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Simple Summary: Fiber pathways that descend from the brain to the spinal cord drive motor
behavior and modulate incoming sensory signals and the capacity to change (plasticity). A subset
of these fibers release the neurotransmitter serotonin (5-HT), which can affect spinal cord function
in alternative ways depending upon the region innervated and the receptor type engaged. The
present paper examines the dampening (inhibitory) effect of serotonin and how a disruption in this
process contributes to pathophysiology after spinal cord injury (SCI). After briefly reviewing the
underlying anatomy and receptor types, we discuss how damage to serotonergic fibers can enable a
state of over-excitation that interferes with adaptive learning and contributes to the development
of pain, spasticity, and the dysregulation of autonomic function (autonomic dysreflexia). Recent
work has shown that these effects arise, in part, because there is a shift in how the neurotransmitter
gamma-aminobutyric acid (GABA) affects neural transmission within the spinal cord, a modification
that lessens its inhibitory effect. Clinical implications of these results are discussed.

Abstract: As the nervous system develops, nerve fibers from the brain form descending tracts
that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and
capacity to change (plasticity). How these fibers affect function depends upon the transmitter released,
the receptor system engaged, and the pattern of neural innervation. The current review focuses upon
the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief
review of key anatomical details, receptor types, and pharmacology is provided. The paper then
considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal
cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and
neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes
pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain.
Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and
removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic
activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic
activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing
its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.

Keywords: spinal cord injury; monoamines; serotonin; GABA; neuromodulation; pain; autonomic
dysreflexia; spasticity; ionic plasticity

1. Introduction

In early development, neural excitability within the spinal cord is enabled, a process
that fosters the emergence of neural circuits coupled by coherent patterns of activity [1].
Over time, operational modules form that help to organize motor behavior and regulate
the transmission of sensory signals to the brain. As a stable network emerges, inhibitory
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processes develop that limit excitability and plastic potential. Part of this transforma-
tion is tied to a local alteration, attributed to a strengthening of the inhibitory potential
of the neurotransmitter gamma-aminobutyric acid (GABA) [1]. Paralleling this change,
serotonergic fibers from the brain innervate the spinal cord. These projections can have a
neuromodulatory effect that can either facilitate or inhibit neural function depending upon
the region/cellular systems innervated and the receptor systems engaged.

Damage to descending serotonergic fibers can impair motor performance and remove
a homeostatic brake on neural activity that can fuel pathology after spinal cord injury
(SCI). How serotonin (5-HT) modulates motor behavior (e.g., locomotion, respiration) and
regeneration has been amply reviewed elsewhere [2–9]. Likewise, its role in regulating
incoming pain (nociceptive) signals has been well covered [10–12]. The current review
focuses on a different aspect of serotonergic function, how damage to these fiber pathways
contributes to pathophysiology after SCI.

We begin with a brief review of the underlying anatomy, the receptor types engaged,
how these affect neural functions, and the pharmacological tools used to study serotonergic
systems. We then describe how a complete SCI (spinal cord transection) enables neural
activity within the caudal tissue, a state that fosters plasticity. Attenuating inhibition,
this places the spinal cord in a vulnerable state wherein strong noxious stimulation can
sensitize neurons within the dorsal horn, a modification that interferes with adaptive
learning, promotes cell loss when the spinal cord is bruised (contused), and can drive the
development of chronic pain. The loss of serotonergic fibers has also been linked to the
sustained motor activity (spasticity) and the dysregulation of autonomic function. The
latter can allow nociceptive signals to trigger bouts of unregulated sympathetic activity
(autonomic dysreflexia).

New work suggests that the loss of serotonergic activity enables over-excitation within
the spinal cord because it transforms the action of GABA, recapitulating an earlier devel-
opmental state wherein its capacity to inhibit neural excitation is reduced. We discuss the
neurobiological mechanisms that mediate these alterations and how treatments designed
to quiet neural activity after SCI can bring therapeutic benefit.

2. Serotonin Function in the Uninjured Nervous System
2.1. Overview of Descending Pathways and Their Function

Traditionally, serotonergic systems within the rat brain were categorized into groups
(B1–B9) by location, with B1 being the most caudal [13]. For the purposes of this review,
we will focus on the medullary groups (B1–B3) of serotonergic fibers that descend into
the spinal cord [14,15]. For further details on anatomy, see [16–18]. Groups B1 through B3
occupy regions of the raphe pallidus nucleus (B1), raphe obscurus nucleus (B2), and raphe
magnus nucleus (B3). Serotonergic fibers project through the white matter of the spinal cord
and terminate in three main regions: the dorsal horn, ventral horn, and intermediate zone
(Figure 1). Fibers that terminate in the dorsal horn, a region that modulates nociception
and sensory function, are mainly sourced from the raphe magnus nucleus and the adjacent
reticular formation (the rostral ventrolateral medulla, group B3) [14,15,19]. These fibers
travel through the dorsolateral fasciculus (DLF) and terminate primarily in laminae I and
II of the dorsal horn. Motoneurons in the ventral horn (primary lamina IX) receive input
from descending serotonergic fibers from the raphe obscurus and raphe pallidus (groups
B1 and B2) [14]. In the thoracic cord, sympathetic neurons receive descending serotonergic
inputs that are sourced from the ventrolateral medulla (group B3) [14].
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Figure 1. Serotonin (5-HT), noradrenaline, and dopamine projections to the spinal cord.

2.1.1. Regulation of Sensory Processes and Pain

The prominent sources of serotonergic efferents for nociception are the rostral ven-
tral medulla (RVM) and the raphe magnus nucleus [14,15,20]. Within the dorsal horn,
serotonergic fibers are most dense in the superficial laminae of the dorsal horn (laminae
I and II) but the deeper laminae (IV–VI) also display serotonergic terminals [21,22]. Tra-
ditionally, modulation of nociception within the dorsal horn has been considered mainly
inhibitory [23,24]. However, more recent data examining the effect of engaging alternative
classes of 5-HT receptors suggest bidirectional modulation of nociception [16]. From this
new perspective, it is not expected that engaging neurons within the raphe magnus or the
rostral ventral medulla will necessarily induce antinociception. The outcome observed
varies across stimulus parameters and both hyperalgesia and analgesia can be elicited
by RVM stimulation [25–29]. Similarly, Ren and colleagues found that engaging vagal
afferents projecting to the RVM could trigger facilitation or inhibition of nociception [30,31].
More recent reports have found specific “ON-cells” and “OFF-cells” in the RVM and raphe
magnus that drive the facilitation and inhibition of pain, respectively [32,33].

Whether 5-HT has an antinociceptive or pronociceptive effect depends in large mea-
sure upon the receptor type engage (Tables 1 and 2). 5-HT1A/B/D and 5-HT7 are primarily
antinociceptive while 5-HT2 and 5-HT3 are pronociceptive [34]. It is important to note that
this grouping is general and that there is evidence for both anti- and pro-nociception for
several of these receptors.
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Table 1. Distribution and function of alternative 5-HT receptors (SC = spinal cord; SCI = spinal cord
injury; DRG = dorsal root ganglion).

Receptor Receptor Type Location in SC Normal Function Function after SCI

5-HT1

1A

Gi/o

Primarily in laminae I and II
[35]; Cell bodies in dorsal

and ventral horns and
intermediate zone [36–38]

Antinociception [39,40];
Pronociception [41,42];

Enhances motoneurons [43];
Micturition reflex

facilitation [44–49]; Inhibits
motor function [50,51]

Locomotor recovery [52–54];
Antinociception [39]

1B
Intermediate zone [35,55];

Dorsal horn (laminae I and
IV) [35,55,56]

Antinociception [40,57]
Mitigating spasms [58];

Inhibits mono- and
polysynaptic reflexes [58,59]

1D
Superficial dorsal horn

[60,61]; γ motoneurons in
ventral horn [62]

Antinociception [57];
Inhibits monosynaptic

reflexes [63]

Inhibits bladder activity
[64]; Inhibits mono- and

polysynaptic reflexes [65]
1E
1F DRG [66] Antinociception [67,68] Mitigating Spasms [58]

5-HT2

2A

Gαq

Laminae II and II of dorsal
horn [69]; Ventral horn [70]

Antinociception [71,72];
Pronociception [40,73,74];
Protects adaptive learning

[75]; Sexual behavior [76,77];
Micturition reflex

facilitation [78,79]; Motor
function [50,51,80–82]

Functional motor recovery
[83,84]; Respiratory

recovery [85]; Bladder
recovery [79]

2B Dorsal horn [86]; DRG
[86,87]; Motoneurons [88] Pronociception [86,87,89]

Functional motor recovery
[83]; Mitigates spasms

[83,90]; Respiration [88]

2C
Most parts of spinal gray

(except lamina II) [91] and
superficial dorsal horn [92]

Spinal reflexes [93]; Inhibit
motor activity [94];

Micturition reflex inhibition
[78,79,95,96]

Functional motor recovery
[83,97]; Mitigates spasms

[83,90]

5-HT3

3A

Ligand-gated ion
channel

In spinal gray matter [91,98];
Laminae VI through X in

dorsal horn [91]; DRG [99]

Pronociception [40,100,101];
Antinociception [102,103];

Micturition facilitation [104]
Motor recovery [105]

3B
3C
3D
3E

5-HT4 GαS Ventral horn [106]
Pronociception [107];

Micturition reflex
facilitation [45]

Locomotor recovery
[54,108,109]

5-HT5
5A

Gi/o
Laminae I and II of dorsal

horn [110]
Antinociception [111,112];
Micturition function [110]

5B Not expressed in humans
[113]

5-HT6 GαS Superficial dorsal horn and
lamina IX [114]; DRG [115] Pronociception [116]

5-HT7 GαS Superficial laminae [117];
Laminae VII and VIII [118]

Pronociception [119,120];
Antinociception [120,121];

Micturition reflex
facilitation [122,123]; Motor

function [51,81,82,124]
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Table 2. Common serotonergic agonists and antagonists.

Receptor Agonists Antagonists Non-Selective Agonists Non-Selective
Antagonists

5-HT1

1A
8-OH-DPAT (5-HT1A/7)
[125]; Diprpyl-5-CT and

Gepirone [126]

WAY-100635 [127]; BMY
7378, NAN-190, MDL
75005 EF; SDZ 216525
[126]; NAD-299 [49]

Propranolol [116];
Spiperone and Pindolol

[126]

1B
TFMPP and mCPP [128];
L-694247, RU 24969 [129],

5-CT, CP 93129 [126]

Quipazine [128],
Methiothepin, SB-244289

and SB-216641 [126]

1D Gr-46611 [130]
BRL-15572 [126,130];

Ketanserin and
Ritanserin [126]

1E

1F
Lasmiditan (COL-144;

LY573144) [68]; LY344864
and LY334370 [126]

5-HT2

2A
DOI (5-HT2A/2C) [131];
TCB-2 [71]; Quipazine

[132]

Ketanserin; Ritanserin
(5-HT2A/2c) [133]; MDL
100907, SB 200646A, SB

206553 [126]
DOM [134]; SB 200646

(5-HT2B/2C) and SB
206553 (5-HT2B/2C) [126]

Ketanserin [116];
Methysergide (5-HT1/2)

[135]
2B α-methey-5-HT [136]; SB

204741, Yohimbine [126]
RS-127445 [95]; SB

204741 [126]

2C
MK-212 [130];

WAY-161503 [71];
RO-600175 [96]

D-MC-5-H-dibenzo
[130];

N-desmethylclozapine
[71]; SB-242084 [96,126],

RS-102221 [126]

5-HT3

3A
SR-57227 [137];

2-methyl-5-HT [134]; PBG
[126]

Ondansetron (Zofran3),
Alosetron [138],

Granisetron, Tropisetron,
MDL 72 222 [126]

Tropisetron [116]
3B
3C
3D
3E

5-HT4
GR 113808 and SB204070

[126]

5-HT5
5A
5B

5-HT6 EMD-386088 [117]

SB-271046 [139];
SB-399885, SB-258585

[116]; Ro 04-6790 and Ro
63-0563 [126]

5-H71
LP-211 [140]; E-57431,

AS-19 [141]; E-55888 [142]

SB-269970 [119,143];
SB-656104 [140];

SB-258719 [141,142];
LP44 [123]

Work suggests that 5-HT1A suppresses nociception by post-synaptically blocking dor-
sal horn neuronal activity [144–149]. There are also reports of 5-HT1A receptor involvement
in pronociception [41,42]. 5-HT1B/D receptors, on the other hand, appear to only have an
antinociceptive effect [40,57]. 5-HT7 receptors have multiple effects in modulating noci-
ception depending on the physiological condition of the organism and the location of the
receptors. In healthy rats, 5-HT7 receptor agonists exert a pronociceptive effect [121]. In
neuropathic conditions however, 5-HT7 receptor agonists have an antinociceptive effect
at the level of the spinal cord and pronociceptive effects at the periphery [120,121]. When
agonists are administered systemically, however, the antinociceptive effect predominates
over the pronociceptive effect in the periphery [120].
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Pronociception is primarily mediated by 5-HT2A/B and 5-HT3 receptors. Similar to
5-HT1A receptors, there is evidence of both pronociception [40,73,74] and antinociception
from 5-HT2A receptors [71,72]. Unlike 5-HT2A receptor, 5-HT2B receptors appear to have
only a pronociceptive effect [86,87,89]. While 5-HT3 receptors have also been characterized
as pronociceptive [40,100,101], there are reports of antinociceptive actions [102,103].

2.1.2. Regulation of Motor Behavior

It is well recognized that 5-HT also regulates locomotion and motor behavior [54,132,150–158].
For reviews, see [159,160]. For motor control, 5-HT pathways originate from the B1 and B2
regions of the medulla and project to the motoneurons and interneurons in laminae VII
and VIII of the spinal cord [118,161–163]. The two main receptors that facilitate locomotion
are 5-HT2A [50,51,80–82] and 5-HT7 [51,81,82,124,164]. 5-HT1A and 5-HT2C, however, are
associated with inhibition of locomotor activity [50,51,94]. Importantly, 5-HT is also heavily
involved in the neuromodulation of central pattern generator (CPG) activity [2,108,154].
Indeed, after SCI, CPG activity can be re-elicited by targeting 5-HT [54,84,165–167].

2.1.3. Regulation of Autonomic Function

There are five major brain regions that modulate sympathetic function: the rostral ven-
tromedial medulla, the rostral ventrolateral medulla (RVLM), the caudal raphe nucleus, the
A5 region of the brainstem, and the periventricular nucleus of the hypothalamus [168–171].
Descending supraspinal vasomotor fibers that innervate sympathetic preganglionic neu-
rons (SPNs) express numerous neurotransmitters including amino acids, catecholamines,
and neuropeptides. Notably, serotonergic and noradrenergic inputs to SPNs are sourced
from the caudal raphe nuclei and the A5 region of the RVLM, respectively [170]. These
regions send projections to SPNs in the intermediolateral cell column throughout the T1-L2
segments of the spinal cord and regulate sympathetic outflow [172–174]. The RVLM is
the primary source of input to supraspinal vasomotor pathways in the spinal cord that
regulate cardiovascular function [175,176]. These fibers terminate in the dorsal and lateral
funiculi in the spinal cord [177–179]. While sympathetic postganglionic fibers are driven by
neurons from the T1-L2 region of the spinal cord innervate blood vessels throughout the
body, the heart is innervated by SPNs innervated by neurons from the T1-T4 region of the
spinal cord. Damage to this region can remove a regulatory brake on autonomic function,
enabling the emergence of autonomic dysreflexia (AD) [18].

5-HT also affects parasympathetic function, an effect that is largely mediated by 5-
HT1A receptors. These signaling pathways have been implicated in parasympathetic
control of respiration [180,181], heart rate [182–186], and micturition [44–49]. Other
5-HT receptors have been associated with micturition facilitation (5-HT2A, 5-HT3, 5-
HT4, 5-HT7) [45,78,79,104,122], inhibition (5-HT2C) [78,79,95,96], and general function
(5-HT5) [110].

2.2. Overview of How 5-HT Affects Neural Function within the Spinal Cord

The functional consequences of engaging alternative 5-HT receptors vary with the
mechanism engaged and location within the spinal cord (Table 1). The 5-HT1 and 5-HT5 re-
ceptor families are negatively coupled to adenylyl cyclase through Gi/o-proteins. Their acti-
vation leads to decreased production of cyclic adenosine monophosphate (cAMP), which ul-
timately leads to an inhibitory effect on neuronal firing [17,126,138]. The Gi/o receptor types
are mainly found within the superficial dorsal horn of the spinal cord [35,55,56,60,61,110].
Other locations include the intermediate zone (5-HT1B) [35,55], ventral horn (5-HT1D) [62],
and dorsal root ganglia (DRG) (5-HT1F) [66].

The 5-HT2 receptor family is positively coupled (via Gq proteins) to phospholipase C,
which activates protein kinase C (PKC) and leads to increased accumulation of intracellular
Ca2+. This class of receptors has an excitatory influence on neuronal activity. 5-HT2
receptors are primarily found within the spinal cord dorsal horn [69,86,91,92], with some
expression in the ventral horn [69,70,88,91] and DRG (5-HT2B) [86,87] as well.
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5-HT4, 5-HT6, and 5-HT7 receptors are positively coupled (via GαS proteins) to adeny-
lyl cyclase, which, through protein kinase A, leads to an inactivation of K+ currents, exerting
an excitatory effect on neuronal activity. The GαS receptor family is primarily distributed
in the ventral horn of the spinal cord [106,114,118]. 5-HT6 and 5-HT7 can also be found in
the dorsal horn [114,117] and 5-HT6 can also be found in the DRG [115].

Lastly, 5-HT3 receptors are exceptional to the 5-HT receptor family in that they are the
only receptors that are ligand-gated and cation-permeable [17,187]. Upon activation, they
enhance phospholipase C activity and facilitate neuronal excitability. 5-HT3 can be found
throughout the spinal gray matter [91,98] and the DRG [99].

3. Impact of SCI on 5-HT Function
3.1. Impact of Injury on 5-HT Levels

5-HT response to SCI has been extensively studied (for review, see [83]). While the
specific time course varies with species and SCI model, destruction of 5-HT fibers can induce
an upregulation of 5-HT receptor expression that may last up to 3 weeks [92,156,188–196],
with some reporting an extended effect sustained for 6 weeks [197] to 8 weeks [36]. Levels
usually return to normal within 60 days [189,193] or earlier [198]. Higher levels have been
reported within a few hours of injury [156,196,199] and after 24 h [192]. The upregulation
of 5-HT, or its major metabolite (5-HT1AA), is associated with edema, increased vascular
permeability, and decreased spinal cord blood flow [199,200].

After the initial increase, 5-HT levels decline [201,202]. Faden et al. examined 5-HT fiber
immunoreactivity after a moderate to severe injury in rats [203]. After a severe injury, there
was a near complete loss of 5-HT immunoreactivity within the lumbar spinal cord two weeks
after injury, which was associated with severe spastic paraparesis (a decline in the capacity to
move the hind legs accompanied by increased muscle tone and stiffness). In the moderately
injured animals, they found a complete loss of staining in the dorsal horn and reduced staining
in the ventral horn. In line with this less severe decrease of immunoreactivity, the rats showed
moderate, spastic paraparesis. They concluded that loss of 5-HT fibers correlated with the
severity of the SCI. Not surprisingly, motor scores were significantly correlated with changes
in 5-HT staining in the ventral horn but not in the dorsal horn. This was attributed to the fact
that the SCI significantly damaged the fibers in the dorsal region and that these fibers are
linked to antinociception rather than motor function.

On the other hand, Saruhashi and colleagues reported that the recovery of seroton-
ergic fibers correlates with gains in functional performance [204,205]. In a hemisection
model [205], they found that 5-HT immunoreactive (5-HT+) fibers show increased ex-
pression in the ipsilateral cord after 4 weeks and that this predicts the time course and
extent of locomotor recovery. The authors suggest the increased expression to be evidence
of re-innervation. Similarly, in a later study [204], they found that an increase in 5-HT
transporter terminal expression in the lumbosacral ventral horn also significantly correlates
with locomotor recovery. Hashimoto, in 1991, found that 5-HT and norepinephrine (NE)
are significantly correlated with neurologic score 14 days post-injury and thus suggest that
they both participate in functional recovery [206]. Due to the disparate activity of 5-HT
within the cord at different phases of injury, it is possible that 5-HT neurons have distinct
roles in the progression of neural damage in the immediate phases of injury and in the
recovery of function in the chronic phase of injury.

3.2. Acute Effects of Impaired Serotonergic Activity
3.2.1. Descending Serotonergic Fibers Can Quell Nociceptive Sensitization

Damage to descending serotonergic fiber tracts will reduce 5-HT release independent
of variation in presynaptic transmitter levels. The acute effect of damage to descending
pathways on neural function within the lumbosacral spinal cord has been studied using a
full thoracic transection, providing evidence that 5-HT release maintains a brake on neural
activity within the dorsal horn that counters the development of over-excitation.
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Work in this area was fueled by studies examining the effect of driving nociceptive
input to the lumbosacral spinal cord after brain function was disrupted (e.g., by decer-
ebration) or communication with the brain was blocked (by means of a rostral thoracic
transection). Under these conditions, electrical stimulation of the sciatic nerve at an inten-
sity that engages myelinated (delta) and unmyelinated (c) nociceptive fibers can induce a
state of over-excitation within the lumbosacral dorsal horn [207]. Peripheral application of a
chemical irritant (e.g., formalin) has a similar effect [208]. This phenomenon is often studied
using the irritant capsaicin, which engages nociceptive fibers that express the transient
receptor vanilloid 1 (TRPV1) receptor [209]. Treatment with capsaicin induces a lasting
increase in neural excitability within the dorsal horn [210–212], a form of central sensitiza-
tion [211]. At a cellular level, central sensitization within the spinal cord is correlated with
increased expression of the immediate early proto-oncogene c-fos and the phosphorylation
of the protein extracellular-signal-regulated kinase (pERK) [213]. At a behavioral level,
nociceptive sensitization can transform how animals respond to light touch, leading to a
withdrawal response when mechanical receptors are stimulated using calibrated (von Frey)
filaments [214]. This alteration is of particular interest because it parallels the development
of pain to touch (allodynia), a feature of neuropathic pain.

Interest in nociceptive sensitization was fueled by the observation that exposure to
noxious stimulation can have a lasting effect, suggesting it may contribute to the mainte-
nance of chronic pain [215]. Further work revealed that this memory-like effect depended
upon signal pathways implicated in brain-dependent learning and memory, such as the N-
methyl-D-aspartate (NMDA) receptor (NMDAR), calcium/calmodulin-dependent protein
kinase II (CaMKII), and the trafficking/activation (phosphorylation) of α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors [210]. The link to brain-dependent
learning and memory was further supported by work demonstrating that nociceptive
stimulation can induce a form of long-term potentiation (LTP) within the dorsal horn and
that this effect too depends upon the NMDAR [215,216]. Interestingly, nociceptive stimula-
tion induces long-term depression (LTD) rather than LTP if the spinal cord is intact [217],
implying that descending fibers normally inhibit the development of LTP.

Additional work revealed that brain systems inhibit the development of LTP within
the dorsal horn via serotonergic fibers that descend through the dorsolateral funiculus
(DLF), which inhibit nociceptive activity by engaging 5-HT1A receptors [148,207,218–222].
This inhibitory effect has been related to the downregulation of adenylate cyclase and
enhanced flow of K+ out of the cell [223]. Engaging the 5-HT1A receptor can also counter
the development of spinally mediated LTP by depressing voltage-dependent Ca2+ channel
activity, which attenuates postsynaptic Ca2+ influx [148].

Recent work has shown that descending serotonergic systems also inhibit the develop-
ment of spinally mediated nociceptive sensitization in response to treatment with capsaicin.
Supporting this, Huang et al. (2016) showed that both behavioral (enhanced mechanical
reactivity) and cellular indices of sensitization are amplified when communication to the
brain is cut by means of a rostral thoracic (T2) transection [224]. Here too, the quieting effect
was linked to serotonergic fibers that descend thru the DLF [127]. Supporting this, rostral
cuts limited to the DLF fostered the development of nociceptive sensitization within the
lumbosacral spinal cord. In animals that had undergone a complete transection, intrathecal
(i.t.) application of 5-HT1A agonist (8-OH-DPAT) to the lumbosacral region countered the
development of nociceptive sensitization. Conversely, i.t. application of a 5-HT1A antago-
nist (WAY-100635) in intact animals allowed nociceptive sensitization to develop. Taken
together, the results suggest that descending 5-HT fibers normally quell the development of
nociceptive sensitization, suggesting that this phenomenon may play a limited role in the
maintenance of chronic pain in the absence of injury and/or inflammation. The corollary
to this is that nociceptive sensitization is especially relevant to the emergence of chronic
pain after SCI.



Biology 2022, 11, 234 9 of 37

3.2.2. Only Uncontrollable Stimulation Induces Nociceptive Sensitization

Further work revealed that the development of nociceptive sensitization within the
spinal cord is modulated by behavioral control [225]. Behavioral control was introduced
by applying noxious stimulation to one hind leg (via electrodes implanted in the tibialis
anterior muscle) whenever the limb was extended [226]. Under these conditions, animals
soon learn to maintain the leg in a flexed position, which minimizes exposure to noxious
stimulation, a form of learning known as instrumental conditioning [227]. Subsequent work
revealed that this learning involved an intraspinal modification and the NMDAR [228,229].

To show that introducing behavioral control mattered, animals in a second group
were experimentally coupled (yoked) to those with behavioral control (master) [226]. Each
animal in the yoked condition received electrical stimulation (shock) at the same time,
and for the same duration, as its master partner but independent of leg position. Yoked
rats that received this uncontrollable stimulation did not exhibit an increase in flexion
duration—they failed to learn. Furthermore, they failed to learn when subsequently tested
with controllable stimulation applied to the opposite leg, implying that treatment with
uncontrollable stimulation induces a kind of learning deficit. Subsequent work showed that
exposure to just 6 min of intermittent electrical stimulation applied in an uncontrollable
stimulation impairs learning for up to 48 h [230].

Further research suggested that uncontrollable stimulation interferes with learning
because it induces a state of over-excitation within the spinal cord, a form of nocicep-
tive sensitization that saturates NMDAR-mediated plasticity and thereby interferes with
the capacity to modify selective behavioral responses. Supporting this hypothesis, expo-
sure to uncontrollable, but not controllable, electrical stimulation enhances reactivity to
mechanical stimulation [231,232]. Furthermore, treatments that induce central sensitiza-
tion (e.g., application of the irritants formalin, carrageenan, capsaicin) impair adaptive
learning [231–233]. This learning impairment has been linked to an upregulation of the pro-
inflammatory cytokine tumor necrosis factor (TNF) and the trafficking of Ca2+ permeable
AMPARs [234,235].

3.2.3. Uncontrollable Stimulation Increases Tissue Loss and Impairs Recovery after a
Contusion Injury

Because over-excitation after SCI can foster cell death [236], exposure to noxious
stimulation could increase tissue loss (secondary injury). This is clinically important
because many injuries are accompanied by additional tissue damage (polytrauma) and
invasive surgery is often needed to relieve pressure at the site of injury. To explore these
issues, rats received a bruising (contusion injury) to the lower thoracic spinal cord using a
surgical impactor. Nociceptive fibers were engaged the next day by exposing animals to
intermittent electrical stimulation to the tail or the irritant capsaicin applied to one hind paw.
Both treatments impaired long-term behavioral recovery [237,238]. Importantly, noxious
electrical stimulation only impaired behavioral recovery if given in an uncontrollable
manner [237]; stimulation had no effect when animals had behavioral control. Further
analyses revealed that noxious stimulation increased the area of tissue loss at the site of
injury and that this effect was related to increased expression of TNF [237,239]. Noxious
stimulation also engages interleukin-1 beta (IL-1ß), IL 18, and signals related to cell death
(caspase 1, 3, and 8) [238,239].

While it is not known whether 5-HT can counter the acute adverse effect nocicep-
tive stimulation has on recovery, there is evidence that targeting spinal 5-HT soon after
injury can improve cell survival and reduce neural damage. Bharne et al. found that
giving spinally injured mice a 5-HT antagonist (ritanersin) and an alpha-melanocyte stim-
ulating hormone resulted in reduced demyelination, necrosis and cyst formation, and
improved locomotor recovery [240]. Administration of the SSRI fluoxetine after SCI had a
5-HT-dependent modulatory effect on matrix metalloproteinase-9 (MMP-9) activation that
lessened hemorrhage and the breakdown of the blood-spinal cord barrier (BSCB) [241]. The
drug also improved long-term locomotor recovery. In a later publication [242], they found
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that fluoxetine alleviates cell death (oligodendrocyte cell death) by inhibiting microglial
activation after SCI.

3.2.4. Descending 5-HT Fibers Help Preserve the Capacity to Learn

Consistent with prior work, exposure to uncontrollable stimulation does not induce a
spinally mediated learning impairment in the absence of injury [75]. In these experiments,
rats were given uncontrollable intermittent electrical stimulation to the tail using a computer
program that emulated the variable pattern produced by an animal that had behavioral
control (master). As previously reported, Crown et al. showed that noxious stimulation
induced a learning impairment in animals that had received a rostral (T2) transection [230].
However, when the same amount of stimulation was given prior to T2 transection, it had
no effect on spinal function, implying that brain-dependent processes normally act to
preserve the capacity for adaptive learning to enable selective modifications within the
spinal network. Interestingly, inhibiting brain processes with the anesthetic pentobarbital
had an effect analogous to spinal transection, allowing noxious stimulation to induce a
learning impairment [243]. This observation is clinically important because it suggests
that nociceptive signals during medical procedures under anesthesia may adversely affect
spinal function.

Here too, brain systems counter the adverse effects of uncontrollable stimulation via
serotonergic fibers that descend in the DLF to engage the 5-HT1A receptor [75]. Supporting
this, noxious stimulation induced a learning impairment in animals that had spinal injuries
limited to the DLF. Replacing 5-HT via intrathecal (i.t.) application of a 5-HT1A agonist
(8-OH-DPAT) blocked the adverse effect uncontrollable stimulation has on learning in
transected rats. Conversely, when uninjured rats were given a 5-HT1A receptor antagonist
(WAY 100635 i.t.) prior to spinal transection, uncontrollable stimulation induced a spinally
mediated learning impairment [75]. The observation that engaging the 5-HT1A receptor
can have a protective effect is consistent with other work demonstrating that 8-OH-DPAT
attenuates NMDA mediated overexcitation and cell death [244] and inhibits NMDA evoked
intracellular signaling cascades in vitro [245].

Taken together, research suggests that engaging nociceptive fibers can induce a form
of maladaptive plasticity after SCI that impairs long-term recovery [246,247]. These adverse
effects are modulated by behavioral control and brain systems which exert a protective
effect via descending serotonergic fibers [225].

3.2.5. Behavioral Control and Brain-Derived Neurotrophic Factor (BDNF) Counter the
Adverse Effects of Noxious Stimulation

Work by Crown et al. revealed that introducing behavioral control does more than
counter the immediate (acute) effects of nociceptive stimulation; it engages a lasting pro-
tective effect that blocks the development of a learning impairment when animals are
subsequently exposed to uncontrollable stimulation [248]. It also counters the development
of capsaicin-induced nociceptive sensitization [232]. In addition, after a learning impair-
ment has been induced by exposure to uncontrollable stimulation, it can be reversed by
training animals with controllable stimulation (in the presence of a drug that temporarily
blocks the expression of the learning deficit) [248].

These protective/restorative effects have been related to an upregulation of BDNF [249,250].
Supporting this, the beneficial effect of training is blocked by i.t. application of an im-
munoglobulin (IgG) for the tropomyosin receptor kinase B (TrkB) receptor (TrkB-IgG) that
sequesters BDNF. Conversely, i.t. application of BDNF can substitute for behavioral training
to prevent the induction and expression of the learning deficit [250]. Application of BDNF
to the lumbosacral region also counters behavioral and cellular signs of capsaicin-induced
nociceptive sensitization [251]. Likewise, exercise and locomotor training increase the ex-
pression of BDNF [252,253] which attenuate behavioral signs of chronic pain and spasticity
after injury [254,255].
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The results reviewed above suggest that BDNF has a restorative effect after SCI.
These findings stand in contrast to other work that suggests BDNF contributes to the
development of nociceptive sensitization in uninjured animals [256–259], an effect that
has been related to inflammation and the activation of microglia [260]. The implication
is that BDNF can have a bidirectional effect on neural excitability and plasticity. This
may help maintain the balance between excitatory and inhibitory transmission, providing
a kind of autoregulatory homeostasis [261–263]. This suggests that the effect of BDNF
on spinal cord function depends upon factors related to neuronal injury and the overall
state of neural excitation [264,265]. After injury, when the effect of nociceptive stimulation
on neuronal excitation is amplified, BDNF has a quieting effect; in the absence of injury,
activity-dependent BDNF release may promote nociceptive sensitization. It is not currently
known whether this transformation of BDNF function is tied to factors related to the cellular
context in which it acts (e.g., cellular signals tied to the general level of neural excitation
(e.g., intracellular Ca2+ concentration)), or the presence/absence of descending fibers (and
cellular signals engaged by these pathways). It has been suggested [266] that the switch in
BDNF function is related to the expression of phospholipase C (PLC), an effector of 5-HT
receptor activation; when PLC is present, BDNF promotes neural excitation, whereas in its
absence BDNF has a quieting effect. Supporting this, Garraway et al. showed that BDNF
promotes neural excitability in the presence of PLC [267]. The hypothesis also predicts
that treatments that engage PLC should promote the development of over-excitation and
impair adaptive learning in spinally transected animals. As predicted, treatment with
an agonist dihydroxyphenylglcine (DHPG) for the metabotropic glutamate receptor 1
(mGluR1), which engages PLC, induces a learning impairment [268].

Taken together, the results suggest that uncontrollable and controllable stimulation
have opposing effects on spinal cord plasticity; the former disables the capacity to learn
whereas the latter has an enabling effect. Because these effects involve the modulation
of plasticity (the plasticity of plasticity), they have been characterized as forms of meta-
plasticity [127,269]. The same could be suggested for descending serotonergic fibers that
modulate plastic potential within the dorsal horn [148].

3.3. Long-Term Effects of Impaired Serotonergic Activity
3.3.1. Damage to Serotonergic Pathways Promotes the Development of Neuropathic Pain

Further work has detailed the long-term consequences of damage to 5-HT fibers,
which can dysregulate nociceptive transmission and foster the development of neuropathic
pain. Work in SCI models of neuropathic pain has shown that serotonergic fibers respond
differentially to injury depending on the location. Bruce et al., in 2002, examined serotoner-
gic structural changes after a clip-compression injury (T12) in rats and found that tactile
allodynia and hyperalgesia are associated with a reduction in serotonergic fibers caudal
to the injury [270]. These findings are supported by other work that linked below-level
allodynia to the loss of descending 5-HT fibers after SCI [271]. However, Bruce et al. also
found an increase in immunoreactivity for serotonergic fibers rostral to the injury, raising
the question of whether the development of pain is due to the increase in faciliatory fibers
or the loss of inhibition. Continuing the work of Bruce et al., Oatway and collaborators
have found that 5-HT3 receptors (5-HT3R), known for being pronociceptive in pain trans-
mission, facilitate at-level mechanical allodynia after a thoracic SCI [272]. They attribute
this effect to the increase in 5-HT fibers immediately rostral to their T13 compression injury.
Furthermore, Chen et al. found that a sustained delivery of a 5-HT3 receptor antagonist,
given intravenously over multiple days, reduces at- and below-level mechanical allodynia
in rats with thoracic SCI [273].

Outside of SCI, injury to the peripheral nervous system (PNS) can lead to similar
adverse effects within the dorsal horn. Sprouting of descending serotonergic fibers in the
dorsal horn that modulate nociceptive transmission has been found in models of afferent
nerve injury [35,274] and traumatic brain injury (TBI) [275].
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3.3.2. Damage to Serotonergic Pathways Fosters Spasticity

Spasticity after SCI is a product of overactive, unregulated motor neurons within the
spinal cord that create muscle spasms. Weeks after disconnection from supraspinal input,
spinal motoneurons compensate for the loss of 5-HT by transitioning into an excitable
state, easily responsive to excitatory transmitters such as glutamate [276–279]. This leads to
the activation of 5-HT receptors that facilitate sustained firing of voltage-gated persistent
Ca2+ and Na+ currents (also called persistent inward currents, PICs) and cause muscle
contractions [280]. PICs and spasms are easily triggered by innocuous stimuli such as
touch or muscle stretching [281]. Murray et al. [58,90,97] showed that this effect is due
to the activity of 5-HT2 receptors. Supporting this, they found that tail spasms in rats
after chronic transection injury are associated with constitutively active 5-HT2 receptors.
Furthermore, administration of a 5-HT2 inverse agonist SB206553 (cyproheptadine) de-
creased the magnitude of the PICs and reduced the spasms in the rats. In the follow-up
studies, they found that 5-HT2B and 5-HT2C receptors are responsible for the facilitation
of motoneuron PICs [90]. Interestingly, they also demonstrated that 5-HT1B/1F agonists
can restore serotonergic inhibition of sensory transmission without affecting motoneuron
function [58]. The authors showed that the pharmacologic control of 5-HT2 PICs is clinically
relevant by administering the inverse agonist to spinally injured humans with evoked leg
muscle spasms [97]. The drug significantly decreased muscle spasms. A subsequent study
replicated the prior observation that cyproheptadine decreases CaPICs and showed that
a serotonin reuptake inhibitor increased spastic muscle activity, further supporting the
hyperactivity of 5-HT receptors [282]. The authors stress caution in choosing the dose of
the drugs to preserve residual function of the motoneurons. When given at a high dose,
cyproheptadine dramatically reduced weight support in rats with a staggered hemisec-
tion [97]. In addition, low doses of cyproheptadine have been shown to improve locomotor
function in human SCI patients [283].

3.3.3. Damage to Serotonergic Pathways Fosters Autonomic Function

Sympathetic dysfunction, in the form of blood pressure and cardiac impairment, is a
prevalent comorbidity in SCI patients with high thoracic injuries. It often takes the form
of a condition known as autonomic dysreflexia (AD), characterized by acute bouts of hy-
pertension and bradycardia induced by innocuous or nociceptive stimuli below the injury
(such as bladder or colorectal distension). It is well known that descending monoaminergic
fibers are involved in spinal sympathetic regulation; spinal 5-HT1A/2A receptors regulate
blood pressure [284–287], activation of descending 5-HT axons produce elevations in arte-
rial pressure [288], and adrenal receptors are involved in cardiac dysfunction induced by
AD [289]. AD often occurs as a result of the loss of descending sympathetic fibers above
the T6 region [18]. Loss of high thoracic supraspinal input can lead to the development
of unmodulated sympathetic reflexes and decreased vasomotor tone that results in signif-
icant unregulated changes in blood pressure and heart rate that can be life threatening.
Additionally, AD is associated with maladaptive fiber sprouting [290,291] and anatomic
reorganization [292–296].

Loss of serotonergic fibers can foster the development of AD. In a rat model of severe
SCI, it was found that a decline in 5-HT+ fibers located in the intermediolateral cell column
of the spinal cord was associated with the severity of AD [297]. Intrathecal administration
of a 5-HT2A agonist restored resting mean arterial pressure (MAP) and blocked the colon
distension-induced AD while a 5-HT2A antagonist (ketanserin) had no effect on hyper-
tension [297]. The serotonergic fibers were further characterized in a study in 2013 that
examined axon regeneration using biotinylated dextran amine (BDA) injected into the
rostral ventrolateral medulla to anterogradely trace the vasomotor pathways [179]. The
authors observed localized labeling within the DLF throughout the cervical and thoracic
spinal segments and, surprisingly, within the ventral white matter. A T4 hemisection that
disrupted DLF fibers did not abolish the labeling or result in hemodynamic dysfunction.
Only a complete bilateral transection injury that disrupted all supraspinal vasomotor path-
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ways promoted the development of AD. In a subsequent study, the authors attempted to
restore basal cardiovascular functions by injecting either brainstem-derived neural stem
cells or spinal cord-derived neural stem cells into the T4 transection site [298]. While they
found that both grafts mitigated AD, only the brainstem-derived cells displayed axonal
growth and functional innervation. Additionally, graft-derived catecholaminergic and
serotonergic neurons extended from the injury site and formed synaptic connections with
the surrounding host tissue, suggesting that the regeneration of these fibers contributed to
the cardiovascular functional recovery. Significant re-innervation was also observed when
5-HT+ neuron-enriched embryonic raphe nucleus-derived neural stem cells were grafted
into the lesion site of T4 transected rats [299]. Functional innervation of serotonergic circuits
regulating autonomic activity was associated with restored MAP and the alleviation of
naturally occurring as well as artificially induced AD. These effects were mediated by the
activity of the 5-HT2A receptor, evidenced by the reversal of the grafting treatment with the
5-HT2A antagonist, ketanserin. Lastly, in a study examining the effects of 5-HT2A receptors
and dopamine receptors in a rat model of AD, it was found that only 5-HT2A receptor
blockade restored hemodynamic parameters [300].

Recent studies have shown that AD after SCI is associated with cardiac dysfunction,
in the form of unregulated heart rate and reduced contractility. A study in 2020 compared
cardiovascular outcomes after a T2 transection or C6 transection in rats [301]. It was found
that hemodynamic function and cardiac outcomes were different after 12 weeks based on
the location of injury. The authors reported that C6-injured rats display hypertension and
bradycardia while the T2 transected rats exhibit tachycardia. Relative to T2 transected
rats, the C6 transected rats had reduced sympathetic tonus support to maintain arterial
blood pressure. These results shine a light on the variability of AD symptoms found in
human patients that differ in injury location and severity. In a study specifically examining
cardiac function as a response to AD, spinally transected rats (T3) were given repeated
episodes of AD 2 weeks after injury to allow for normal secondary injury mechanisms to
occur. Repetitively induced AD resulted in significant cardiac dysfunction evidenced by
reduced basal contractility and the desensitized β-adrenergic receptors. The desensitization
of the β-adrenergic receptors was surprising because other studies find that AD increases
sensitivity [289]. The desensitization could be attributed to the repeated induction of AD as
well the increased circulating catecholamines that occur during episodes of AD [302,303]. A
similar pattern of cardiac dysfunction was observed in human SCI patients with recurring
episodes of AD. With the increased risk of heart disease in SCI patients [304,305], these
results could indicate a link between AD and the development of heart disease.

Spinal sympathetic adrenergic receptors are also involved in immunosuppression after
high thoracic injury. Lucin and colleagues found an association between hypothalamic–
pituitary–adrenal (HPA) axis and sympathetic nervous system dysfunction and the reduc-
tion of antibody synthesis and elevated splenocyte apoptosis [306]. These effects were
mediated by NE acting on β2-adrenergic receptors and could be reversed with pharmaco-
logical blockade. Pharmacological blockade of both glucocorticoids (GC) and β2-adrenergic
receptors has similar restorative effects and diminishes SCI-induced splenic lymphopenia
and lymphocyte Bim levels (a pro-apoptotic protein) [307]. While the effects of the im-
munosuppression could only be found in the T3 transection model, the effects could be
mimicked in the T9 contusion model with the application of a β2-adrenergic agonist. A
study in 2013 associated the immunosuppressive effects of high thoracic SCI with AD [308].
They found episodes of AD increased as a function of time post-SCI and that experimental
activation of AD exacerbated the immunosuppression and splenic atrophy. These effects
were also alleviated by pharmacological inhibition of NE and GC receptors.

3.3.4. SCI Facilitates Pulvinar Reorganization and Dysfunction

In this review, we have discussed how descending serotonergic circuits contribute to
significant dysfunction after SCI. It is important to note however, that supraspinal circuits
are also affected by SCI. Pulvinar dysfunction in the thalamus has been observed in patients
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with complete SCI [309]. The pulvinar nucleus is known to play an important role in
contextual multi-sensory processing and gating [310–312]. Importantly, the excitability
of pulvinar neurons is modulated by 5-HT [313]. Specifically, 5-HT was found to have
a hyperpolarizing effect. After SCI, there is a reorganization of supraspinal circuits to
compensate for the lack of proprioceptive feedback. A functional magnetic resonance
imaging (fMRI) study found an increase in functional connectivity between the left pulvinar
nucleus and regions of the left inferior frontal gyrus and left inferior parietal lobe in patients
with complete SCI [309]. The authors suggest that the lack of afferents from lower motor
centers could create an imbalance in sensory weighting, initiating a compensatory increase
in cross-talk between multisensory association cortices through the pulvinar nucleus. Given
this, the pulvinar could be a promising therapeutic target after SCI.

4. Descending Serotonergic Fibers Regulate the Inhibitory Effect of GABA

The findings reviewed above suggest that the loss of descending 5-HT fibers promotes
the development of maladaptive plasticity by enabling a state of over-excitation that can
fuel cell death and foster the development of spasticity, pain, and autonomic dysreflexia.
This dampening effect has been traditionally linked to the direct consequences of engaging
the 5-HT1A receptor, which has an inhibitory effect on neural activity (see Section 2.2). More
recent work has revealed a secondary consequence of interrupting 5-HT function, related
to an alteration in how the neurotransmitter GABA affects neural excitability, which may
help to explain its broad effect on spinal function. This new perspective is motivated by
two observations that challenge traditional views of how GABA affects neural activity.

4.1. Pretreatment with a GABA-A Antagonist Blocks the Development of Nociceptive Sensitization
after SCI

The standard view of GABA function presumes it inhibits neural activity, an effect that
is primarily mediated by the activation of the GABA-A receptor, an ionotropic receptor that
regulates the flow of the anion Cl− across the cellular membrane [314]. In the adult central
nervous system (CNS), neurons maintain a low intracellular concentration of Cl− [1]. As a
consequence, engaging the GABA-A receptor allows the anion to flow into the cell, which
has a hyperpolarizing (inhibitory) effect.

Within the uninjured adult spinal cord, GABAergic interneurons regulate neural exci-
tation and plastic potential, exerting an inhibitory effect that modulates motor excitability
and quiets nociceptive activity [315]. Neural inhibition also limits plasticity, which helps
preserve neural circuits over time. Given this characterization, it is naturally anticipated
that local application of a GABA-A antagonist (e.g., bicuculline) would remove a brake
on neural activity to promote motor output, the transmission of sensory signals to the
brain, and plasticity. As predicted, i.t. bicuculline has a pronociceptive effect that en-
hances behavioral reactivity to noxious and non-noxious stimuli, inducing a state akin
to nociceptive sensitization [316–321]. Conversely, administration of a GABA-A agonist
(e.g., muscimol), or implanting cells that express GABA, attenuates neural excitation and
behavioral reactivity [322–324].

Contrary to the standard view are data demonstrating that blocking the GABA-A
receptor can sometimes have an antinociceptive effect that counters the development of
nociceptive sensitization. For example, in diabetic rats, pretreatment with bicuculline
attenuates the enhanced mechanical reactivity (allodynia) elicited by peripheral treatment
with the irritant formalin [325]. Likewise, in rats that have undergone a thoracic (T2)
transection, bicuculline reduces the nociceptive sensitization elicited by noxious electrical
stimulation, capsaicin, and inflammation [224]. Here, blocking GABA does not remove
a brake on neural excitation; instead, the opposite is observed, which suggests that after
SCI engaging the GABA-A receptor can have a paradoxical effect that drives, rather than
inhibits, neural sensitization.
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4.2. Alterations in Intracellular Cl− Impact How GABA Affects Neural Activity

A second observation that led to a paradigm shift stemmed from the recognition
that there is a developmental shift in how GABA affects neural activity [326,327]. This
alteration is driven by changes in the intracellular concentration of Cl−, which is controlled
by two membrane bound proteins, the K+-Cl− cotransporter (KCC2) and the Na+-K+-
Cl− cotransporter (NKCC1) that regulate the outward and inward flow of Cl−, respec-
tively [326,328–330]. Because NKCC1 develops first, the inward flow of Cl− is augmented
early in development, which maintains a high intracellular concentration of the anion [331].
Under these conditions, engaging the GABA-A receptor allows Cl− to flow out of the
cell, which has a depolarizing (excitatory) effect [326,327]. Later in development, there is
increased expression of KCC2, which lowers the intracellular concentration of Cl−. Now,
engaging the GABA-A receptor allows Cl− to enter the cell, producing a hyperpolarization
that inhibits neural activity.

What transformed the view of GABA function is the recognition that intracellular Cl−

concentration is dynamically regulated in the adult CNS, a phenomenon known as ionic
plasticity [332,333]. Evidence suggests that this change is largely due to a downregulation
of KCC2, which attenuates the hyperpolarizing effect of engaging the GABA-A receptor.
Indeed, if KCC2 is sufficiently downregulated, engaging the GABA-A receptor can have a
depolarizing effect that drives neural activity and plasticity. Evidence suggests that a down-
regulation of KCC2 can foster the development of hippocampal LTP and contributes to a
number of disease states, including epilepsy, addiction, and diabetes [1,325,326,334–337].
Of particular import in the present context, SCI has been shown to downregulate KCC2
caudal to the injury, a transformation that removes a brake on neural activity and plastic-
ity [328,338–340]. While this may benefit recovery by enabling the adaptive re-wiring of
neural circuits [127], it also removes a governor on neural excitation, which enables nocicep-
tive sensitization and the development of neuropathic pain [315,328]. The downregulation
of KCC2 also contributes to the emergence of prolonged muscle activity (spasticity) after
injury and the weakening of inhibitory processes essential to rhythmic locomotion [339,341].
In addition, a GABA-dependent over-excitation impairs the adaptive re-wiring of neural
circuits and the capacity to learn [342,343].

The discovery that a downregulation of KCC2 contributes to pain and spasticity after
SCI has fueled the exploration of a new class of treatments, designed to re-establish GABAer-
gic inhibition by promoting KCC2 activity (e.g., CLP-290, a KCC2 activator) or by reducing
the inward flow of Cl− with a NKCC1 inhibitor (e.g., bumetanide) [328,340]. Evidence
suggests that these treatments can promote the adaptive re-wiring of spinal circuits, foster
behavioral recovery, and attenuate the development of spasticity and pain [224,339,343].
The realization that SCI brings a shift in how GABA affects neural activity also helps to
explain the paradoxical effect of blocking the GABA-A receptor after injury—because injury
leads to a high concentration of intracellular Cl−, engaging the GABA-A receptor has a
depolarizing effect. Under these conditions, pretreatment with the GABA-A antagonist
would be expected to have an antinociceptive effect that counters the development of
nociceptive sensitization [224].

4.3. Exercise and Training Re-Establish GABAergic Inhibition after Injury

We noted earlier that exercise and locomotor training can have a therapeutic influence
after SCI, promoting motor behavior and attenuating the maintenance of chronic pain and
spasticity [255,344]. New data have revealed that locomotor training has these effects, in
part, because it helps to re-establish GABAergic inhibition by upregulating KCC2 [345].
Because GABAergic inhibition plays an essential role in the execution of rhythmic be-
havior [341], this fosters the recovery of stepping. In addition, it helps to explain why
step training and exercise attenuate chronic pain and spasticity. The beneficial effect of
locomotor training and exercise after SCI may be related to increased expression of BDNF,
which upregulates KCC2 after injury [345]. Indeed, blocking BDNF counters the behavioral
benefit of training and its effect on KCC2, suggesting that BDNF expression plays an
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essential role [344,346]. As noted earlier, BDNF also attenuates nociceptive sensitization
after SCI and this effect too has been related to an upregulation of KCC2 [251].

We discussed above how BDNF can have opposing effects on nociceptive processing,
countering the development of sensitization after SCI but generally promoting neural
excitability in the absence of injury [256–258]. These alternative effects may be explained
by its opposing action on KCC2. After SCI, BDNF upregulates the expression of KCC2,
which would counter the maintenance of pain and spasticity [254,339]. In the absence
of injury, BDNF downregulates KCC2 within the spinal cord, which would fuel nocicep-
tive sensitization and the development of neuropathic pain [258,260,347,348]. The key
question then becomes why does BDNF have opposite effects on KCC2 in injured and
uninjured animals? One suggestion is that this is determined by the signal pathways
engaged [266,332,333]. BDNF binds to the TrkB receptor, which can activate both Shc (src
homology 2 domain containing transforming protein) and PLC. How these pathways affect
KCC2 depends upon PLC: If PLC is absent, KCC2 is upregulated; if PLC is engaged, KCC2
is downregulated. In line with this hypothesis, PLC is downregulated within the spinal
cord after injury and upregulated by locomotor training [255,345]. Alternatively, the effect
of BDNF on KCC2 may be modulated by the intracellular concentration of Ca2+ leading to
a downregulation when the concentration is high and an upregulation when Ca2+ levels
are low [326]. Supporting this, neural injury does not transform how BDNF acts if the
depolarizing shift is blocked with bumetanide [349].

4.4. The Shift in GABA Function Is Tied to the Loss of Descending 5-HT Fibers

Recent data has linked the downregulation of KCC2 after SCI to the loss of serotonergic
fibers that descend through the DLF [127]. Supporting this, lesions limited to this region can
flip how bicuculline affects the development of nociceptive sensitization. In sham operated
rats, the drug has a pronociceptive effect. After bilateral lesions of the DLF at T2, KCC2 is
downregulated and bicuculline has an antinociceptive effect [127]. Likewise, in uninjured
animals, pretreatment with a 5-HT1A antagonist (i.t.) reverses the action of bicuculline,
causing it to have an antinociceptive effect that counters the development of capsaicin-
induced nociceptive sensitization. Conversely, after a complete SCI (T2 transection) i.t.
administration of a 5-HT1A agonist (8-OH-DPAT) upregulates KCC2 and re-establishes the
pronociceptive effect of bicuculline.

A key unanswered question concerns the impact of these manipulations on the affec-
tive/motivational consequences of nociceptive stimulation. Does the loss of descending
serotonergic fibers, and the consequent switch in GABA function, alter the sensory signal
relayed to the brain? To explore this issue, we examined the effect of bicuculline treatment
on capsaicin-induced pain in a place conditioning task, wherein animals experience dif-
ferent treatments prior to being placed in distinctive environments (contexts) [127]. Rats
received bilateral cuts of the DLF at T2 or a sham surgery. Over the next two days, the key
groups were treated with capsaicin before they were placed in each context. On one day,
animals received bicuculline (i.t.) prior to capsaicin treatment; on the other, they received
the drug vehicle before capsaicin. Prior work has established that animals exhibit a con-
ditioned aversion to the context where they experience greater pain [350]. In the present
case, the focal question concerns the effect of bicuculline treatment on capsaicin-induced
pain. If GABA inhibits pain, blocking GABA should enhance the painfulness of capsaicin,
inducing a stronger aversion to that context. To establish whether this occurred, animals
were given a preference test where they were free to enter either context. As expected, sham
operated rats showed an aversion to the context where they had received bicuculline before
capsaicin, implying that blocking GABA-A receptors within the spinal cord enhanced pain.
However, bicuculline had the opposite effect in DLF-lesioned rats. These animals preferred
the context where they had received bicuculline prior to capsaicin treatment, implying that
the GABA-A antagonist had an antinociceptive effect. The results reinforce the claim that,
after SCI, the engagement of the GABA-A receptor by GABA promotes nociceptive activity
and pain.
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Other research has shown that a disruption in descending serotonergic fibers contributes
to the downregulation of KCC2 that drives spasticity and motor impairments [339,341]. Here,
however, 5-HT appears to act via the 5-HT2 receptor [351]. Pretreatment with a 5-HT2
agonist ((4-bromo-3,6-dimethoxy benzocyclobuten-1-yl)methylamine hydrobromide (TCB-
2)) upregulated KCC2 after SCI and attenuated mechanical and thermal hyperalgesia. TCB-
2 did not, however, attenuate the development of neuropathic pain induced by peripheral
nerve injury in SCI rats [352]. Interestingly, treatment with TCB-2 also counters the stress-
induced downregulation of KCC2 within the ventral tegmental area, a modification that
contributes to alcohol self-administration [335,353].

Serotonergic innervation may also help to explain the transformation in BDNF func-
tion, which Rivera et al. linked to the expression of PLC—an effector of engaging 5-HT
receptors [266,332]. In adult animals, descending 5-HT fibers would drive PLC signaling,
which would cause BDNF to downregulate KCC2 and foster nociceptive sensitization.
Damage to descending 5-HT fibers would reduce PLC activity and transform the action of
BDNF, causing it to upregulate KCC2.

While the above may help to explain the change in BDNF function, some key questions
remain unanswered: (1) How does the development of descending fibers upregulate KCC2?;
and (2) Why does damage to these pathways have the opposite effect? Regarding the
first question, prior work has shown that the shift in GABA function coincides with the
innervation of descending fibers [354,355]. Furthermore, transecting the spinal cord at an
early age (before fibers reach the caudal spinal cord) blocks the upregulation of KCC2.
Finally, prolonged treatment with a 5-HT2 agonist (DOI) during the first postnatal week
can substitute for the lost innervation in transected animals to re-establish GABAergic
inhibition [351]. As to the second question, the reduction in KCC2 observed after SCI in
adults could be tied to the inhibitory effect of descending fibers. In vitro, artificially driving
neural activity leads to a downregulation of KCC2 [266,332]. Likewise, epileptic activity
can drive KCC2 down. From this perspective, KCC2 is downregulated after SCI because
damage to descending serotonergic fibers removes a source of tonic inhibition, resulting in
a state of prolonged neural activity. Under these circumstances, removing a brake on neural
activity is biologically efficient and could help neurons survive in the face of increased
metabolic load [326,332]. Interestingly, the initiation of this process may depend upon
BDNF; blocking BDNF before neural activity is increased, or the spinal cord is cut, counters
the downregulation of KCC2 [266,339].

5. Role of Other Monoamines

Monoaminergic neuromodulation within the spinal cord includes not only serotonin,
but NE and dopamine as well. While descending serotonergic fibers have been the main
focus of this review, it is important to acknowledge the role of the other monoamines.

5.1. Noradrenergic Fiber Pathways

Noradrenergic projections to in the spinal cord (Figure 1) are primarily sourced from
the C1 and C2 medullary nuclei, the A5 and A6 nuclei in the locus coeruleus, and the A7
pontine region [17]. The intermediolateral cell column and the ventral horn are recipients of
noradrenergic input from the A5 and A6 regions, respectively, while the dorsal horn receives
input predominately from the A7 region. There are three major classes of adrenoreceptors
(Tables 3 and 4). The α1A/B/D are characterized as excitatory through their positive coupling
to Gq/11 proteins. The α2A/B/C receptors are characterized as inhibitory via their inhibition
of adenylyl cyclase through Gi/o proteins and their suppression of Ca2+ currents. Lastly,
β-adrenoreceptors (β1/2/3/4) stimulate neuronal activity via Gs proteins.
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Table 3. Distribution and function of alternative norepinephrine receptors (SC = spinal cord;
SCI = spinal cord injury).

Receptor Receptor
Type Location in SC Normal Function Function after SCI

α1

α1A

Gq/11

Dorsal horn, intermediate cell
column, and ventral horn [17];

motoneurons [356]

Antinociception [17]; motor
behavior, pronociception,
autonomic processing [17]

Spontaneous motoneuron activity7;
spasticity [357]; Sympathetic

neurovascular function [358,359];
micturition [360,361]

α1B

α1C

α2

α2A

Gi/o

Superficial dorsal horn and
deeper laminae, and lamina X

[17]; motoneurons [356]
Antinociception [17,362,363];
inhibits sympathetic outflow

[17]

Locomotor recovery [364]; mediates
bowel dysfunction [365]; reflex/muscle

spasticity [366,367]; neurological
recovery [368]

α2B Dorsal horn [17]

α2C
Dorsal horn and DRG [17];

motoneurons [356]

β

β1

Gs Cardiac function [369] Micturition [370], locomotor recovery
[371,372], cardiac function [369]

β2
β3
β4

Table 4. Common noradrenergic agonists and antagonists.

Receptor Agonists Antagonists Non-Selective Agonists Non-Selective Antagonists

α1

α1A Methoxamine (A61603) [357]

WB4010 [357], prozosin
[357], BRL44408 [373],
silodosin, naftopidil

[374], tamsulosin [361]
REC15/2739 [357]; methoxamine
[358], phenylephrine [358–360] Terazosin [360,375]

α1B
α1C

α2

α2A
Clonidine, UK14303 [357,376],

Guanfacine [377] Atipamezole [373] Dexmedetomidine [368,378],
guanabenz, UK-14304 [376],

tianidine [367]; medetomidine [379]

Yohimbine, RX821001(2) [357],
rauwolscine, idazoxan [376],

efaroxan [373]
α2B ARC239 [373]
α2C

β

β1 Dobutamine [369]
Propranolol [380,381], carvedilol

[382,383], nadolol [384]
β2 Formoterol [371,372] ICI118551 [385]
β3 Vibegron [370] SR59230A [385]
β4

Adrenoreceptors’ involvement in spinal cord neuromodulation is extensive. Tradition-
ally, in conditions of early SCI, NE’s activities are known to be involved in hemorrhagic
necrosis [386–389], blood pressure/blood flow [390–392], and motor function [387,393–395].
Nociception is regulated by α2-adrenergic receptors which inhibit activity of deep dorsal
horn neurons [362,363], and in neuropathic pain models of SCI, catecholaminergic fibers
have shown evidence of maladaptive plasticity and fiber sprouting after thoracic tran-
section [396,397]. Lastly, spinal sympathetic β-adrenoreceptors have been shown to be
involved in immunosuppression after high thoracic SCI [306,307], and these effects have
also been linked to AD [308].

5.2. Dopaminergic Fiber Pathways

Descending dopaminergic projections (Figure 1) originate from the A11 region of the
periventricular posterior hypothalamus [17]. These fibers can be detected in the intermedi-
olateral cell column and the ventral horn, but they are primarily found in the dorsal horn
and lamina X. Dopamine receptors are classified into two families, D1-like and D2-like
(Tables 5 and 6). D1-like receptors include D1 and D5 receptors and they have an excitatory
action upon neural activation via Gq proteins through stimulation of adenylyl cyclase [17].
D2-like receptors include D2, D3, and D4 and they inhibit adenylyl cyclase through Gi/o
proteins and thus suppress neural activity.
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Table 5. Distribution and function of alternative dopamine receptors (SC = spinal cord; SCI = spinal
cord injury).

Receptor Receptor Type Location in SC Normal Function Function after SCI

D1-like
D1 Gq

Throughout the spinal cord
[17] Pronociception [17]

Micturition [398,399],
cardiovascular function [400],

pronociception [401]
D5

D2-like

D2

Gi/o

Superficial laminae and
lamina X [17]

Antinociception,
pronociception [17]

Micturition [398,399],
cardiovascular function [400],

D3 Dorsal horn [17] antinociception [401]

D4
Dorsal horn (check this one)

[17]

Table 6. Common dopaminergic agonists and antagonists.

Receptor Agonists Antagonists Non-Selective Agonists Non-Selective
Antagonists

D1-like

D1
SKF 38393 [398,399,402]

[403]

SCH 23390
[398–400,402,403],

SCH 39166 [401,404]

Aripiprazole [405],
apomorphine

[300,398,400,406], SKF
83959 [402]

D5

D2

Quinpirole
[399,402,403,407],
Ropinirole [408],

sumanirole [409], B-HT
920, bromocriptine

[410,411], LY 141865 [412]

Remoxipride [398,399],
domperidone [400,413],
metoclopramide [400],

eticlopride [414],
L-741,626 [402],

(−)-sulpiride [403,410],
haloperidol [411]

D2-like
D3

Pramipexole [401,404],
ropinirole [408]

D4

While research on the role of spinal cord dopamine is growing, there is relatively
little known regarding its contribution to pathology after SCI [415–417]. There is evi-
dence it is involved in pain modulation. Supporting this, systemic administration of
D2 receptor agonists elicit antinociception while D1 receptor agonists elicit pronocicep-
tion [17,403,410–413]. In an SCI model, targeting D2 receptors has been shown to alleviate
pain-related behaviors and even improved secondary injury by reducing inflammation and
MMP-9 expression [407]. Lastly, dopaminergic agonists administered to the preganglionic
neurons within the intermediolateral cell column have been shown to elicit hypotension
and bradycardia [400,418–420].

Recent work has found that dopamine receptors play an active role in micturition after
SCI. In a male rat thoracic (T10) transection model, it was found that spinal D1 receptors
tonically suppress tonic external urethral sphincter (EUS) activity to enable voiding while
the activation of D2 receptors facilitates voiding [399]. Work in a complete transection
female rat model showed similar results where pharmacologic activation of D1 receptors
after SCI inhibits urine storage and enhances voiding by differentially modulating (EUS)
tonic and bursting patterns, respectively [398]. Additionally, they found that pharmacologic
activation of D2 receptors with quinpirole improves voiding by enhancing EUS bursting.

6. Conclusions
6.1. Summary

We have described how damage to descending serotonergic fibers can contribute to
pathophysiology after SCI. These effects include an amplification of nociceptive signaling
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that fosters the development of acute nociceptive sensitization, impairs adaptive learning
and locomotor recovery, and promotes the development of neuropathic pain, spasticity,
and autonomic dysreflexia. In many cases, these adverse effects appear tied to a loss
of activity at 5-HT1A and 5-HT2 receptors. New research has shown that the loss of
serotonergic activity downregulates the co-transporter KCC2 caudal to injury, bringing a
reduction in the inhibitory effect of GABA. It was suggested that this modification may
provide a cellular context that fosters pathophysiology, to augment the adverse effects of
nociceptive input, impair locomotor function, and drive spasticity. Treatments that bolster
5-HT function after injury may bring benefit by restoring GABAergic inhibition. Likewise,
the pathophysiological consequences of damage to serotonergic fibers may be lessened by
treatments that target ionic plasticity.

6.2. Limitations and Issues for Future Research

We described above how noxious stimulation can induce a state of over-excitation
in the spinal cord and undermine recovery after injury [231,237]. We have also shown
that pain input after injury engages pro-inflammatory cytokines and signals related to cell
death [238]. More recently we discovered that nociceptive stimulation after SCI promotes
hemorrhage at the site of injury [421]. Because blood borne contents are neurotoxic [422],
the infiltration of blood would expand the area of tissue loss (secondary injury). Our review
of serotonergic regulation of spinal systems has emphasized how these fiber tracts can
quell over-excitation and thereby have a protective effect. Given these observations, we
naturally hypothesized that noxious stimulation would lead to greater tissue loss and
hemorrhage after a contusion injury if communication with the brain was cut. We found
exactly the opposite—that disrupting communication with the brain by means of a surgical
or pharmacological transection at T2 blocks nociception-induced hemorrhage in rats that
had a lower thoracic contusion injury [423,424]. A T2 transection also blocked the activation
of pro-inflammatory cytokines, and signals indicative of cell death, at the site of injury.
Furthermore, a pharmacological transection at T2 blocked the adverse effect nociceptive
stimulation has on long-term recovery [423]. Because a rostral transection is sufficient to
downregulate KCC2 in the caudal tissue [224], these findings imply that the shift in GABA
function does not, by itself, enable nociception-induced hemorrhage after injury [425].
The implication is that an additional, brain-dependent, process is engaged that plays an
essential role in driving pain-induced tissue loss after injury. We have hypothesized that
this adverse effect may be linked to a nociception-induced surge in blood pressure [426].
From this perspective, local alterations may enable nociceptive sensitization (setting the
stage for chronic pain) and place the tissue in a vulnerable state (e.g., by weakening the
blood spinal cord barrier). A surge in blood pressure/flow could then lead to hemorrhage,
increasing inflammation and cell death at the site of injury.

A related issue that requires additional research concerns the dissociation of the time-
course of injury-induced changes in KCC2 and the development of chronic pain/spasticity.
Injury causes a reduction in KCC2 sufficient to transform the action of GABA within
24 h [224]. Yet, spasticity and enhanced pain generally do not develop until weeks
later [239,339,427]. Again, the findings imply that a downregulation in KCC2 is not suffi-
cient to produce these effects—that other processes and events play an essential role. Key
processes may include the engagement of nociceptive fibers, hemodynamic dysregulation,
and factors related to stress.

Additional research is also needed to explore the contribution of these processes to
other pathophysiological features of SCI. One unknown concerns the contribution of ionic
plasticity to autonomic dysreflexia. Likewise, while it is known that a downregulation of
KCC2 contributes to a maladaptive consequence of morphine treatment (spinally mediated
hyperalgesia) [333], it is not known whether this effect mediates the adverse effect acute
morphine has on tissue sparing and long-term recovery [428,429]. Finally, it should be
noted that our review has focused upon how serotonergic fibers and ionic plasticity affect
lumbosacral function. A parallel line of work has explored the consequences of cervical
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injury on respiratory function, demonstrating a BDNF-dependent benefit of intermittent
hypoxia [9,430]. Here too, descending serotonergic fibers play an essential modulatory
role. However, in this model, ionic plasticity may contribute little to pathophysiology or
recovery [431].
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