mean 6 standard deviation

(SD). Statistical analysis was performed using SPSS 11.0 for

Windows (SPSS Inc., Chicago, IL, USA). We performed paired t-

test (two-tailed) statistical analysis, statistical significance was set at

p,0.05.
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