Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

5²CelPress

Player selection in football by integrated SWARA-VIKOR methods under fuzzy environment

Elif Çaloğlu Büyükselçuk^{*}, Eray Badem

Department of Industrial Engineering, Fenerbahçe University, İstanbul, Turkey

ARTICLE INFO

Keywords: Decision making Football player Neutrosophic numbers SWARA VIKOR

ABSTRACT

This study aims to provide an objective evaluation and selection of the most suitable players for the Turkish National Football Team by using multi-criteria decision-making methods, specifically Stepwise Weight Assessment Ratio Analysis (SWARA) and VIsekriterijumsko KOmpromisno Rangiranje (VIKOR) based on neutrosophic numbers. In the initial step of the study, the important criteria for player selection were determined, and a total of 21 and 26 criteria were identified for goalkeeper and players, respectively. Agility, reflexes and jumping ability are very important for goalkeeper whereas marking, passing ability, agility, dribbling, and footwork are the most important criteria for players. The performances of the players were evaluated due to these criteria and finally the Turkish National Football Team was established scientifically because of the best player selection. This decision-making process will be more beneficial in making more informed and effective decisions in the national team's player selection process. The success of the team can be improved by providing an objective and systematic player selection approach.

1. Introduction

One of the most popular and competitive sports in the world is football that is a multi-player game [1]. Thanks to this popularity, football has an important place economically both at national and international levels. As a result of economic activities such as player transfers and sponsorships, football has become a profitable industry [2,3]. To get a share of this profit, clubs, managers, coaches, and players strive to be successful in every match [4]. At this point, the biggest responsibility falls on the players, coaches, and managers. Football players must have perfect lives with regular physical activities, healthy nutrition, and lifestyle [5]. Coaches, on the other hand, must set up the team correctly, organize the team according to their competencies and prepare them for the matches. Club managers must make the right transfers and provide adequate financial, physical, and technical facilities for their teams. To win a competition, the most important and vital task at this point is to establish the right team [6]. To reach the top in team sports, the ability to select suitable players and organize an effective team formation is indispensable. In this process, a wrong team selection can cause the team to lose the match or the championship, and even millions of dollars [5].

Coaches, technical personnel, or other relevant employees should not only provide tactical or technical knowledge, but also form the appropriate team after evaluating the technical, physical, and mental performances of the players as a whole [7-9]. Coaches and other responsible people as the decision makers should choose the right player with the best performance and create the perfect starting team of 11 players. This decision will affect the financial performance of the team as well as its sporting performance [7,10],

* Corresponding author.

https://doi.org/10.1016/j.heliyon.2024.e33087

Received 22 April 2024; Received in revised form 13 June 2024; Accepted 13 June 2024

Available online 14 June 2024

E-mail address: elif.buyukselcuk@fbu.edu.tr (E. Çaloğlu Büyükselçuk).

^{2405-8440/© 2024} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Fig. 1. The numbers of "player selection" studies by years [25].

Summary of "player selection" studies.

Author(s)	Objective
Abidin [26]	To examine football team formation with machine learning
Barden and Kozlak [27]	To examine foreign basketball player selection under resource endowments
Adhikari et al. [28]	To design a cricket player performance index and evaluate the players
Koopmann et al. [29]	To provide table tennis players due to related criteria
Wen et al. [30]	To select rugby player selection via TOPSIS and IPA methods
Das et al. [31]	To employ different clustering techniques and present intelligent framework for team selection
Salabun et al. [32]	To assess players their performance via COMET
Vetukuri et al. [33]	To propose an optimized model to select cricket player easily.
Wieckowski and Salabun [34]	To examine football players' performance score based on multi-criteria decision analysis
Budak and Kara [35]	To propose a multi-objective mathematical model for team harmony and players' performance
Agarwalla and Mukhopadhyay [36]	To leverage the particle swarm optimization for an effective player selection strategy
Dey et al. [37]	To evaluate cricket players' performance via AHP-TOPSIS and AHP-COPRAS.
Dezman et al. [38]	To develop an expert model system to settle the basketball players in the game
Pappalardo et al. [39]	To evaluate the performance of soccer players
Kizielewicz and Dobryakova [40]	To evaluate sport players' performance based on MCDA
Nikjo et al. [41]	To examine player selection process
Manju and Philip [42]	To construct a new performance index, to cluster players due to their experience

Fig. 2. The numbers of "SWARA and VIKOR" studies by years [43].

11]. In the strategic decision-making process, scientific and objective methods and management of the process are important [6, 12–14].

Considering the problem, it is in the category of typical multi-criteria decision-making problem and the problem can be solved using different MCDM methods. The decision-making process is complex and difficult to manage [15–17]. This process is based on evaluating alternatives according to many different evaluation criteria and determining the best alternative. Many scientific decision-making methods support decision makers. When real life problems are considered, it is concluded that uncertainty and subjectivity are intense. This makes the use of fuzzy sets, interval-valued fuzzy sets, and rough sets widespread in the search for solutions [18–24].

In this study, both players and goalkeepers are selected for the Turkish National Football Team by using integrated SWARA and VIKOR methods based on neutrosophic fuzzy numbers. Turkish National Football Team is the football team that represents the Republic of Turkey in the international football arena. The Turkish Football National Team, founded in 1923 and affiliated with the Turkish Football Federation, is of great importance for the development and success of Turkish football. It was entitled to participate in the FIFA World Cup, the largest and most prestigious among international tournaments, twice, in 1954 and 2002. The Turkish Football

Summary of "SWARA and VIKOR" studies.

Author(s)	Objective
Gezmisoglu et al. [44]	To evaluate suppliers via SWARA and VIKOR methods
Hokmabadi et al. [45]	To determine risks via FMEA based on SWARA-VIKOR for gas pressure reduction station
Rani et al. [46]	To select the solar panel by using Pythagorean fuzzy SWARA-VIKOR
Koska and Erdem [47]	To evaluate waste management in Turkey via SWARA-VIKOR
Yücenur and Senol [48]	To eliminate waste and create lean construction process by using SWARA-VIKOR
Alimardani et al. [49]	To select supplier via hybrid SWARA-VIKOR method in agile environment
Zavadskas et al. [50]	To select effective technological system in construction via SWARA-TOPSIS, SWARA-ELECTRE III and SWARA-VIKOR
Rezaee et al. [51]	To extract the data by using SWARA-VIKOR for tourism system
Hassan et al. [52]	To evaluate circular economy practices in construction industry via fuzzy SWARA-VIKOR in Pakistan
Khan and Ali [53]	To provide a smart waste management facility via fuzzy SWARA-VIKOR
Seikh and Chatterjee [54]	To select the best energy source via SWARA-ARAS under fuzzy environment
Zhou et al. [55]	To develop a framework for offshore wind power station site selection by SWARA and MOORA under fuzzy environment
Kumar and Mahanta [56]	To select solar panel via MEREC-SWARA-VIKOR based on Phythagorean fuzzy number
Soltani and Aliabadi [57]	To evaluate the risks of firefighter job via hybrid SWARA-ARAS under fuzzy environment
Ighravwe and Mashao [58]	To investigate a framework for safety-critical maritime infrastructure by using SWARA, TOPSIS, WASPAS

Table 3

Single valued neutrosophic numbers (SVNNs) scale.

Linguistic Term	Single valued neutrosop	hic numbers (SVNNs)	
	T (Truth)	I (Indeterminacy)	F (Falsity)
Very Low Importance (VLI)	0.15	0.80	0.80
Low Importance (LI)	0.25	0.70	0.70
Below Average Importance (BAI)	0.35	0.60	0.60
Average Importance (AI)	0.45	0.50	0.50
Above Average Importance (AAI)	0.60	0.40	0.35
High Importance (HI)	0.75	0.35	0.25
Very High Importance (VHI)	0.85	0.20	0.20

Fig. 3. The flow of model.

National Team, which made a great impact with its third place in the 2002 World Cup, in which it qualified for the second time, later made a name for itself with its third place in Euro 2008, in which European countries participated. These two achievements are among the greatest achievements of the National Team.

The Turkish Football National Team had unsuccessful results, especially after the third place in the European Cup held in 2008, and could not qualify for 4 consecutive World Cups, namely 2010-2014-2018-2022. This situation is the most important indicator of the decline in the National Team. After 2008, many football players decided to quit the National Team because they were getting older. The team, which could not replace the experienced players it lost and tried to rejuvenate the squad, could not achieve the stability it wanted in terms of the squad. The fact that the squads determined by the coaches are criticized by many people prevents the team from achieving stability and causes different players to be tested constantly. To ensure the future success of the team and regain its lost prestige, these problems must be solved and stability in the team must be ensured.

Fig. 4. The evaluation criteria for goalkeepers (GKs).

Fig. 5. The evaluation criteria for football players (FPs).

Criteria evaluation for goalkeeper by all decision makers.

Code	DM1			DM2			DM3			DM4			DM5		
	Т	Ι	F	Т	Ι	F	Т	Ι	F	Т	Ι	F	Т	Ι	F
GK-T1	0.6	0.4	0.35	0.6	0.4	0.35	0.6	0.4	0.35	0.45	0.5	0.5	0.75	0.35	0.25
GK-T2	0.15	0.8	0.8	0.35	0.6	0.6	0.15	0.8	0.8	0.15	0.8	0.8	0.25	0.7	0.7
GK-T3	0.75	0.35	0.25	0.25	0.7	0.7	0.75	0.35	0.25	0.6	0.4	0.35	0.6	0.4	0.35
GK-T4	0.25	0.7	0.7	0.45	0.5	0.5	0.25	0.7	0.7	0.35	0.6	0.6	0.15	0.8	0.8
GK-T5	0.45	0.5	0.5	0.85	0.2	0.2	0.45	0.5	0.5	0.75	0.35	0.25	0.45	0.5	0.5
GK-T6	0.85	0.2	0.2	0.75	0.35	0.25	0.85	0.2	0.2	0.85	0.2	0.2	0.85	0.2	0.2
GK-T7	0.35	0.6	0.6	0.15	0.8	0.8	0.35	0.6	0.6	0.25	0.7	0.7	0.35	0.6	0.6
GK-M1	0.25	0.7	0.7	0.45	0.5	0.5	0.15	0.8	0.8	0.6	0.4	0.35	0.15	0.8	0.8
GK-M2	0.45	0.5	0.5	0.15	0.8	0.8	0.85	0.2	0.2	0.45	0.5	0.5	0.25	0.7	0.7
GK-M3	0.15	0.8	0.8	0.25	0.7	0.7	0.25	0.7	0.7	0.35	0.6	0.6	0.45	0.5	0.5
GK-M4	0.75	0.35	0.25	0.35	0.6	0.6	0.35	0.6	0.6	0.85	0.2	0.2	0.75	0.35	0.25
GK-M5	0.6	0.4	0.35	0.85	0.2	0.2	0.45	0.5	0.5	0.75	0.35	0.25	0.35	0.6	0.6
GK-M6	0.35	0.6	0.6	0.75	0.35	0.25	0.75	0.35	0.25	0.15	0.8	0.8	0.6	0.4	0.35
GK-M7	0.85	0.2	0.2	0.6	0.4	0.35	0.6	0.4	0.35	0.25	0.7	0.7	0.85	0.2	0.2
GK-P1	0.25	0.7	0.7	0.15	0.8	0.8	0.6	0.4	0.35	0.25	0.7	0.7	0.45	0.5	0.5
GK-P2	0.85	0.2	0.2	0.85	0.2	0.2	0.85	0.2	0.2	0.85	0.2	0.2	0.85	0.2	0.2
GK-P3	0.6	0.4	0.35	0.75	0.35	0.25	0.45	0.5	0.5	0.75	0.35	0.25	0.75	0.35	0.25
GK-P4	0.75	0.35	0.25	0.6	0.4	0.35	0.75	0.35	0.25	0.6	0.4	0.35	0.6	0.4	0.35
GK-P5	0.45	0.5	0.5	0.25	0.7	0.7	0.15	0.8	0.8	0.15	0.8	0.8	0.35	0.6	0.6
GK-P6	0.15	0.8	0.8	0.35	0.6	0.6	0.25	0.7	0.7	0.45	0.5	0.5	0.15	0.8	0.8
GK-P7	0.35	0.6	0.6	0.45	0.5	0.5	0.35	0.6	0.6	0.35	0.6	0.6	0.25	0.7	0.7

Table 5

Crispy and aggregated values for each criteria.

Code	DM1	DM2	DM3	DM4	DM5	P _m
GK-T1	0.6167	0.6167	0.6167	0.4833	0.7167	0.6100
GK-T2	0.1833	0.3833	0.1833	0.1833	0.2833	0.2433
GK-T3	0.7167	0.2833	0.7167	0.6167	0.6167	0.5900
GK-T4	0.2833	0.4833	0.2833	0.3833	0.1833	0.3233
GK-T5	0.4833	0.8167	0.4833	0.7167	0.4833	0.5967
GK-T6	0.8167	0.7167	0.8167	0.8167	0.8167	0.7967
GK-T7	0.3833	0.1833	0.3833	0.2833	0.3833	0.3233
GK-M1	0.2833	0.4833	0.1833	0.6167	0.1833	0.3500
GK-M2	0.4833	0.1833	0.8167	0.4833	0.2833	0.4500
GK-M3	0.1833	0.2833	0.2833	0.3833	0.4833	0.3233
GK-M4	0.7167	0.3833	0.3833	0.8167	0.7167	0.6033
GK-M5	0.6167	0.8167	0.4833	0.7167	0.3833	0.6033
GK-M6	0.3833	0.7167	0.7167	0.1833	0.6167	0.5233
GK-M7	0.8167	0.6167	0.6167	0.2833	0.8167	0.6300
GK-P1	0.2833	0.1833	0.6167	0.2833	0.4833	0.3700
GK-P2	0.8167	0.8167	0.8167	0.8167	0.8167	0.8167
GK-P3	0.6167	0.7167	0.4833	0.7167	0.7167	0.6500
GK-P4	0.7167	0.6167	0.7167	0.6167	0.6167	0.6567
GK-P5	0.4833	0.2833	0.1833	0.1833	0.3833	0.3033
GK-P6	0.1833	0.3833	0.2833	0.4833	0.1833	0.3033
GK-P7	0.3833	0.4833	0.3833	0.3833	0.2833	0.3833

2. Literature review

In this section, research on player selection and SWARA-VIKOR methods based on neutrosophic fuzzy numbers are included.

2.1. Studies on player selection

As a result of the search made with the keyword "player selection" in the Web of Science Core Collection on April 11, 2024; 4883 articles, 1081 proceeding papers, 582 review articles, 83 book chapters, 33 editorial materials, and 2 books were concluded. The numbers of the studies carried out by years is represented in Fig. 1. Some of the current studies on player selection are summarized in Table 1. As can be seen from Fig. 1, the number of player selection problem studies has increased and decreased over the years.

2.2. Studies on SWARA and VIKOR

As a result of the search made with the keyword "SWARA and VIKOR" in the Web of Science Core Collection on April 11, 2024; 45

Crispy, aggregated and weight values for each criterion.

Code	P _m	C _m	A _m	W _m
GKP2	0.8167	1.0000	1.0000	0.4106
GKT6	0.7967	1.7967	0.5566	0.2285
GKP4	0.6567	1.6567	0.3360	0.1380
GKP3	0.6500	1.6500	0.2036	0.0836
GKM7	0.6300	1.6300	0.1249	0.0513
GKT1	0.6100	1.6100	0.0776	0.0319
GKM4	0.6033	1.6033	0.0484	0.0199
GKM5	0.6033	1.6033	0.0302	0.0124
GKT5	0.5967	1.5967	0.0189	0.0078
GKT3	0.5900	1.5900	0.0119	0.0049
GKM6	0.5233	1.5233	0.0078	0.0032
GKM2	0.4500	1.4500	0.0054	0.0022
GKP7	0.3833	1.3833	0.0039	0.0016
GKP1	0.3700	1.3700	0.0028	0.0012
GKM1	0.3500	1.3500	0.0021	0.0009
GKT4	0.3233	1.3233	0.0016	0.0007
GKM3	0.3233	1.3233	0.0012	0.0005
GKT7	0.3233	1.3233	0.0009	0.0004
GKP5	0.3033	1.3033	0.0007	0.0003
GKP6	0.3033	1.3033	0.0005	0.0002
GKT2	0.2433	1.2433	0.0004	0.0002

Table 7 Criteria

Criteria weights for all positions.

Positions									
Back		Stopper		Midfield		Wing		Forward	
Code	Weight	Code	Weight	Code	Weight	Code	Weight	Code	Weight
FP-T10	0.4118	FP-T10	0.4145	FP-T11	0.4009	FP-P1	0.4113	FP-P2	0.4181
FP-P2	0.2371	FP-T12	0.2387	FP-P2	0.2317	FP-T2	0.2341	FP-T4	0.2327
FP-T12	0.1397	FP-P3	0.1374	FP-T3	0.1404	FP-T3	0.1380	FP-T7	0.1356
FP-T11	0.0824	FP-T11	0.0810	FP-T12	0.0862	FP-T5	0.0830	FP-T5	0.0812
FP-P3	0.0485	FP-P2	0.0479	FP-M7	0.0529	FP-P7	0.0503	FP-T3	0.0496
FP-M7	0.0298	FP-M7	0.0294	FP-T5	0.0326	FP-M7	0.0308	FP-M7	0.0304
FP-T3	0.0185	FP-M4	0.0183	FP-M4	0.0203	FP-T11	0.0192	FP-M4	0.0190
FP-P6	0.0115	FP-M5	0.0114	FP-M5	0.0127	FP-M4	0.0120	FP-M5	0.0118
FP-M4	0.0072	FP-T3	0.0073	FP-P3	0.0079	FP-M5	0.0075	FP-T11	0.0075
FP-M5	0.0045	FP-T7	0.0047	FP-P6	0.0049	FP-T4	0.0047	FP-P4	0.0047
FP-T5	0.0029	FP-T5	0.0030	FP-P1	0.0032	FP-P2	0.0030	FP-P3	0.0030
FP-M6	0.0019	FP-M6	0.0020	FP-M6	0.0021	FP-M6	0.0020	FP-M6	0.0020
FP-T2	0.0013	FP-P4	0.0013	FP-T4	0.0014	FP-P6	0.0013	FP-T8	0.0013
FP-T7	0.0009	FP-P6	0.0009	FP-T6	0.0009	FP-P3	0.0009	FP-P1	0.0009
FP-M2	0.0006	FP-P1	0.0006	FP-T10	0.0006	FP-T1	0.0006	FP-M2	0.0006
FP-P4	0.0004	FP-M2	0.0004	FP-T8	0.0004	FP-T8	0.0004	FP-P6	0.0004
FP-P1	0.0003	FP-T4	0.0003	FP-M2	0.0003	FP-T12	0.0003	FP-T12	0.0003
FP-T9	0.0002	FP-T8	0.0002	FP-T2	0.0002	FP-M2	0.0002	FP-T2	0.0002
FP-P7	0.0002	FP-P7	0.0002	FP-T7	0.0001	FP-T6	0.0001	FP-T10	0.0002
FP-M1	0.0001	FP-T6	0.0001	FP-P7	0.0001	FP-M1	0.0001	FP-P7	0.0001
FP-T8	0.0001	FP-M1	0.0001	FP-M1	0.0001	FP-T7	0.0001	FP-T6	0.0001
FP-T4	0.0001	FP-T2	0.0001	FP-T1	0.0001	FP-M3	0.0001	FP-M1	0.0001
FP-M3	0.0000	FP-M3	0.0000	FP-M3	0.0000	FP-T10	0.0000	FP-M3	0.0000
FP-T1	0.0000	FP-T9	0.0000	FP-P4	0.0000	FP-T9	0.0000	FP-T1	0.0000
FP-T6	0.0000	FP-T1	0.0000	FP-P5	0.0000	FP-P5	0.0000	FP-P5	0.0000
FP-P5	0.0000	FP-P5	0.0000	FP-T9	0.0000	FP-P4	0.0000	FP-T9	0.0000

articles, 4 proceeding papers, and 2 review articles were concluded. The numbers of the studies carried out by years is represented in Fig. 2. As can be seen from Fig. 2, the number of SWARA and VIKOR method problem studies has increased and decreased over the years.Some of the current studies on SWARA and VIKOR are summarized in Table 2.

3. Materials and methods

In this study, the SWARA method will be used to calculate the weights of the criteria determined to evaluate the performances of the players. According to these criteria, the VIKOR method will be used to evaluate and rank the players according to their performance.

Table 8

The names and	codes of	goal	keepers.
---------------	----------	------	----------

Code	Goalkeeper Name	Code	Goalkeeper Name
GK1	Sinan Bolat	GK25	Fatih Öztürk
GK2	Uğurcan Çakır	GK26	Doğan Alemdar
GK3	Altay Bayındır	GK27	Emrullah Şalk
GK44	Ertaç Özbir	GK28	Nurullah Aslan
GK5	Ersin Destanoğlu	GK29	Akın Alkan
GK6	Mert Günok	GK30	Metin Uçar
GK7	Okan Kocuk	GK31	Alperen Uysal
GK8	Gökhan Akkan	GK32	Vedat Karakuş
GK9	İrfan Eğribayat	GK33	Haydar Yılmaz
GK10	Muhammed Şengezer	GK34	Emre Bilgin
GK11	Volkan Babacan	GK35	Ferhat Kaplan
GK12	Ertuğrul Taşkıran	GK36	Batuhan Şen
GK13	Erce Kardeşler	GK37	Cihan Topaloğlu
GK14	Burak Öğür	GK38	Aykut Özer
GK15	Onurcan Piri	GK39	Muammer Yıldırım
GK16	Serkan Kırıntılı	GK40	Erhan Erentürk
GK17	Harun Tekin	GK41	Gökhan Değirmenci
GK18	Berke Özer	GK42	Muhammed Tetik
GK19	Abdullah Yiğiter	GK43	Eray Birniçan
GK20	Tarık Çetin	GK44	Yusuf Karagöz
GK21	Ali Şaşal Vural	GK45	Ekrem Kılıçarslan
GK22	Çağlar Akbaba	GK46	Emre Satılmış
GK23	Ali Emre Yanar	GK47	Arda Akbulut
GK24	Abdulsamed Damlu	GK48	Hasan Hüseyin Akınay

Neutrosophic fuzzy numbers have been used to minimize uncertainty and subjectivity. In this section, the steps of these methods will be represented.

3.1. SWARA based on neutrosophic fuzzy numbers

This method is based on the argument that the phenomena of the complex world can be understood using simple relative comparisons, and it is a method that can easily incorporate expert ideas or thoughts into the process. In this method, experts play a very important role in calculating the criterion weights. Experts evaluate the criteria by using their knowledge and experience. The ability and experience of experts are the most vital and important points in determining the importance of each criterion in the SWARA method [59]. The steps of SWARA as follows [60]:.

Step 1 A decision-making team is formed, including subject matter experts.

Step 2 The decision-making team evaluates all criteria using Table 3. Table 3 lists the linguistic terms and their corresponding single valued neutrosophic numbers.

Step 3 By using score function below, each single valued neutrosophic numbers are transformed to crisp value.

$$s(P_m^D) = \frac{2 + T_m^D - I_m^D - F_m^D}{3}$$
(1)

where T_m^D , I_m^D , and F_m^D are the truth, indeterminacy, and falsity of SVNNs, respectively.

Step 4 The crispy values obtained by all decision makers are aggregated by using the following equation.

$$P_m = \frac{\sum_{D=1}^{D} P_m}{D} \tag{2}$$

Step 5 The coefficient (C) is calculated as follow:

$$C_m = \begin{cases} 1, m = 1\\ 1 + P_m, m > 1, 2, \dots, n \end{cases}$$
(3)

where n is the number of criteria.

Step 6 The initial weights are calculated by using the following equation.

GK-T1 GK-T2 GK-T3 GK-T4 GK-T5 GK-T6 GK-T7 GK-M1 GK-M2 GK-M3 GK-M4 GK-M5 GK-M6 GK-M7 GK-P1 GK-P2 GK-P3 GK-P4 GK-P5 GK-P6 GK-P7 CK2 0.4833333 0.4833333 0.4833333 0.7166667 0.6166667 0.6166667 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.7166667 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.6833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.6833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.616667 0.683333 0.61667 0.68333 0.61667 0.68333 0.61667 0.683333 0.616667 0.68333 0.61667 0.683330 0.68348 0.68348 0.68348 CK3 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.7166667 0.6166667 0.4833333 0.7166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0. CK4 0.6166667 0.2833333 0.6166667 0.6166667 0.6166667 0.6166667 0.61666667 0.61666667 0.61666667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833330 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 CK5 0.6166667 0.64833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.6166667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.616667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0 GK6 0.6166667 0.4833333 0.6166667 0.3833333 0.6166667 0.6166667 0.6166667 0.6833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.48 CK7 0.4833333 0.2833333 0.6166667 0.2833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0. GK8 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.4833330 0.616667 0.483330 0.616667 0.4833330 0.616667 0.483330 0.616667 0.483330 0 CK9 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.61667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.4 GK10 0.6166667 0.2833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833 GK11 0.4833333 0.2833333 0.6166667 0.6166667 0.64833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.483333 0.48333
 GK12
 0.4833333
 0.486667
 0.6166667
 0.3833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.61 GK13 0.483333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 GK14 0.4833333 0.2833333 0.6166667 0.3833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.483333 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0. GK15 0.4833333 0.3833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.3833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 GK16 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 GK17 0.3833333 0.4833333 0.4833333 0.6166667 0.3833333 0.6166667 0.4833333 0.61666667 0.4833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.483333 0.4833333 0.483333 0.483333
 GK18
 0.4833333
 0.2833333
 0.6166667
 0.4833333
 0.6166667
 0.6166667
 0.633333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.8833333
 0.88 GK19 0.4833333 0.2833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.483 GK20 0.4833333 0.2833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.483333 GK21 0.3833333 0.2833333 0.2833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0 GK22 0.4833333 0.6166667 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.4833333 0.483333 GK22 0.4833333 0.2833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.61667 0.483333 0.61667 0.483334 0.48333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 GK24 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0. GK25 0.4833333 0.383333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.61666667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.4833 GK26 0.4833333 0.3833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.616667 0.61667 0.616667 0.616667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.61667 0.6167 0.6167 0.61667 0.61667 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.6167 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 0.617 GK27 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.6166 GK28 0.6166667 0.3833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0.4833330 0. GK29 0.3833333 0.2833333 0.6166667 0.3833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.7166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.48 GK30 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.48 GK31 0.4833333 0.2833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0 GK32 0.3833333 0.6166667 0.3833333 0.6166667 0.3833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0. GK33 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.61666667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.4833333 0.616667 0.483333 0.616667 0.483333 0.616667 0.483333 0.61667 0.483333 0.616667 0.483333 0.61667 0.483333 0.61667 0.483333 0.61667 0.483333 0.61667 0.483333 0.616667 0.483333 0.61667 0.483333 0.61667 0.483333 0.61 GK34 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.3833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.483333 0.48333 GK35 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.7166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.48333 GK36 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.483333 0.4833333 0.4833 GK37 0.4833333 0.2833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.483333 0 GK38 0.3833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0 GK39 0.4833333 0.4833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833330 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.483 GK40 0.4833333 0.2833333 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333
 GK41
 0.4833333
 0.2833333
 0.6166667
 0.4833333
 0.6166667
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4833333
 0.4 GK42 0.4833333 0.2833333 0.4833334 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.4833333 0.48 GK43 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.6166667 0.61666667 0.4833333 0.6166667 0.4833333 0.483333 0.4 GK44 0.3833333 0.2833333 0.6166667 0.4833333 0.6166667 0.6166667 0.6166667 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.7166667 0.4833333 0.6166667 0.2833333 0.6166667 0.2833333 0.6166667 0.1833333 0.483333 0.483333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.483333 0.48333 GK45 0.6166667 0.2833333 0.4833333 0.6166667 0.3833333 0.6166667 0.3833333 0.483333 0.4833330 0.4833330 0.483333 0.483333 0.4833333 0.483333 0.4833333 0.483 GK46 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.4833333 0.6166667 0.3833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.4833333 0.483333 0.483333 0.483333 GK47 0.3833333 0.483333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833 CK48 0.6166667 0.383333 0.6166667 0.383333 0.7166667 0.383333 0.7166667 0.383333 0.483333 0.483333 0.483333 0.4833333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.483333 0.4833333 0.4833333 0.483333 0.48333 Type Positive Fig. 6. Initial decision matrix for goalkeepers.

ø

Evaluation results fo	r goalkeepers	(v =	0.5).
-----------------------	---------------	------	-------

(4)

Alternatives	g _m	h _m	g*	<i>g</i> ⁻	Z_m
GK1	0.0780	0.0637	0.0780	0.7770	0.0801
GK2	0.1368	0.0334	h^*	h^-	0.0421
GK3	0.1382	0.0334	0.0334	0.4106	0.0431
GK4	0.5081	0.2874			0.9811
GK5	0.4538	0.2874			0.9423
GK6	0.4831	0.2874			0.9632
GK7	0.3818	0.1232			0.4553
GK8	0.2841	0.1061			0.3401
GK9	0.3248	0.1232			0.4145
GK10	0.3078	0.1232			0.4023
GK11	0.7394	0.4106			1.4731
GK12	0.3609	0.1232			0.4403
GK13	0.3831	0.1232			0.4562
GK14	0.3837	0.1232			0.4566
GK15	0.3807	0.1232			0.4545
GK16	0.3693	0.1232			0.4463
GK17	0.4040	0.1232			0.4711
GK18	0.3509	0.1232			0.4332
GK19	0.5815	0.2874			1.0336
GK20	0.3698	0.1232			0.4466
GK21	0.5498	0.2874			1.0109
GK22	0.3690	0.1232			0.4461
GK23	0.3818	0.1232			0.4553
GK24	0.4500	0.1600			0.6016
GK25	0.3685	0.1232			0.4457
GK26	0.5100	0.2874			0.9824
GK27	0.5031	0.2874			0.9775
GK28	0.3988	0.1600			0.5650
GK29	0.3458	0.1232			0.4295
GK30	0.5404	0.2874			1.0042
GK31	0.3710	0.1232			0.4475
GK32	0.6055	0.2874			1.0507
GK33	0.4963	0.2874			0.9726
GK34	0.3649	0.1232			0.4431
GK35	0.7770	0.4106			1.5000
GK36	0.5179	0.2874			0.9881
GK37	0.6346	0.2874			1.0716
GK38	0.5458	0.2874			1.0080
GK39	0.5107	0.2874			0.9830
GK40	0.3626	0.1232			0.4415
GK41	0.5592	0.2874			1.0176
GK42	0.5356	0.2874			1.0007
GK43	0.5242	0.2874			0.9926
GK44	0.4348	0.1232			0.4932
GK45	0.5662	0.2874			1.0226
GK46	0.5185	0.2874			0.9885
GK47	0.5497	0.2874			1.0108
GK48	0.3667	0.1380			0.4836

$$A_m = egin{cases} 1, m = 1 \ rac{A_{m-1}}{C_m}, m > 1, 2, ..., n \end{cases}$$

where n is the number of criteria.

Step 7 Each criteria weight is calculated by using the equation below.

$$W_m = \frac{A_m}{\sum_{m=1}^n A_m} \tag{5}$$

3.2. VIKOR based on neutrosophic fuzzy numbers

The foundations of the VIKOR method were laid by Opricovic during his Ph.D. thesis in 1979. It was internationally recognized by

Table 10The names and codes of forward players.

Code	Player Name	Code	Player Name
P1	Burak Yılmaz	P26	Ömer Şişmanoğlu
P2	Muhammet Demir	P27	Deniz Hümmet
P3	Mustafa Pektemek	P28	Sercan Sararer
P4	Enes Ünal	P29	Yusuf Barasi
Р5	Emre Akbaba	P30	Bertuğ Yıldırım
P6	Kenan Karaman	P31	Malik Batmaz
P7	Serdar Dursun	P32	Aral Simsir
P8	Cenk Tosun	P33	Muhammed Kiprit
Р9	Barış Atik	P34	Doğukan Emeksiz
P10	Umut Nayir	P35	Adem Büyük
P11	Eren Tozlu	P36	Bertuğ Bayar
P12	İbrahim Yılmaz	P37	Yasin Abdioğlu
P13	Ali Akman	P38	Metehan Güçlü
P14	Ahmed Kutucu	P39	Erencan Yardımcı
P15	Halil Dervişoğlu	P40	Nadir Çiftçi
P16	Umut Bulut	P41	Kubilay Kanats.
P17	Oğulcan Çağlayan	P42	Ozan Sol
P18	Batuhan Karade.	P43	İlhan Parlak
P19	Ahmet İlhan Özek	P44	Serdar Deliktaş
P20	Sinan Bakis	P45	Okan Eken
P21	Colin Kazim-Ri.	P46	Enis Destan
P22	Atabey Çiçek	P47	Kenan Yıldız
P23	Emre Güral	P48	Uğur Türk
P24	Sefa Yılmaz	P49	Berk Ünsal
P25	Gökdeniz Bayra.	P50	Mehmet Uysal

Opricovic and Tzeng in 2004 [61]. The method is based on selecting the one with the best performance among the alternatives or ranking the decision alternatives according to their performance to determine the most appropriate decision alternatives. The aim of the method is to reach a compromise solution that is closest to the ideal solution in the ranking of decision alternatives. To reach a compromise solution, the closeness values of each option evaluated according to each criterion to the ideal option are compared. The compromise solution is the optimum (appropriate) solution closest to the ideal solution, and compromise refers to common acceptance within the framework of the criteria [62]. VIKOR process steps are as follows [60].

Step 1 Decision makers evaluate all alternatives against each evaluation criterion using the linguistic evaluation scale given in Table 3. These SVNNs are converted to crispy value using Eq. (1).

$$P^{D} = \begin{bmatrix} P_{11}^{D} & \cdots & P_{1y}^{D} \\ \vdots & \ddots & \vdots \\ P_{m1}^{D} & \cdots & P_{my}^{D} \end{bmatrix} m = 1, 2, 3, \dots, n; y = 1, 2, 3, \dots, x$$
(6)

Step 2 The best and worst solutions for positive and negative criteria are calculated.

Best solution $P_m^+ = (P_{my})_{max}$ for positive criteria; $P_m^+ = (P_{my})_{min}$ for negative criteria (7)

Worst solution $P_m^- = (P_{my})_{min}$ for positive criteria; $P_m^- = (P_{my})_{max}$ for negative criteria (8)

Step 3 g_m and h_m values are calculated using the following equations.

$$g_m = \sum_{y=1}^{x} \left(W_y * \frac{P_m^+ - P_{my}}{P_m^+ - P_m^-} \right)$$
(9)

$$h_m = \max_{y} \left(W_y * \frac{P_m^+ - P_{my}}{P_m^+ - P_m^-} \right)$$
(10)

	1 11	12	13	14	15	16	17	18	19	110	111	112	M1	M2	M3	M4	M5	M6	MZ	P1	P2	P3	P4	P5	P6	P7
P1	0.3833	0.3833	0.6167	0.7167	0.4833	0.6167	0.6167	0.6167	0.3833	0.2833	0.4833	0.7167	0.4833	0.6167	0.3833	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.3833	0.6167
P2	0.2833	0.3833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.2833	0.2833	0.4833	0.6167	0.3833	0.4833	0.4833	0.6167	0.4833	0.6167	0.4833	0.6167	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167
P3	0.3833	0.3833	0.6167	0.4833	0.7167	0.3833	0.4833	0.4833	0.2833	0.2833	0.6167	0.4833	0.3833	0.4833	0.3833	0.6167	0.3833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.4833
P4	0.2833	0.3833	0.3833	0.6167	0.6167	0.2833	0.7167	0.6167	0.2833	0.2833	0.4833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.6167	0.6167	0.4833	0.6167	0.7167	0.7167	0.4833	0.6167	0.6167
P5	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.3833	0.1833	0.6167	0.6167	0.6167	0.6167	0.3833	0.6167	0.4833	0.4833	0.6167	0.4833	0.6167	0.4833	0.3833	0.4833	0.4833	0.4833
P6	0.2833	0.3833	0.4833	0.4833	0.4833	0.2833	0.6167	0.4833	0.2833	0.4833	0.4833	0.3833	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.6167
P7	0.3833	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.2833	0.1833	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.3833	0.4833
P8	0.3833	0.3833	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.3833	0.3833	0.4833	0.7167	0.7167	0.6167	0.6167	0.6167	0.6167	0.7167	0.6167	0.3833	0.4833	0.6167	0.4833	0.4833	0.4833	0.4833
P9	0.4833	0.4833	0.6167	0.4833	0.6167	0.6167	0.2833	0.6167	0.1833	0.2833	0.6167	0.6167	0.3833	0.4833	0.4833	0.4833	0.3833	0.6167	0.3833	0.6167	0.6167	0.4833	0.3833	0.4833	0.4833	0.3833
P10	0.2833	0.3833	0.4833	0.4833	0.4833	0.3833	0.6167	0.3833	0 1833	0.1833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.6167
P11	0.3833	0.3833	0.4833	0.6167	0.4833	0.3833	0.6167	0.4833	0.1833	0.3833	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.3833	0.6167	0.4833	0.4833
P12	0 1833	0 3833	0.4833	0.6167	0.4833	0 3833	0.4833	0.4833	0 1833	0.2833	0.4833	0.6167	0.4833	0.6167	0.6167	0.4833	0 3833	0.7167	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167
P13	0.2833	0.3833	0.4833	0.6167	0.6167	0.3833	0.4833	0.3833	0.1833	0.2833	0.4833	0.6167	0.3833	0.6167	0.3833	0.4833	0.4833	0.6167	0.4833	0.6167	0.6167	0.4833	0.3833	0.4833	0.4833	0.3833
P14	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.2833	0.2833	0.4833	0.4833	0.7167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.6167	0.4833
P15	0.2833	0.3833	0.4833	0.6167	0.6167	0.2833	0.6167	0.3833	0.2833	0.2833	0.4833	0.4833	0.7167	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.4833	0.6167	0.6167	0.3833	0.6167
P16	0.2833	0.3833	0.3833	0.4833	0.4833	0.2833	0.6167	0.4833	0.3833	0.3833	0.4833	0.4833	0.7167	0.6167	0.7167	0.3833	0.4000	0.4000	0.7167	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.4833
P17	0.2822	0.4933	0.4833	0.4833	0.4833	0.2833	0.4933	0.4833	0.2822	0.4933	0.4000	0.4822	0.6167	0.4933	0.4922	0.4933	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4933	0.4000	0.4922	0.4833
P18	0.2833	0.3833	0.4833	0.6167	0.6167	0.3833	0.6167	0.4833	0.1833	0.2833	0.4833	0.6167	0.4833	0.6167	0.6167	0.4000	0.3833	0.3833	0.2833	0.4833	0.4833	0.7167	0.7167	0.4833	0.3833	0.6167
P10	0.4833	0.4833	0.4000	0.4833	0.4833	0.0000	0.3833	0.4833	0.2833	0.2833	0.4833	0.4833	0.4000	0.4933	0.4833	0.3833	0.4833	0.4833	0.4933	0.6167	0.4833	0.3833	0.4833	0.6167	0.4833	0.4833
P20	0.2922	0.2022	0.4922	0.6167	0.4000	0.4000	0.6167	0.4000	0.2000	0.2000	0.2022	0.4000	0.2022	0.4000	0.4000	0.0000	0.2022	0.4000	0.4000	0.6167	0.4000	0.4922	0.4000	0.6167	0.4000	0.4000
P20	0.3833	0.3833	0.4833	0.0107	0.4655	0.4033	0.6167	0.4833	0.2833	0.2833	0.4922	0.4922	0.3033	0.4833	0.4633	0.4833	0.3833	0.4655	0.4033	0.4922	0.0107	0.4833	0.6167	0.2922	0.4033	0.4655
P21	0.3033	0.3033	0.4000	0.4033	0.4932	0.0000	0.0107	0.4033	0.3033	0.2000	0.4033	0.4000	0.4033	0.4033	0.2022	0.4033	0.4033	0.4932	0.0107	0.4033	0.4033	0.0107	0.0107	0.5055	0.3033	0.0107
P22	0.1855	0.2833	0.4033	0.4033	0.4655	0.2033	0.0107	0.3633	0.1833	0.2833	0.4033	0.4633	0.3033	0.4033	0.3033	0.4655	0.4633	0.4633	0.6167	0.4653	0.4033	0.4633	0.0107	0.0107	0.4033	0.6167
P23	0.4655	0.4655	0.4833	0.0107	0.0107	0.0107	0.4833	0.0107	0.2833	0.2833	0.0107	0./10/	0.3033	0.3633	0.3033	0.0107	0.2833	0.3833	0.0107	0.5655	0.4033	0.0107	0.4633	0.4033	0.4033	0.0107
P24	0.3033	0.3033	0.4033	0.3033	0.4033	0.3033	0.4033	0.3033	0.2033	0.2000	0.4033	0.4033	0.4033	0.4033	0.3033	0.4033	0.4633	0.3633	0.4033	0.0107	0.4033	0.4033	0.4033	0.4033	0.4033	0.4033
P20	0.2833	0.3633	0.4833	0.4033	0.4633	0.2833	0.4633	0.4633	0.3633	0.2833	0.3033	0.3633	0.0107	0.4633	0.6167	0.4833	0.0107	0.6167	0.4633	0.4833	0.4033	0.0107	0.4633	0.0107	0.6167	0.6167
P20	0.2033	0.2833	0.4033	0.4033	0.4833	0.3833	0.0107	0.4633	0.2833	0.2833	0.4033	0.0107	0.4033	0.0107	0.4033	0.4033	0.3833	0.4833	0.3033	0.4633	0.4033	0.3033	0.4633	0.4033	0.4033	0.4633
P27	0.3633	0.3633	0.4633	0.4633	0.4633	0.3833	0.4655	0.3633	0.3633	0.3833	0.4033	0.4033	0.4033	0.4033	0.4033	0.4833	0.4033	0.4833	0.4033	0.4633	0.4033	0.4033	0.0107	0.4033	0.4033	0.0107
F20	0.4033	0.0107	0.0107	0.0107	0.0107	0.3833	0.2855	0.0107	0.4655	0.2855	0.4033	0.4655	0.4033	0.4033	0.0107	0.4033	0.4033	0.4655	0.4033	0.4655	0.4033	0.4033	0.3633	0.4033	0.4033	0.4033
P20	0.2000	0.3033	0.4000	0.0107	0.0107	0.2033	0.4033	0.3033	0.1033	0.1033	0.4033	0.0107	0.0000	0.0107	0.5055	0.4000	0.4033	0.0107	0.3033	0.0107	0.0107	0.4033	0.3033	0.4055	0.4055	0.4055
P30	0.1655	0.4633	0.0107	0.4633	0.4833	0.1833	0.0107	0.3633	0.1833	0.1833	0.3033	0.4833	0.0107	0.4633	0.0107	0.2033	0.4833	0.2633	0.3033	0.6167	0.0107	0.0107	0.0107	0.6167	0.6167	0.0107
P31	0.2833	0.3633	0.4633	0.0107	0.4033	0.3633	0.2833	0.4633	0.2833	0.2833	0.4033	0.4033	0.3633	0.0107	0.4033	0.4655	0.4633	0.6167	0.4033	0.4633	0.4033	0.4033	0.4633	0.6167	0.4633	0.4633
P32	0.2855	0.4653	0.0107	0.4633	0.4033	0.2833	0.3833	0.3833	0.2833	0.1853	0.4033	0.4655	0.4033	0.3633	0.3633	0.3633	0.3833	0.0107	0.4033	0.6167	0.4655	0.4633	0.3633	0.0107	0.3833	0.3833
P33	0.3033	0.3033	0.0107	0.0107	0.4033	0.3033	0.4000	0.4033	0.2000	0.2000	0.4033	0.0107	0.4033	0.0107	0.0107	0.0107	0.4033	0.7107	0.3033	0.4055	0.0107	0.0107	0.4033	0.3033	0.4033	0.0107
P34	0.3633	0.4633	0.4833	0.4033	0.4833	0.4833	0.2033	0.2033	0.1833	0.2833	0.4033	0.3833	0.3633	0.4633	0.2033	0.0107	0.4633	0.2633	0.4033	0.6167	0.6167	0.4633	0.2833	0.0107	0.4033	0.2833
P35	0.3633	0.3633	0.4633	0.4633	0.4033	0.4633	0.6167	0.4633	0.2833	0.2833	0.4033	0.0107	0.2022	0.6167	0./10/	0.4033	0.0107	0./16/	0.4033	0.4633	0.4633	0.4633	0.4633	0.3033	0.4033	0.4633
P30	0.1855	0.2833	0.3633	0.6167	0.4633	0.2833	0.6167	0.4633	0.1833	0.1855	0.3833	0.4633	0.2633	0.0107	0.4033	0.4833	0.3833	0.4833	0.4633	0.4633	0.0107	0.4633	0.6167	0.4033	0.4633	0.6167
P30	0.3033	0.3833	0.4000	0.0107	0.0107	0.4033	0.0107	0.3033	0.1000	0.2855	0.4033	0.0107	0.0107	0.4033	0.4033	0.4000	0.3833	0.4000	0.0107	0.4033	0.4033	0.4033	0.0107	0.0107	0.4033	0.0107
P30	0.4033	0.3633	0.4833	0.4033	0.4833	0.4833	0.7167	0.3633	0.1633	0.2833	0.3033	0.4833	0.3633	0.4633	0.4033	0.4833	0.4833	0.4833	0.4633	0.4833	0.6167	0.4833	0.4633	0.0107	0.4633	0.4633
P39	0.4655	0.4633	0.4633	0.4033	0.4633	0.4633	0.0107	0.3633	0.3633	0.4633	0.4033	0.3633	0.6167	0.3633	0.2033	0.4833	0.4833	0.0107	0.0107	0.4633	0.4033	0.4633	0.4633	0.0107	0.3833	0.4033
P40	0.3633	0.3833	0.3833	0.4033	0.4633	0.3833	0.4633	0.3633	0.1833	0.2833	0.3033	0.0107	0.0107	0.4633	0.6167	0.4833	0.4833	0.2633	0.3633	0.4633	0.4033	0.6167	0.6167	0.4033	0.4633	0.4633
P41	0.1833	0.4833	0.4833	0.4633	0.4833	0.3833	0.0167	0.2833	0.1833	0.2833	0.4633	0.3833	0.4833	0.4633	0.6167	0.4833	0.4833	0.6167	0.4633	0.6167	0.4633	0.6167	0.6167	0.4633	0.6167	0.0107
F42	0.2033	0.2033	0.4022	0.0107	0.4033	0.3033	0.3033	0.4633	0.2033	0.1833	0.4033	0.4033	0.3833	0.010/	0.3033	0.4033	0.3033	0.4033	0.3033	0.010/	0.010/	0.4033	0.3033	0.010/	0.4033	0.3033
P43	0.2833	0.4833	0.4833	0.0167	0.4833	0.2833	0.4833	0.3833	0.2833	0.2833	0.4833	0.4833	0.016/	0.4833	0.0167	0.4833	0.4833	0.4833	0.0167	0.4833	0.4833	0.3833	0.4833	0.4833	0.4833	0.4833
P44	0.3833	0.4833	0.6167	0.6167	0.6167	0.3833	0.4833	0.3833	0.2833	0.2833	0.6167	0.4833	0.4833	0.6167	0.3833	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.0107	0.3833	0.4833	0.3833	0.3833
P45	0.1833	0.3833	0.4833	0.6167	0.6167	0.2833	0.4833	0.4833	0.1833	0.2833	0.4833	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.4833
P46	0.2833	0.3833	0.3833	0.6167	0.6167	0.2833	0.6167	0.3833	0.2833	0.2833	0.4833	0.6167	0.4833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833
P47	0.4833	0.3833	0.6167	0.4833	0.6167	0.6167	0.3833	0.6167	0.1833	0.2833	0.4833	0.4833	0.3833	0.4833	0.3833	0.4833	0.3833	0.7167	0.3833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833
P48	0.2833	0.3833	0.4833	0.4833	0.4833	0.3833	0.4833	0.4833	0.2833	0.2833	0.4833	0.3833	0.6167	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833
P49	0.1833	0.2833	0.3833	0.4833	0.4833	0.4833	0.4833	0.6167	0.1833	0.2833	0.4833	0.3833	0.4833	0.4833	0.4833	0.4833	0.3833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.6167
P50	0.3833	0.3833	0.4833	0.4833	0.4833	0.2833	0.4833	0.3833	0.2833	0.2833	0.3833	0.2833	0.4833	0.4833	0.6167	0.4833	0.3833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833
iype	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive												

Fig. 7.	Initial decisio	n matrix for	forward	players.

Table 11 Evaluation results for forward players ($\upsilon = 0.5$).

Alternatives	g_m	h_m	g *	g	Z_m
P1	0.5557	0.4181	0.1529	0.8747	0.7790
P2	0.2080	0.0730	h*	h^-	0.0427
P3	0.2674	0.1629	0.0698	0.4181	0.2129
P4	0.1746	0.0698			0.0150
P5	0.1973	0.0730			0.0353
P6	0.7511	0.4181			0.9143
P7	0.1529	0.0698			0.0000
P8	0.6450	0.4181			0.8409
P9	0.3798	0.1629			0.2908
P10	0.7436	0.4181			0.9092
P11	0.2294	0.0812			0.0693
P12	0.7029	0.4181			0.8810
P13	0.2469	0.0730			0.0697
P14	0.2812	0.0812			0.1052
P15	0.1940	0.0698			0.0285
P16	0.7647	0.4181			0.9238
P17	0.3698	0.1629			0.2839
P18	0.6289	0.4181			0.8297
P19	0.8135	0.4181			0.9576
P20	0.2563	0.0812			0.0879
P21	0.7039	0.4181			0.8817
P22	0.7525	0.4181			0.9153
P23	0.6500	0.4181			0.8443
P24	0.8747	0.4181			1.0000
P25	0.8010	0.4181			0.9489
P26	0.7739	0.4181			0.9302
P27	0.8034	0.4181			0.9506
P28	0.6997	0.4181			0.8787
P29	0.2539	0.0730			0.0745
P30	0.3358	0.1629			0.2603
P31	0.7731	0.4181			0.9296
P32	0.8176	0.4181			0.9604
P33	0.2616	0.0812			0.0916
P34	0.4448	0.1629			0.3358
P35	0.7565	0.4181			0.9181
P36	0.2780	0.0812			0.1029
P37	0.6163	0.4181			0.8210
P38	0.3170	0.1629			0.2473
P39	0.7536	0.4181			0.9161
P40	0.8346	0.4181			0.9722
P41	0.7596	0.4181			0.9202
P42	0.3072	0.1043			0.1563
P43	0.7033	0.4181			0.8813
P44	0.6156	0.4181			0.8205
P45	0.6633	0.4181			0.8535
P46	0.6335	0.4181			0.8329
P47	0.7701	0.4181			0.9275
P48	0.8044	0.4181			0.9512
P49	0.8263	0.4181			0.9664
P50	0.8113	0.4181			0.9561

Table 12The names and codes of stoppers.

Code	Player Name	Code	Player Name
P1	Merih Demiral	P26	Sinan Osmanoğlu
P2	Semih Güler	P27	Emrecan Uzunhan
P3	Samet Akaydın	P28	Furkan Bayır
P4	Kaan Ayhan	P29	Yalçın Kılınç
Р5	Serdar Aziz	P30	Sadık Çiftpınar
P6	Ömer Toprak	P31	Fatih Kuruçuk
P7	Abdülkerim Bardakçı	P32	Ahmetcan Kaplan
P8	Fatih Aksoy	P33	Tarkan Serbest
Р9	Burak Bekaroğlu	P34	Hasan Kuruçay
P10	Tayyip Talha S.	P35	Sergen Piçinciol
P11	Ozan Kabak	P36	Mustafa Yumlu
P12	Mert Çetin	P37	Alim Öztürk
P13	Murat Akça	P38	Ersan Gülüm
P14	Emirhan Topçu	P39	Oğuz Yılmaz
P15	Atınç Nukan	P40	Ceyhun Gülselam
P16	Adil Demirbağ	P41	Ercan Coşkun
P17	Alpaslan Öztürk	P42	Mehmet Yeşil
P18	Burak Öksüz	P43	Cenk Özkacar
P19	Veysel Sarı	P44	Sadi Karaduman
P20	Necip Uysal	P45	Cemali Sertel
P21	Yusuf Abdioğlu	P46	Lokman Gör
P22	Osman Çelik	P47	Bahadır Öztürk
P23	Çağlar Söyüncü	P48	Ravil Tagir
P24	Atakan Çankaya	P49	Aykut Demir
P25	Ertuğrul Ersoy	P50	Salih Dursun

Step 4 Z_m value is calculated using the equation below.

$$Z_m = v * \frac{g_m - g^*}{g^- - g^*} + (1 - v) * \frac{h_m - h^*}{h^- - h^*}$$
(11)

where $g^* = \min g_m$; $g^- = \max g_m$; $h^* = \min h_m$; and $h^- = \max h_m$; the *v* value represents the weight for the strategy that provides maximum group benefit. While the value of *v* varies between 0 and 1, it is generally accepted as 0.5.

Step 5 Alternatives are ranked from smallest to largest according to the Z_m value.

4. Evaluation of football players

In the application step of the study, a decision-making team was first formed. The decision-maker team consists of 3 people serve as professional coaches and 2 people serve as club managers. The data set of the application was taken from the website "fminside", which shares the data of the Sports Interactive company. These data consist of scoring the skills of Turkish football players who are the best in their positions, within a range of 1–20 points. The flow of model is represented in Fig. 3.

In football, the term "position" refers to the positions that players take on the field or the role they play. There are many different positions in football and each position has its own responsibilities and playing style. Positions commonly used in football are given below.

- Goalkeeper; is the player who protects the team's goal. He is responsible for blocking the shots of the opposing team trying to score a goal and protecting his team from conceding a goal.
- Stoppers; are the basic parts of the defense and are responsible for protecting the team's goal. They work to prevent the progress of the opposing team's attackers, win the ball, and support the team's attack.
- Midfielders; are in the midfield area of the game and act as a link between attack and defense. Midfielders have duties such as controlling the ball, initiating the attack, passing the ball to teammates, and assisting the defense.
- Offensive midfielders: An offensive midfielder is a midfielder who is generally positioned forward of the midfield, between the central midfielders and the forwards, and has a primarily attacking role.
- Forwards; are the team's players responsible for scoring goals. They are the main attacking players who are responsible for breaking through the opposing team's defense, scoring goals. They are fast, skillful players with high goal-scoring ability.
- Right-back: Right-back players play on the right side of the field. In this way, they fulfill the task of blocking attacks coming from the left of the opposing team.
- Left-back: Left-back players play on the left and perform the task of blocking attacks coming from the right of the opposing team.

	11	12	13	14	15	16	17	18	19	110	111	112	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
21	0.2833	0.2833	0.3833	0.3833	0.4833	0.2833	0.6167	0.2833	0.2833	0.7167	0.4833	0.2833	0.8167	0.6167	0.8167	0.4833	0.4833	0.7167	0.6167	0.6167	0.4833	0.6167	0.6167	0.7167	0.6167	0.7167
2	0.2833	0.3833	0.4833	0.3833	0.4833	0.2833	0.6167	0.3833	0.3833	0.6167	0.4833	0.3833	0.4833	0.6167	0.7167	0.4833	0.4833	0.7167	0.6167	0.6167	0.4833	0.6167	0.7167	0.4833	0.6167	0.7167
3	0.1833	0.2833	0.4833	0.2833	0.4833	0.2833	0.7167	0.2833	0.2833	0.6167	0.4833	0.2833	0.6167	0.6167	0.7167	0.4833	0.4833	0.6167	0.4833	0.6167	0.4833	0.6167	0.6167	0.6167	0.4833	0.6167
24	0.3833	0.2833	0.3833	0.3833	0.6167	0.4833	0.6167	0.4833	0.3833	0.6167	0.6167	0.3833	0.4833	0.6167	0.6167	0.6167	0.4833	0.7167	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.4833
P5	0.1833	0.1833	0.2833	0.1833	0.3833	0.1833	0.7167	0.2833	0.2833	0.6167	0.4833	0.1833	0.7167	0.4833	0.7167	0.3833	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167
2 6	0.2833	0.3833	0.4833	0.3833	0.4833	0.2833	0.4833	0.2833	0.3833	0.6167	0.4833	0.3833	0.3833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.6167	0.4833	0.6167
7	0.2833	0.2833	0.3833	0.2833	0.3833	0.2833	0.6167	0.2833	0.2833	0.6167	0.4833	0.3833	0.7167	0.4833	0.7167	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167	0.6167
8	0.2833	0.4833	0.4833	0.3833	0.4833	0.3833	0.6167	0.3833	0.4833	0.6167	0.6167	0.3833	0.6167	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.6167
29	0.2833	0.2833	0.4833	0.2833	0.4833	0.2833	0.6167	0.2833	0.2833	0.6167	0.6167	0.2833	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833
210	0.2833	0.2833	0.4833	0.3833	0.3833	0.1833	0.6167	0.2833	0.2833	0.6167	0.4833	0.2833	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.6167	0.6167	0.6167
211	0.3833	0.4833	0.4833	0.3833	0.4833	0.2833	0.6167	0.3833	0.3833	0.6167	0.6167	0.3833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.4833	0.6167
212	0.2833	0.3833	0.4833	0.2833	0.4833	0.2833	0.6167	0.2833	0.2833	0.6167	0.4833	0.2833	0.7167	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.6167
213	0.1833	0.2833	0.4833	0.2833	0.3833	0.3833	0.6167	0.2833	0.3833	0.6167	0.4833	0.2833	0.7167	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.4833	0.6167	0.4833	0.6167	0.6167
214	0.2833	0.2833	0.2833	0.2833	0.4833	0.2833	0.6167	0.2833	0.3833	0.6167	0.4833	0.2833	0.2833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.3833	0.3833	0.4833	0.7167	0.4833	0.6167	0.6167
215	0.2833	0.2833	0.3833	0.2833	0.4833	0.1833	0.6167	0 1833	0.2833	0.6167	0.3833	0.2833	0 7167	0.4833	0.8167	0.3833	0.4833	0 7167	0.6167	0.6167	0.6167	0.4833	0.4833	0.6167	0.6167	0.6167
216	0.2833	0.3833	0 3833	0.4833	0.4833	0.4833	0.6167	0.4833	0 3833	0.4833	0.4833	0.7167	0.7167	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167
217	0.2833	0.2833	0.3833	0.2833	0.3833	0.2833	0.7167	0.2833	0.2833	0.6167	0.2833	0.2833	0.7167	0.3833	0.8167	0.3833	0.6167	0.7167	0.6167	0.4000	0.4000	0.4833	0.6167	0.4000	0.6167	0.6167
218	0.2833	0.2833	0.4833	0.3833	0.4833	0.3833	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.6167
210	0.1922	0.1922	0.4000	0.2922	0.4000	0.2822	0.6167	0.2922	0.2822	0.6167	0.2922	0.2922	0.7167	0.4000	0.7167	0.4000	0.4922	0.7167	0.7167	0.4000	0.4000	0.4000	0.4000	0.4932	0.6167	0.6167
220	0.1033	0.1000	0.4033	0.2033	0.9933	0.2033	0.6167	0.2033	0.2000	0.6167	0.4922	0.3033	0.6167	0.4033	0.6167	0.4033	0.4055	0.6167	0.6167	0.4033	0.4033	0.6167	0.6167	0.4033	0.6167	0.6167
20	0.2833	0.2833	0.3633	0.3833	0.3833	0.2833	0.0107	0.2833	0.2833	0.0107	0.4833	0.2833	0.0167	0.0107	0.0167	0.4633	0.6167	0.0107	0.6167	0.4633	0.6167	0.0107	0.0107	0.4633	0.6167	0.6167
21	0.2033	0.2033	0.3033	0.1033	0.4033	0.3033	0.4033	0.3033	0.3633	0.4033	0.4033	0.3033	0.7107	0.4033	0.7167	0.3033	0.6167	0.6167	0.0107	0.0107	0.0107	0.3033	0.4033	0.4033	0.0107	0.4055
22	0.2833	0.3833	0.2833	0.3633	0.4633	0.2833	0.0107	0.2033	0.2033	0.4633	0.4033	0.2833	0.0107	0.0107	0.7167	0.4633	0.0107	0.0107	0.0107	0.4033	0.4633	0.4633	0.0107	0.4633	0.0107	0.0107
23	0.2833	0.2833	0.3833	0.3833	0.4833	0.2833	0.4833	0.4833	0.3833	0.6167	0.4833	0.4833	0.7167	0.4833	0.7167	0.4833	0.6167	0./16/	0.6167	0.4833	0.6167	0.6167	0.4833	0.6167	0.0107	0.6167
24	0.1833	0.2833	0.3833	0.2833	0.3833	0.1833	0.0107	0.2833	0.1833	0.6167	0.4633	0.2833	0./16/	0.4833	0.7167	0.4833	0.0167	0.4633	0.4833	0.4833	0.4833	0.6167	0.0167	0.6167	0.0107	0.6167
25	0.1833	0.1833	0.3833	0.3833	0.4833	0.1833	0.6167	0.2833	0.4833	0.4833	0.4833	0.3833	0.4833	0.6167	0.6167	0.4833	0.6167	0.0107	0.4833	0.2833	0.3833	0.4833	0.7167	0.4833	0.6167	0.6167
20	0.2833	0.2833	0.4833	0.2833	0.4833	0.3633	0.4633	0.3833	0.3833	0.6167	0.4633	0.2833	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4633	0.4833
21	0.2833	0.4833	0.4833	0.2833	0.4833	0.2833	0.6167	0.2833	0.2833	0.6167	0.4833	0.2833	0.4833	0.4833	0.6167	0.4833	0.7167	0.6167	0.6167	0.6167	0.6167	0.4833	0.4833	0.6167	0.6167	0.4833
28	0.2833	0.4833	0.4833	0.2833	0.6167	0.3833	0.6167	0.2833	0.3833	0.4833	0.6167	0.2833	0.3833	0.6167	0.4833	0.6167	0.6167	0.4833	0.6167	0.3833	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167
29	0.2833	0.2833	0.2833	0.2833	0.3833	0.2833	0.6167	0.2833	0.3833	0.6167	0.3833	0.3833	0./16/	0.4833	0.8167	0.3833	0.6167	0./16/	0.6167	0.6167	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167
30	0.1833	0.2833	0.4833	0.3833	0.4833	0.2833	0.6167	0.2833	0.3833	0.6167	0.4833	0.3833	0.4833	0.6167	0.6167	0.4833	0.6167	0.3833	0.6167	0.4833	0.3833	0.4833	0.7167	0.4833	0.6167	0.6167
/31	0.2833	0.2833	0.3833	0.2833	0.3833	0.2833	0.6167	0.2833	0.3833	0.6167	0.3833	0.3833	0.2833	0.3833	0./16/	0./16/	0.6167	0./16/	0.4833	0.4833	0.3833	0.6167	0.6167	0.4833	0.4833	0.6167
32	0.3833	0.3833	0.3833	0.2833	0.4833	0.4833	0.3833	0.3833	0.3833	0.4833	0.6167	0.4833	0.6167	0.6167	0.6167	0.3833	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.4833	0.6167	0.6167	0.4833
33	0.3833	0.3833	0.3833	0.3833	0.4833	0.4833	0.4833	0.6167	0.2833	0.6167	0.4833	0.3833	0.6167	0.4833	0.3833	0.4833	0.4833	0.4833	0.4833	0.4833	0.3833	0.6167	0.6167	0.6167	0.4833	0.6167
234	0.1833	0.1833	0.3833	0.2833	0.4833	0.1833	0.6167	0.2833	0.1833	0.6167	0.4833	0.2833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167
235	0.1833	0.2833	0.2833	0.2833	0.3833	0.1833	0.7167	0.1833	0.2833	0.6167	0.3833	0.3833	0.6167	0.4833	0.7167	0.3833	0.3833	0.6167	0.4833	0.4833	0.4833	0.6167	0.7167	0.4833	0.4833	0.6167
236	0.3833	0.3833	0.4833	0.3833	0.4833	0.4833	0.6167	0.4833	0.2833	0.6167	0.4833	0.2833	0.6167	0.4833	0.6167	0.6167	0.3833	0.7167	0.3833	0.3833	0.4833	0.6167	0.6167	0.3833	0.6167	0.6167
37	0.2833	0.3833	0.3833	0.2833	0.4833	0.2833	0.6167	0.2833	0.3833	0.6167	0.4833	0.4833	0.7167	0.6167	0.7167	0.4833	0.4833	0.6167	0.4833	0.3833	0.3833	0.6167	0.6167	0.3833	0.4833	0.6167
² 38	0.2833	0.2833	0.2833	0.1833	0.3833	0.1833	0.4833	0.1833	0.3833	0.6167	0.3833	0.2833	0.6167	0.4833	0.6167	0.4833	0.6167	0.6167	0.6167	0.6167	0.6167	0.4833	0.6167	0.6167	0.4833	0.6167
239	0.2833	0.3833	0.3833	0.3833	0.3833	0.3833	0.6167	0.4833	0.3833	0.4833	0.4833	0.4833	0.6167	0.4833	0.6167	0.6167	0.6167	0.4833	0.7167	0.3833	0.3833	0.4833	0.6167	0.3833	0.6167	0.6167
240	0.3833	0.4833	0.4833	0.2833	0.4833	0.3833	0.3833	0.3833	0.4833	0.4833	0.4833	0.3833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.3833	0.3833	0.6167	0.4833	0.4833
241	0.1833	0.2833	0.4833	0.2833	0.4833	0.2833	0.6167	0.3833	0.2833	0.4833	0.4833	0.2833	0.6167	0.4833	0.6167	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.6167
242	0.2833	0.2833	0.3833	0.2833	0.4833	0.2833	0.6167	0.2833	0.2833	0.4833	0.4833	0.3833	0.4833	0.4833	0.6167	0.4833	0.4833	0.2833	0.4833	0.6167	0.4833	0.4833	0.7167	0.6167	0.6167	0.6167
243	0.2833	0.3833	0.4833	0.2833	0.6167	0.2833	0.4833	0.2833	0.2833	0.4833	0.6167	0.2833	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.4833
P44	0.3833	0.4833	0.4833	0.1833	0.4833	0.2833	0.4833	0.3833	0.4833	0.4833	0.4833	0.2833	0.6167	0.4833	0.6167	0.4833	0.6167	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.4833	0.4833
245	0.2833	0.2833	0.3833	0.2833	0.4833	0.2833	0.4833	0.2833	0.3833	0.4833	0.4833	0.3833	0.4833	0.4833	0.7167	0.4833	0.6167	0.6167	0.6167	0.4833	0.3833	0.4833	0.6167	0.4833	0.4833	0.6167
246	0.3833	0.2833	0.3833	0.2833	0.4833	0.3833	0.6167	0.2833	0.2833	0.6167	0.4833	0.2833	0.4833	0.4833	0.6167	0.3833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.6167	0.4833	0.4833
247	0.3833	0.3833	0.4833	0.2833	0.6167	0.2833	0.4833	0.3833	0.2833	0.4833	0.6167	0.2833	0.4833	0.4833	0.4833	0.6167	0.6167	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833	0.6167	0.4833	0.4833
248	0.2833	0.2833	0.3833	0.2833	0.3833	0.1833	0.6167	0.2833	0.6167	0.6167	0.3833	0.2833	0.7167	0.3833	0.7167	0.3833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167	0.4833	0.4833	0.4833	0.6167
249	0.2833	0.3833	0.3833	0.2833	0.3833	0.2833	0.6167	0.3833	0.3833	0.6167	0.3833	0.3833	0.7167	0.4833	0.6167	0.4833	0.4833	0.6167	0.6167	0.3833	0.4833	0.6167	0.6167	0.4833	0.6167	0.6167
P50	0.2833	0.3833	0.2833	0.2833	0.4833	0.2833	0.4833	0.2833	0.4833	0.4833	0.4833	0.3833	0.3833	0.4833	0.4833	0.3833	0.3833	0.4833	0.3833	0.6167	0.4833	0.3833	0.6167	0.6167	0.4833	0.6167
ype	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive												

Fig. 8. Initial decision matrix for stoppers.

Table 13 Evaluation results for stopper players ($\upsilon=0.5$).

Alternatives	g_m	h_m	g^*	<i>g</i> ⁻	Z_m
P1	0.2911	0.1939	0.2911	0.8356	0.0344
P2	0.4198	0.1776	h^*	h^-	0.1182
P3	0.4769	0.1939	0.1776	0.41446	0.2050
P4	0.3827	0.1776			0.0841
P5	0.4970	0.2387			0.3180
P6	0.4125	0.1776			0.1115
P7	0.3941	0.1776			0.0947
P8	0.4676	0.1776			0.1622
Р9	0.4232	0.1939			0.1557
P10	0.5183	0.1939			0.2430
P11	0.3939	0.1776			0.0944
P12	0.5455	0.1939			0.2680
P13	0.5529	0.1939			0.2748
P14	0.5729	0.1939			0.2931
P15	0.5506	0.1939			0.2727
P16	0.5050	0.4145			0.6965
P17	0.5698	0.1939			0.2904
P18	0.4564	0.1776			0.1518
P19	0.4365	0.1776			0.1335
P20	0.4388	0.1939			0.1700
P21	0.7746	0.4145			0.9441
P22	0.7839	0.4145			0.9525
P23	0.3501	0.1776			0.0542
P24	0.4790	0.1939			0.2069
P25	0.7678	0.4145			0.9378
P26	0.5401	0.1939			0.2630
P27	0.5096	0.1939			0.2350
P28	0.7368	0.4145			0.9093
P29	0.4545	0.1776			0.1501
P30	0.5162	0.1776			0.2067
P31	0.4661	0.1776			0.1607
P32	0.5889	0.4145			0.7735
P33	0.4604	0.1776			0.1555
P34	0.5497	0.1939			0.2718
P35	0.4742	0.1776			0.1682
P36	0.4823	0.1939			0.2099
P37	0.4134	0.1776			0.1124
P38	0.5483	0.1939			0.2706
P39	0.6973	0.4145			0.8731
P40	0.7854	0.4145			0.9540
P41	0.7947	0.4145			0.9625
P42	0.7530	0.4145			0.9242
P43	0.6453	0.4145			0.8253
P44	0.7130	0.4145			0.8875
P45	0.7591	0.4145			0.9298
P40	0.5554	0.1939			0.2771
P47	0.7231	0.4145			0.8968
P48	0.5143	0.1939			0.2394
P49	0.4508	0.1776			0.1467
P30	0.8350	0.4145			1.0000

Table 14The names and codes of right-back players.

Code	Player Name	Code	Player Name
P1	Salih Dursun	P26	Erdem Özgenç
P2	Kaan Ayhan	P27	Ramazan Civelek
P3	Orhan Ovacıklı	P28	Mert Müldür
P4	Ferdi Kadıoğlu	P29	Serkan Asan
Р5	Dorukhan Toköz	P30	Buğra Çağıran
P6	Fatih Aksoy	P31	Fethi Özer
P7	Ömer Ali Şahiner	P32	Gökhan Gönül
P8	Mehmet Aydin	P33	Kerim Alıcı
Р9	Bünyamin Balcı	P34	Cenk Ahmet Alk.
P10	Onur Bulut	P35	Oğuzhan Berber
P11	Cebrail Karayel	P36	Ogün Bayrak
P12	Zeki Yavru	P37	Şener Özbayraklı
P13	Tayfur Bingöl	P38	Alaaddin Okumuş
P14	Veysel Sarı	P39	Koray Altınay
P15	Ahmet Oğuz	P40	Alperen Babacan
P16	Kamil Ahmet Çö.	P41	Oğuz Yıldırım
P17	Nazım Sangaré	P42	Erhan Kartal
P18	Oğuz Ceylan	P43	Serkan Göksu
P19	Kerem Kalafat	P44	Üzeyir Ergün
P20	Sadık Çiftpınar	P45	Barış Yardımcı
P21	Hayrullah Bila.	P46	Zeki Çelik
P22	Murat Uçar	P47	Tolga Ünlü
P23	Serdar Cansu	P48	Abdulkadir Kor.
P24	Sadık Baş	P49	Murat Sağlam
P25	Murat Paluli	P50	İsmail Çokçalış

These positions are the basic positions generally used in football teams. However, in modern football, different places and positions may emerge depending on tactical changes and playing style.

4.1. Determination of criteria

Football players and goalkeepers were evaluated with a total of 21 criteria (for goalkeepers) and 26 criteria (for players) under 3 main criteria that are technical, physical, and mental. It is accepted that the weights of all the main criteria are equal. The football players and goalkeepers who were the best in their positions were selected for evaluation. 48 goalkeepers, 50 right-back players, 50 left-back players, 50 stoppers, 50 right-left winger players, 50 midfielders, 50 offensive midfielders, and 50 forwards were taken into consideration. The criteria for goalkeepers and football players are summarized in Figs. 4 and 5.

Area Dominance (GK-T1) expresses how much a goalkeeper controls his field and aerial balls. Eccentricity (GK-T2) refers to how often the goalkeeper takes risks and the probability of success.

Ball Control by Hand (GK-T3) measures a goalkeeper's ability to catch and control incoming balls with his hands. Punt Usage (GK-T4) expresses how good a goalkeeper's punt handling is. Passing Ability (GK-T5, FP-T11) expresses how well and accurately a goalkeeper can pass. Reflexes (GK-T6) expresses how sensitive and fast a goalkeeper can react to events. Move Away from the Goal (GK-T7) is an indicator of how much a goalkeeper can move from the goal and how successful he can be. Aggressiveness (GK-M1, FP-M1) refers to a goalkeeper or player's predisposition to physical contact. Foresight (GK-M2, FP-M2) refers to a goalkeeper's or player's ability to predict the movements of teammates and opposing players. Courage (GK-M3, FP-M3) refers to the possibility of a goalkeeper or player taking actions that will benefit his team, even if they put him at risk. Calmness (GK-M4, FP-M4) refers to a goalkeeper's or player's ability to make the right decisions without losing his calmness, even when under pressure. Concentration (GK-M5, FP-M5) refers to a goalkeeper or player focusing on the match and not losing focus throughout the match. Consistency (GK-M6, FP-M6) is an indicator of how motivated a goalkeeper or player is in matches and training. Communication (GK-M7, FP-M7) refers to the ability of a goalkeeper or player to get along effectively and successfully with his teammates. Acceleration (GK-P1, FP-P1) expresses how long it takes a goalkeeper or player to reach his maximum speed. Agility (GK-P2, FP-P2) refers to how flexible a goalkeeper or player is and how quickly he can return. Balance (GK-P3, FP-P3) expresses how well a goalkeeper or player can stand on his feet due to physical contact. Jumping (GK-P4, FP-P4) refers to how high a goalkeeper or player can jump. Recovery after Injury (GK-P5, FP-P5) refers to how quickly a goalkeeper or player can return to his previous condition after a match or injury. Resilience (GK-P6, FP-P6) refers to the ability of a goalkeeper or player to endure no matter how difficult the conditions are during the match. Speed (GK-P7, FP-P7) refers to the speed of a goalkeeper or player. Corner Usage (FP-T1) refers to how good a football player is at corner kick. Crossing (FP-T2) expresses how well a football player can cross the ball. Dribbling (FP-T3) refers to how well a football player can dribble. Goal Ability (FP-T4) refers to a football player's ability to successfully achieve goal positions. First Kick (FP-T5) refers to a football player's ability to control the ball when it arrives and prepare for the next action. Free Kick (FP-T6) is a chance to kick the ball before the opponent team getting involved. Head Kick (FP-T7) refers to how well a football player can head the ball and his ability to score a goal with his

	T T1	T2	T3	T4	T5	T6	17	T8	T9	T10	T11	T12	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
P1	0.38333333	0.6166667	0.4833333	0.4833333	0.4833333	0.283333333	0.4833333	0.383333333	0.616666667	0.6166667	0.6166667	0.2833333	0.383333333	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.6166667	0.6166667
P2	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.383333333	0.3833333	0.483333333	0.616666667	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.4833333333	0.6166667	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P3	0.28333333	0.4833333	0.4833333	0.3833333	0.6166667	0.283333333	0.4833333	0.383333333	0.483333333	0.4833333	0.4833333	0.2833333	0.616666667	0.4833333	0.483333333	0.4833333	0.3833333	0.7166667	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.6166667
P4	0.38333333	0.2833333	0.3833333	0.3833333	0.6166667	0.483333333	0.6166667	0.483333333	0.383333333	0.6166667	0.6166667	0.3833333	0.483333333	0.6166667	0.616666667	0.6166667	0.4833333	0.7166667	0.6166667	0.483333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.4833333
P5	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.383333333	0.4833333	0.483333333	0.283333333	0.6166667	0.4833333	0.2833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.7166667	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.6166667	0.6166667
P6	0.28333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.6166667	0.383333333	0.483333333	0.6166667	0.6166667	0.3833333	0.616666667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.483333333	0.4833333	0.4833333	0.6166667	0.6166667	0.6166667	0.6166667
P7	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.4833333333	0.3833333	0.4833333333	0.383333333	0.3833333	0.4833333	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0.6166667	0.616666667	0.4833333	0.4833333	0.3833333	0.6166667	0.6166667	0.4833333
P8	0.28333333	0.4833333	0.4833333	0.3833333	0.6166667	0.283333333	0.3833333	0.383333333	0.483333333	0.4833333	0.4833333	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.6166667	0.4833333
P9	0.28333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.3833333	0.4833333333	0.283333333	0.4833333	0.4833333	0.4833333	0.483333333	0.6166667	0.616666667	0.4833333	0.6166667	0.2833333	0.6166667	0.483333333	0.4833333	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P10	0.48333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.3833333	0.383333333	0.483333333	0.4833333	0.4833333	0.3833333	0.483333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.3833333	0.3833333	0.6166667	0.6166667	0.3833333
P11	0.48333333	0.4833333	0.4833333	0.3833333	0.6166667	0.383333333	0.3833333	0.383333333	0.483333333	0.4833333	0.6166667	0.4833333	0.716666667	0.3833333	0.616666667	0.3833333	0.6166667	0.7166667	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333
P12	0.61666667	0.6166667	0.3833333	0.2833333	0.4833333	0.616666667	0.3833333	0.483333333	0.483333333	0.4833333	0.6166667	0.4833333	0.616666667	0.3833333	0.716666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.4833333	0.6166667	0.6166667
P13	0.28333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.4833333	0.383333333	0.183333333	0.4833333	0.6166667	0.3833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667
P14	0.28333333	0.2833333	0.4833333	0.3833333	0.4833333	0.383333333	0.6166667	0.483333333	0.483333333	0.6166667	0.4833333	0.4833333	0.616666667	0.4833333	0.616666667	0.3833333	0.4833333	0.6166667	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333	0.6166667
P15	0.28333333	0.4833333	0.3833333	0.2833333	0.4833333	0.183333333	0.3833333	0.483333333	0.716666667	0.4833333	0.4833333	0.3833333	0.483333333	0.4833333	0.616666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.6166667
P16	0.38333333	0.4833333	0.4833333	0.2833333	0.6166667	0.383333333	0.3833333	0.283333333	0.483333333	0.4833333	0.6166667	0.3833333	0.483333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.4833333
P17	0.28333333	0.4833333	0.4833333	0.3833333	0.4833333	0.2833333333	0.3833333	0.483333333	0.716666667	0.4833333	0.4833333	0.3833333	0.616666667	0.4833333	0.483333333	0.4833333	0.3833333	0.4833333	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333
P18	0.38333333	0 4833333	0 4833333	0.3833333	0 4833333	0 383333333	0.3833333	0 483333333	0 4833333333	0.48333333	0.48333333	0 4833333	0 716666667	0.3833333	0 716666667	0 4833333	0 4833333	0 4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.3833333	0.6166667	0.6166667	0 48333333
P19	0.38333333	0.4833333	0.4833333	0.2833333	0.4833333	0.2833333333	0.3833333	0.383333333	0.4833333333	0.4833333	0.4833333	0.2833333	0.483333333	0.4833333	0.616666667	0.4833333	0.4833333	0.3833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.4833333	0.4833333
P20	0 28333333	0 2833333	0 2833333	0 2833333	0 3833333	0 2833333333	0.6166667	0 283333333	0 383333333	0.6166667	0.3833333	0.3833333	0 716666667	0 4833333	0.816666667	0.3833333	0.6166667	0 7166667	0.6166667	0.616666667	0 48333333	0.6166667	0.6166667	0.6166667	0.6166667	0.6166667
P21	0 28333333	0.6166667	0.48333333	0 2833333	0.4833333	0 2833333333	0 2833333	0 283333333	0.616666667	0 3833333	0.48333333	0 2833333	0.616666667	0.4833333	0.4833333333	0 3833333	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.4833333	0 3833333	0.6166667	0.6166667	0.48333333
P22	0 283333333	0.48333333	0.6166667	0.3833333	0.48333333	0.3833333333	0.3833333	0.383333333	0 2833333333	0.38333333	0.3833333	0.48333333	0 4833333333	0.48333333	0.616666667	0.3833333	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.48333333	0.3833333	0.6166667	0.6166667	0.38333333
P23	0 38333333	0.4833333	0.4833333	0 2833333	0.4833333	0.4833333333	0.48333333	0 283333333	0 3833333333	0 3833333	0.4833333	0 1833333	0 383333333	0.4833333	0.4833333333	0.4833333	0.48333333	0.6166667	0.4833333	0 716666667	0.6166667	0.4833333	0 3833333	0.6166667	0.6166667	0.4833333
P24	0.18333333	0.4833333	0.6166667	0.4833333	0.6166667	0.283333333	0.2833333	0.616666667	0.283333333	0.3833333	0.4833333	0.4833333	0.383333333	0.4833333	0.383333333	0.4833333	0.4833333	0.4833333	0.3833333	0.616666667	0.6166667	0.4833333	0.2833333	0.6166667	0.3833333	0.3833333
P25	0.483333333	0.4833333	0.6166667	0.2833333	0.6166667	0.283333333	0.38333333	0.283333333	0.483333333	0.3833333	0.4833333	0.3833333	0.483333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.2833333	0.6166667	0.4833333	0.4833333
P26	0.61666667	0.4000000	0.6166667	0.2000000	0.6166667	0.716666667	0.2833333	0.616666667	0.482323232	0.4833333	0.6166667	0.6166667	0.4000000000	0.4923233	0.282222222	0.6166667	0.4933333	0.4933333	0.4933333	0.492222222	0.6166667	0.4933333	0.2833333	0.4833333	0.4933333	0.4000000
P27	0.38333333	0.4833333	0.4833333	0.4833333	0.4833333	0.283333333	0.2833333	0.383333333	0.283333333	0.9833333	0.4833333	0.3833333	0.403333333	0.3833333	0.4833333333	0.4833333	0.4833333	0.4833333	0.40000000	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P29	0.29222222	0.2822222	0.4922222	0.2922222	0.4000000	0.2000000000	0.2000000	0.202222222	0.492222222	0.6166667	0.4932322	0.2822222	0.616666667	0.20222222	0.616666667	0.2822222	0.4000000	0.7166667	0.6166667	0.616666667	0.6166667	0.2822222	0.2822222	0.6166667	0.6166667	0.2922222
P20	0.28333333	0.4833333	0.4000000	0.2833333	0.4833333	0.283333333	0.3833333	0.283333333	0.383333333	0.4833333	0.4833333	0.2833333	0.616666667	0.4833333	0.716666667	0.3833333	0.4055555	0.6166667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333
P20	0.49222222	0.4000000	0.2922222	0.2000000	0.4000000	0.492222222	0.2822222	0.616666667	0.202222222	0.2822222	0.2022222	0.2000000	0.202222222	0.2022222	0.492222222	0.6166667	0.4922222	0.7166667	0.6166667	0.492222222	0.6166667	0.4000000	0.2822222	0.6166667	0.6166667	0.4000000
P21	0.90333333	0.4033333	0.30333333	0.2000000	0.40000000	0.4033333333	0.2033333	0.010000007	0.3033333333	0.20555555	0.4022222	0.2033333	0.4022222222	0.50555555	0.4033333333	0.4932322	0.40333333	0.6166667	0.4922222	0.40000000000	0.0100007	0.4033333	0.6166667	0.20222222	0.6166667	0.40333333
P22	0.20333333	0.2833333	0.30333333	0.28333333	0.48333333	0.2033333333	0.0100007	0.2033333333	0.2033333333	0.4022222	0.48333333	0.2000000	0.4033333333	0.7166667	0.616666667	0.48333333	0.46333333	0.0100007	0.46555555	0.3633333333	0.38333333	0.0100007	0.2922222	0.38333333	0.0100007	0.46333333
P32	0.303333333	0.4033333	0.4022222	0.40333333	0.4033333	0.2033333333	0.40333333	0.4033333333	0.0100000007	0.40333333	0.4033333	0.2022222	0.4055555555	0.4922222	0.492222222	0.4033333	0.4932322	0.4932323	0.6166667	0.4055555555	0.40333333	0.40333333	0.4022222	0.4033333	0.2033333	0.4022222
P33	0.36333333	0.46555555	0.46555555	0.36333333	0.30333333	0.3033333333	0.46555555	0.4033333333	0.3033333333	0.4033333	0.40333333	0.30333333	0.010000007	0.48333333	0.4633333333	0.38333333	0.48333333	0.48333333	0.0100007	0.616666667	0.6166667	0.46555555	0.48333333	0.6166667	0.0100007	0.40333333
D25	0.49333333	0.0100007	0.3033333	0.4033333	0.4033333	0.2033333333	0.30333333	0.4033333333	0.3033333333	0.40333333	0.4033333	0.30333333	0.4655555555	0.4000000	0.3033333333	0.30333333	0.3533333	0.40555555	0.4033333	0.40000007	0.4933333	0.3033333	0.20333333	0.4022222	0.4033333	0.20333333
P35	0.465555555	0.4033333	0.46555555	0.28333333	0.4033333	0.2033333333	0.28333333	0.3033333333	0.4033333333	0.38333333	0.40333333	0.2833333	0.010000007	0.38333333	0.010000007	0.46333333	0.0100007	0.0100007	0.0100007	0.4633333333	0.46555555	0.0100007	0.38333333	0.46555555	0.46333333	0.0100007
P30	0.303333333	0.4033333	0.0100007	0.30333333	0.4033333	0.2033333333	0.30333333	0.4033333333	0.4033333333	0.30333333	0.40333333	0.2033333	0.4655555555	0.4033333	0.3033333333	0.40333333	0.40333333	0.38333333	0.4033333	0.616666667	0.0100007	0.4033333	0.30333333	0.6166667	0.4033333	0.30333333
P3/	0.363333333	0.0100007	0.4633333	0.2833333	0.4633333	0.3633333333	0.46333333	0.4633333333	0.3633333333	0.46333333	0.46333333	0.36333333	0.010000007	0.4633333	0.010000007	0.46333333	0.46333333	0.0100007	0.0100007	0.010000007	0.46333333	0.0100007	0.2833333	0.6166667	0.46333333	0.46333333
P30	0.01000007	0.4633333	0.2022222	0.3833333	0.4633333	0.303333333	0.2833333	0.2033333333	0.3033333333	0.30333333	0.46333333	0.10333333	0.303333333	0.4633333	0.3033333333	0.36333333	0.4833333	0.3833333	0.0100007	0./1000000/	0.6100007	0.4833333	0.26333333	0.6100007	0.0100007	0.3833333
P39	0.463333333	0.3833333	0.3633333	0.2833333	0.4633333	0.3633333333	0.46333333	0.3633333333	0.4653535555	0.46333333	0.46333333	0.4633333	0.010000007	0.4633333	0.4633333333	0.6166667	0.48333333	0.38333333	0.4633333	0.4633333333	0.46333333	0.46555555	0.6166667	0.4833333	0.46333333	0.4633333
P40	0.26333333	0.4833333	0.4833333	0.2833333	0.4633333	0.203333333	0.0100007	0.2633333333	0.2833333333	0.0100007	0.4833333	0.38333333	0.010000007	0.4833333	0.4833333333	0.4833333	0.38333333	0.38333333	0.4633333	0.363333333	0.46333333	0.0100007	0.48333333	0.4833333	0.6166667	0.0100007
P41	0.20333333	0.46555555	0.4633333	0.3833333	0.4633333	0.2833333333	0.36333333	0.2633333333	0.4653535555	0.3833333	0.36333333	0.2833333	0.4653535555	0.3833333	0.4633333333	0.3833333	0.6166667	0.6166667	0.0100007	0.010000007	0.6166667	0.3633333	0.3833333	0.6100007	0.6166667	0.3833333
P42	0.383333333	0.6166667	0.4833333	0.2833333	0.4833333	0.3833333333	0.38333333	0.3833333333	0.616666667	0.4833333	0.4833333	0.2833333	0.4833333333	0.4833333	0.4833333333	0.4833333	0.48333333	0.4833333	0.6166667	0.4633333333	0.46333333	0.4833333	0.48333333	0.4833333	0.4833333	0.4833333
P43	0.203333333	0.3033333	0.4033333	0.26333333	0.4633333	0.203333333	0.36333333	0.363333333	0.103333333	0.3033333	0.46333333	0.3033333	0.010000000/	0.46333333	0.0100000007	0.36333333	0.46333333	0.0100007	0.010000/	0.010066667	0.46333333	0.46333333	0.36333333	0.46333333	0.0106667	0.0100007
P44	0.383333333	0.38333333	0.4833333	0.2833333	0.4833333	0.3833333333	0.38333333	0.283333333	0.4833333333	0.4833333	0.3833333	0.3833333	0.4833333333	0.48333333	0.4833333333	0.4833333	0.4833333	0.2833333	0.4833333	0.0100666667	0.6166667	0.4833333	0.38333333	0.0166667	0.0106667	0.3833333
P45	0.283333333	0.48333333	0.0100067	0.2833333	0.3833333	0.3833333333	0.4833333	0.383333333	0.4633333333	0.0100067	0.48333333	0.4833333	0./16666667	0.4833333	0.010000667	0.48333333	0.48333333	0.0100067	0.6166667	0.3833333333	0.4833333	0.0100067	0.6166667	0.48333333	0.6166667	0.0100067
P40	0.28333333	0.38333333	0.3833333	0.2833333	0.3833333	0.2833333333	0.6166667	0.383333333	0.3833333333	0.0100007	0.3833333	0.3833333	0.010666667	0.48333333	0.616666667	0.4833333	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.3833333	0.48333333	0.48333333	0.4833333	0.6166667
P4/	0.28333333	0.4833333	0.4833333	0.2833333	0.4833333	0.283333333	0.4833333	0.283333333	0.616666667	0.4833333	0.3833333	0.3833333	0.616666667	0.4833333	0.4833333333	0.4833333	0.6166667	0.6166667	0.4833333	0.616666667	0.6166667	0.38333333	0.3833333	0.4833333	0.4833333	0.38333333
P48	0.483333333	0.48333333	0.4833333	0.2833333	0.4833333	0.4833333333	0.48333333	0.383333333	0.4833333333	0.4833333	0.48333333	0.3833333	0.4833333333	0.48333333	0.616666667	0.3833333	0.4833333	0.2833333	0.6166667	0.616666667	0.6166667	0.3833333	0.38333333	0.6166667	0.48333333	0.3833333
P49	0.28333333	0.4833333	0.4833333	0.2833333	0.4833333	0.283333333	0.28333333	0.283333333	0.4833333333	0.4833333	0.4833333	0.2833333	0.4833333333	0.4833333	0.4833333333	0.38333333	0.4833333	0.48333333	0.4833333	0.616666667	0.6166667	0.4833333	0.2833333	0.6166667	0.6166667	0.4833333
P50	0.483333333	0.6166667	0.6166667	0.3833333	0.4833333	0.383333333	0.3833333	0.283333333	0.4833333333	0.3833333	0.4833333	0.2833333	0.483333333	0.38333333	0.4833333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333
IVDe	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive

Fig. 9. Initial decision matrix for right-back players.

Table 15 Evaluation results for right-back players ($\upsilon = 0.5$).

Alternatives	g_m	h_m	g *	<i>g</i> ⁻	Z_m
P1	0.2901	0.1355	0.2236	0.6584	0.1571
P2	0.2615	0.1647	h^*	h^-	0.1686
P3	0.3461	0.1647	0.0824	0.4118	0.2659
P4	0.2372	0.1355			0.0963
P5	0.3056	0.1355			0.1750
P6	0.2654	0.1355			0.1287
P7	0.5589	0.2882			0.6981
P8	0.4436	0.1647			0.3780
Р9	0.4442	0.1647			0.3787
P10	0.3636	0.1647			0.2860
P11	0.2336	0.1647			0.1365
P12	0.3736	0.1647			0.2975
P13	0.4259	0.1647			0.3577
P14	0.2606	0.1355			0.1232
P15	0.3456	0.1647			0.2653
P16	0.3060	0.1647			0.2197
P17	0.4522	0.1647			0.3879
P18	0.2829	0.1647			0.1932
P19	0.3800	0.1647			0.3049
P20	0.3328	0.1355			0.2063
P21	0.4982	0.2882			0.6284
P22	0.4620	0.2882			0.5866
P23	0.5418	0.2882			0.6784
P24	0.4543	0.2882			0.5778
P25	0.4620	0.2882			0.5867
P26	0.2236	0.1647			0.1250
P27	0.5950	0.4118			0.9271
P28	0.2338	0.1075			0.0499
P29	0.5030	0.1647			0.4463
P30	0.6584	0.4118			1.0000
P31	0.4365	0.2371			0.4797
P32	0.4707	0.1647			0.4092
P33	0.3467	0.1647			0.2666
P34	0.3903	0.1647			0.3167
P35	0.6083	0.2882			0.7549
P36	0.5081	0.2882			0.6397
P37	0.4539	0.1647			0.3899
P38	0.5346	0.2882			0.6702
P39	0.4644	0.1647			0.4019
P40	0.2996	0.1355			0.1681
P41	0.5548	0.2882			0.6934
P42	0.5145	0.1647			0.4596
P43	0.6048	0.2882			0.7508
P44	0.3913	0.1647			0.3178
P45	0.2465	0.1355			0.1069
P46	0.2565	0.0824			0.0379
P47	0.4121	0.1647			0.3417
P48	0.3719	0.1647			0.2955
P49	0.3904	0.1647			0.3169
P50	0.6267	0.2882			0.7760

Table 16

The names and	codes of	left-back	players.
---------------	----------	-----------	----------

Code	Player Name	Code	Player Name
P1	Zeki Çelik	P26	Gökhan Süzen
P2	Ferdi Kadıoğlu	P27	Soner Gönül
P3	Eren Elmalı	P28	Kahraman Demir.
P4	Mert Müldür	P29	Sakib Aytaç
P5	Hasan Ali Kald.	P30	Yasin Güreler
P6	Caner Erkin	P31	Bülent Cevahir
P7	Güray Vural	P32	Erhan Kara
P8	Veysel Sarı	P33	Ziya Erdal
Р9	Rıdban Yılmaz	P34	Oğuzhan Berber
P10	Umut Meraş	P35	Abdurrahim Dur.
P11	Tayfur Bingöl	P36	Berkan Emir
P12	Uğur Çiftçi	P37	Halil İbrahim.
P13	Alper Uludağ	P38	Can Coşkun
P14	Mucahit Albayrak	P39	Erkan Kaş
P15	Ömer Bayram	P40	Kazımcan Karataş
P16	Kaan Kanak	P41	Ferhat Öztorun
P17	Buğra Çağıran	P42	Hurşit Taşcı
P18	Cemali Sertel	P43	Ali Dere
P19	Eren Albayrak	P44	Alberk Koç
P20	Ercan Coşkun	P45	Çağrı Giritlio.
P21	Özgür Çek	P46	Yusuf Özdemir
P22	Yasir Subaşı	P47	Muhammed Bayır
P23	Musa Nizam	P48	Melih Altıkulaç
P24	Duhan Aksu	P49	Emre Taşdemir
P25	Fethi Özer	P50	Muharrem Cinan

head. Long Range Shot (FP-T8) refers to how well a football player can shoot from outside the penalty area. Long Crown (FP-T9) refers to how far a football player can throw-in from crown. Marking (FP-T10) is an organized defensive strategy aimed at preventing a member of the opposing team (usually a striker) from controlling the ball. Footwork (FP-T12) refers to a football player's ability to take the ball from the opposing team without committing a foul.

Decision makers evaluated each of the technical, physical, and mental criteria using the evaluation scale in Table 3, and the results are given in Table 4.

Using Eq. (1), single valued neutrosophic numbers belonging to the criteria evaluated by all decision makers are converted into crisp values and then these results are aggregated by using Eq. (2) (Table 5).

Criteria are ranked from largest to smallest according to their P_m values. The criterion with the highest P_m value is ranked the first and the coefficient of this criterion is equal to 1. The coefficients of other criteria are calculated by using Eq. (3). Then, the initial weight values of all criteria are calculated by using Eq. (4). The relative weights of the criteria are calculated with Eq. (5). All data are represented in Table 6.

When Table 6 is examined, it is determined that the most effective criterion in choosing a goalkeeper is agility and its weight is 41.06 %. This criterion is followed by reflexes with a weight of 22.85 % and jumping ability criterion with a weight of 13.80 %, respectively. The last ranked criteria that are not important in goalkeeper selection are recovery after injury, resilience, and eccentricity.

The decision-making team evaluated all criteria for each position and the criteria weights for football players are given in Table 7. When Table 7 is examined, criteria such as marking, passing ability, agility, dribbling, and footwork come to the fore among the criteria to be taken into consideration when evaluating a football player. From a position perspective, the goal ability criterion appears to be an important criterion only for forwards.

4.2. Evaluation of alternatives

In this section, the goalkeepers and football players playing in different positions participating in the study will be evaluated according to the relevant criteria.

4.2.1. 4.2.1 evaluation of goalkeepers

The names and codes of the 48 goalkeepers who participated in the evaluation are given in Table 8. The initial decision matrix for the goalkeepers is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 6.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7-(11)) and the results obtained for the goalkeepers are given in Table 9.

When the goalkeepers are listed from smallest to largest according to their Z_m values, it is seen that the first three are the goalkeepers named Altay Bayındır, Sinan Bolat and Uğurcan Çakır.

	T1	T2	T3	T4	T5	TG	17	T8	T9	T10	T11	T12	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
P1	0.38333333	0.6166667	0.4833333	0.4833333	0.4833333	0.283333333	0.4833333	0.383333333	0.616666667	0.6166667	0.6166667	0.2833333	0.383333333	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.6166667	0.6166667
P2	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.383333333	0.3833333	0.4833333333	0.616666667	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.483333333	0.6166667	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P3	0.28333333	0.6166667	0.6166667	0.3833333	0.6166667	0.383333333	0.4833333	0.383333333	0.4833333333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.3833333
P4	0.28333333	0.4833333	0.4833333	0.3833333	0.6166667	0.283333333	0.4833333	0.383333333	0.483333333	0.4833333	0.4833333	0.2833333	0.616666667	0.4833333	0.483333333	0.4833333	0.3833333	0.7166667	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.6166667
P5	0.483333333	0.4833333	0.3833333	0.3833333	0.4833333	0.4833333333	0.4833333	0.483333333	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333
P6	0.71666667	0.7166667	0.6166667	0.3833333	0.6166667	0.616666667	0.3833333	0.616666667	0.383333333	0.3833333	0.6166667	0.4833333	0.616666667	0.6166667	0.616666667	0.6166667	0.4833333	0.7166667	0.6166667	0.616666667	0.6166667	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333
P7	0.61666667	0.6166667	0.4833333	0.4833333	0.4833333	0.616666667	0.3833333	0.4833333333	0.4833333333	0.3833333	0.4833333	0.6166667	0.4833333333	0.4833333	0.483333333	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333333	0.4833333	0.4833333	0.3833333	0.4833333	0.4833333	0.4833333
P8	0.483333333	0.6166667	0.4833333	0.2833333	0.4833333	0.183333333	0.4833333	0.383333333	0.483333333	0.4833333	0.4833333	0.3833333	0.483333333	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.7166667	0.6166667	0.6166667
P9	0.48333333	0.3833333	0.4833333	0.2833333	0.4833333	0.383333333	0.4833333	0.283333333	0.4833333333	0.6166667	0.4833333	0.3833333	0.716666667	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.7166667	0.4833333
P10	0.38333333	0.4833333	0.4833333	0.3833333	0.6166667	0.383333333	0.4833333	0.383333333	0.4833333333	0.4833333	0.4833333	0.3833333	0.483333333	0.4833333	0.616666667	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.4833333
P11	0.28333333	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333333	0.4833333	0.383333333	0.183333333	0.4833333	0.6166667	0.3833333	0.616666667	0.4833333	0.616666667	0.3833333	0.4833333	0.6166667	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333	0.6166667
P12	0.28333333	0.2833333	0.4833333	0.3833333	0.48333333	0.383333333	0.6166667	0.483333333	0.4833333333	0.6166667	0.4833333	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667
P13	0.61666667	0.4833333	0.4833333	0.3833333	0.48333333	0.616666667	0.3833333	0.4833333333	0.4833333333	0.3833333	0.4833333	0.3833333	0.616666667	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.48333333	0.4833333	0.6166667	0.6166667
P14	0.48333333	0.6166667	0.4833333	0.3833333	0.6166667	0.616666667	0.3833333	0.483333333	0.616666667	0.4833333	0.4833333	0.3833333	0.4833333333	0.6166667	0.383333333	0.4833333	0.4833333	0.3833333	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.3833333
P15	0.61666667	0.6166667	0.6166667	0.3833333	0.48333333	0.616666667	0.3833333	0.4833333333	0.4833333333	0.3833333	0.4833333	0.3833333	0.716666667	0.3833333	0.716666667	0.4833333	0.48333333	0.6166667	0.6166667	0.4833333333	0.48333333	0.6166667	0.3833333	0.4833333	0.6166667	0.6166667
P16	0 483333333	0.6166667	0.48333333	0 3833333	0 4833333	0 4833333333	0 2833333	0.616666667	0 4833333333	0 3833333	0 4833333	0 2833333	0.616666667	0 4833333	0 4833333333	0.4833333	0 48333333	0.6166667	0.6166667	0.616666667	0.6166667	0 3833333	0 3833333	0.6166667	0.6166667	0 48333333
P17	0.483333333	0.48333333	0.3833333	0.28333333	0.48333333	0.4833333333	0.28333333	0.616666667	0.3833333333	0.28333333	0.3833333	0.28333333	0.2833333333	0.3833333	0.4833333333	0.6166667	0.48333333	0.7166667	0.6166667	0.4833333333	0.6166667	0.48333333	0.28333333	0.6166667	0.6166667	0.48333333
P18	0 38333333	0.4833333	0.4833333	0 1833333	0.4833333	0 283333333	0.48333333	0 383333333	0.4833333333	0.48333333	0.48333333	0 2833333	0.616666667	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0 4833333	0.4833333333	0.48333333	0.6166667	0.6166667	0.6166667	0.48333333	0.4833333
P19	0.483333333	0.48333333	0.48333333	0.3833333	0.48333333	0 4833333333	0.38333333	0.383333333	0.3833333333	0.38333333	0.48333333	0.48333333	0 4833333333	0.48333333	0 4833333333	0.48333333	0.48333333	0.48333333	0.6166667	0.4833333333	0.48333333	0.38333333	0.38333333	0.48333333	0.6166667	0.48333333
P20	0.38333333	0.4833333	0.4833333	0.2833333	0.4833333	0.383333333	0.3833333	0 383333333	0.483333333	0.4833333	0.4833333	0.3833333	0.4000000000	0.4833333	0.483333333	0.4833333	0.4833333	0.4833333	0.4833333	0.616666667	0.6166667	0.3833333	0.3833333	0.6166667	0.4833333	0.4833333
P21	0.61666667	0.4000000	0.6166667	0.2822222	0.4000000	0.616666667	0.2822222	0.616666667	0.4000000000	0.3833333	0.6166667	0.6166667	0.400000000	0.4922222	0.382222222	0.4000000	0.2922222	0.4000000	0.6166667	0.616666667	0.6166667	0.2822222	0.2822222	0.4922222	0.2822222	0.4922222
P22	0.28333333	0.3833333	0.4833333	0.3833333	0.4833333	0.283333333	0.48333333	0.283333333	0.283333333	0.4833333	0.3833333	0.2833333	0.616666667	0.4833333	0.716666667	0.3833333	0.4833333	0.6166667	0.4833333	0.616666667	0.4833333	0.4833333	0.3833333	0.6166667	0.6166667	0.4833333
P23	0.28333333	0.3833333	0.3833333	0.2833333	0.4833333	0.283333333	0.48333333	0.283333333	0.4833333333	0.6166667	0.4833333	0.2833333	0.616666667	0.4833333	0.616666667	0.4833333	0.6166667	0.6166667	0.6166667	0.4833333333	0.48333333	0.4833333	0.4833333	0.48333333	0.48333333	0.48333333
P24	0.20333333	0.6166667	0.4833333	0.2833333	0.4833333	0.283333333	0.4833333	0.383333333	0.483333333	0.4933333	0.4833333	0.2000000	0.383333333	0.4833333	0.383333333	0.4833333	0.6166667	0.4933333	0.4933333	0.483333333	0.4833333	0.6166667	0.40333333	0.4833333	0.4833333	0.4833333
P25	0.28333333	0.2833333	0.3833333	0.2833333	0.4833333	0.283333333	0.6166667	0.283333333	0.283333333	0.6166667	0.4833333	0.2833333	0.483333333	0.4000000	0.616666667	0.4833333	0.4833333	0.6166667	0.4833333	0 383333333	0.3833333	0.6166667	0.6166667	0.3833333	0.6166667	0.4833333
P26	0.61666667	0.6166667	0.4822222	0.2832323	0.4000000	0.616666667	0.2922222	0.493233333	0.492222222	0.3933333	0.4922222	0.4922222	0.716666667	0.4933333	0.616666667	0.4000000	0.4000000	0.6166667	0.4000000	0.493233333	0.4933333	0.4922222	0.2922222	0.4922222	0.4932323	0.4922222
P27	0.483333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.3833333	0.283333333	0.616666667	0.3833333	0.4833333	0.9833333	0.716666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.6166667	0.3833333	0.6166667	0.4833333	0.3833333
020	0.403333333	0.48333333	0.4833333	0.38333333	0.48333333	0.3833333333	0.4922222	0.2033333333	0.616666667	0.38333333	0.4833333	0.2000000	0.516666667	0.48333333	0.616666667	0.48333333	0.48333333	0.4922222	0.40333333	0.492222222	0.4922222	0.4922222	0.50555555	0.4922222	0.40333333	0.56555555
P20	0.30333333	0.4022222	0.4033333	0.30333333	0.40000000	0.00000000000	0.2022222	0.0000000000	0.2022222222	0.40333333	0.4033333	0.2000000	0.492222222	0.4033333	0.616666667	0.40000000	0.4022222	0.40000000	0.4033333	0.4033333333	0.40333333	0.40333333	0.4022222	0.4033333	0.4033333	0.4922222
P20	0.20000000	0.4000000	0.2022222	0.2000000	0.4000000	0.2000000000	0.4922222	0.200000000	0.402222222	0.4000000	0.4000000	0.2000000	0.400000000	0.4000000	0.202222222	0.4000000	0.4000000	0.4000000	0.40000000	0.400000000	0.4000000	0.4000000	0.4000000	0.6166667	0.6166667	0.4000000
021	0.20000000	0.4033333	0.55555555	0.30333333	0.4000000	0.2033333333	0.4033333	0.200000000	0.4033333333	0.0100007	0.4033333	0.2000000	0.402222222	0.4922222	0.3033333333	0.4033333	0.4922222	0.4033333	0.4033333	0.4033333333	0.40333333	0.4022222	0.4022222	0.4022222	0.4933333	0.0100007
022	0.30333333	0.40000000	0.4922222	0.4922222	0.40000000	0.492222222	0.2022222	0.402222222	0.4033333333	0.20222222	0.40000000	0.4022222	0.4000000000	0.40000000	0.616666667	0.2022222	0.4000000	0.4000000	0.40000000	0.616666667	0.6166667	0.40000000	0.2022222	0.4000000	0.4000000	0.40000000
022	0.383333333	0.48333333	0.4833333	0.2822222	0.48333333	0.403333333	0.38333333	0.202222222	0.4655555555	0.38333333	0.48333333	0.4033333	0.616666667	0.48333333	0.616666667	0.4922222	0.48555555	0.6166667	0.4922222	0.492222222	0.6166667	0.48333333	0.30333333	0.48333333	0.4922222	0.48333333
P33	0.403333333	0.4033333	0.4033333	0.20333333	0.4033333	0.4033333333	0.30333333	0.200000000	0.402222222	0.9033333	0.4033333	0.2033333	0.616666667	0.9033333	0.616666667	0.4033333	0.6166667	0.6166667	0.4033333	0.4033333333	0.4933333	0.4033333	0.2022222	0.4033333	0.40333333	0.4033333
P34 D25	0.40333333	0.48333333	0.4033333	0.28333333	0.48333333	0.203333333	0.2033333	0.3033333333	0.4655555555	0.38333333	0.40333333	0.2000000	0.0100000007	0.38333333	0.616666667	0.40333333	0.0100007	0.6166667	0.6166667	0.4633333333	0.40333333	0.4922222	0.30333333	0.4033333	0.40333333	0.0100007
P35	0.40333333	0.4033333	0.4033333	0.30333333	0.40555555	0.5055555555	0.30333333	0.55555555555	0.402222222	0.40333333	0.50555555	0.4000000	0.4033333333	0.30333333	0.616666667	0.4033333	0.4033333	0.4922222	0.4922222	0.40000007	0.4933333	0.4033333	0.40333333	0.4022222	0.4933333	0.4033333
P30	0.01000007	0.0100007	0.4922222	0.38333333	0.0100007	0.010000007	0.38333333	0.010000007	0.4655555555	0.46333333	0.0100007	0.46555555	0.4033333333	0.46333333	0.616666667	0.40333333	0.38333333	0.4033333	0.40333333	0.4033333333	0.40333333	0.0100007	0.4033333	0.40333333	0.40333333	0.46333333
020	0.20000000	0.4033333	0.4033333	0.30333333	0.4000000	0.3033333333	0.4022222	0.200000000	0.4033333333	0.4033333	0.4033333	0.30333333	0.4033333333	0.0100007	0.010000007	0.4033333	0.4033333	0.4033333	0.4033333	0.4033333333	0.4033333	0.40333333	0.40333333	0.4033333	0.40333333	0.40333333
P30	0.20333333	0.46333333	0.4033333	0.20333333	0.36333333	0.203333333	0.46333333	0.2033333333	0.3633333333	0.46333333	0.46535355	0.30333333	0.3033333333	0.36333333	0.3033333333	0.36333333	0.46333333	0.0100007	0.0100007	0.010000007	0.0100007	0.30333333	0.30333333	0.4922222	0.0100007	0.36333333
P39	0.48333333	0.6166667	0.4833333	0.48333333	0.4833333	0.4633333333	0.38333333	0.383333333	0.3633333333	0.2833333	0.3833333	0.46555555	0.4633333333	0.38333333	0.3033333333	0.4833333	0.38333333	0.4833333	0.4033333	0.4633333333	0.46333333	0.4833333	0.4033333	0.46333333	0.46333333	0.6166667
P40	0.46333333	0.4633333	0.46333333	0.36333333	0.46333333	0.3633333333	0.38333333	0.3633333333	0.010000007	0.36333333	0.36333333	0.3633333	0.2833333333	0.38333333	0.3633333333	0.3833333	0.4633333	0.4633333	0.46333333	0.010000007	0.6166667	0.46333333	0.46333333	0.6166667	0.6166667	0.4633333
P41	0.20333333	0.46333333	0.38333333	0.2833333	0.4033333	0.4033333333	0.38333333	0.2033333333	0.3833333333	0.46555555	0.40333333	0.38333333	0.3633333333	0.46555555	0.4033333333	0.4033333	0.4033333	0.46555555	0.0100007	0.4633333333	0.46555555	0.38333333	0.38333333	0.40333333	0.4033333	0.4033333
P42	0.46333333	0.4833333	0.4633333	0.46333333	0.4833333	0.4633333333	0.1833333	0.463333333	0.2633333333	0.2833333	0.4633333	0.3633333	0.4633333333	0.38333333	0.4633333333	0.3833333	0.4633333	0.6166667	0.4633333	0.010000007	0.6166667	0.46333333	0.36333333	0.46333333	0.4633333	0.4633333
P43	0.483333333	0.4833333	0.6166667	0.38333333	0.4833333	0.3833333333	0.3833333	0.383333333	0.3833333333	0.3833333	0.4833333	0.3833333	0.383333333	0.3833333	0.4833333333	0.3833333	0.3833333	0.6166667	0.4833333	0.616666667	0.6166667	0.3833333	0.38333333	0.6166667	0.48333333	0.4833333
P44	0.403333333	0.0100007	0.46333333	0.20333333	0.4633333	0.40000000	0.4033333	0.303333333	0.403333333	0.30333333	0.4033333	0.30333333	0.403333333	0.46333333	0.463333333	0.4033333	0.3033333	0.1033333	0.40222202	0.0100000007	0.46333333	0.0106667	0.40333333	0.4022200	0.4033333	0.4033333
P45	0.483333333	0.0166667	0.6166667	0.38333333	0.6166667	0.4833333333	0.38333333	0.4833333333	0.4833333333	0.28333333	0.4833333	0.48333333	0.4833333333	0.3833333	0.283333333	0.48333333	0.4833333	0.4833333	0.48333333	0.616666667	0.6166667	0.48333333	0.38333333	0.4833333	0.48333333	0.28333333
P46	0.383333333	0.38333333	0.4833333	0.38333333	0.6166667	0.383333333	0.38333333	0.283333333	0.3833333333	0.38333333	0.6166667	0.18333333	0.4833333333	0.3833333	0.383333333	0.38333333	0.28333333	0.1833333	0.38333333	0.01666667	0.6166667	0.3833333	0.38333333	0.6166667	0.48333333	0.28333333
P4/	0.483333333	0.4833333	0.3833333	0.2833333	0.4833333	0.4833333333	0.3833333	0.3833333333	0.4833333333	0.48333333	0.4833333	0.18333333	0.4833333333	0.3833333	0.616666667	0.48333333	0.6166667	0.2833333	0.6166667	0.616666667	0.6166667	0.3833333	0.2833333	0.4833333	0.4833333	0.3833333
P48	0.283333333	0.4833333	0.3833333	0.28333333	0.4833333	0.2833333333	0.38333333	0.283333333	0.3833333333	0.48333333	0.4833333	0.28333333	0.000000000	0.4833333	0.0106666667	0.3833333	0.4833333	0.3833333	0.0166667	0.616666667	0.48333333	0.38333333	0.28333333	0.4833333	0.48333333	0.38333333
P49	0.483333333	0.6166667	0.6166667	0.2833333	0.6166667	0.2833333333	0.2833333	0.383333333	0.3833333333	0.3833333	0.4833333	0.2833333	0.3833333333	0.4833333	0.383333333	0.4833333	0.4833333	0.4833333	0.4833333	0.01666667	0.6166667	0.3833333	0.3833333	0.6166667	0.38333333	0.38333333
200	0.383333333	0.4833333	0.4833333	0.2833333	0.4833333	0.183333333	0.38333333	0.3833333333	0.616666667	0.4833333	0.48333333	0.1833333	0.4833333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.4833333	0.48333333	0.4833333333	0.48333333	0.48333333	0.3833333	0.48333333	0.48333333	0.4833333
iype	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive

Fig. 10. Initial decision matrix for left-back players.

Table 17 Evaluation results for left-back players ($\upsilon = 0.5$).

Alternatives	g_m	h_m	g *	<i>g</i> ⁻	Z_m
P1	0.2876	0.1355	0.1690	0.7477	0.1920
P2	0.2601	0.1647	h^*	h^-	0.2116
P3	0.2130	0.1647	0.0752	0.4118	0.1709
P4	0.3423	0.1647			0.2827
P5	0.3113	0.1355			0.2125
P6	0.3698	0.2882			0.4899
P7	0.5256	0.2882			0.6245
P8	0.3085	0.1647			0.2534
P9	0.1690	0.0752			0.0000
P10	0.3333	0.1647			0.2749
P11	0.3947	0.1647			0.3279
P12	0.2821	0.1355			0.1872
P13	0.5960	0.2882			0.6853
P14	0.3542	0.1647			0.2929
P15	0.5595	0.2882			0.6538
P16	0.5152	0.2882			0.6155
P17	0.6576	0.4118			0.9221
P18	0.4984	0.1647			0.4175
P19	0.5871	0.2882			0.6776
P20	0.3817	0.1647			0.3167
P21	0.3599	0.2882			0.4814
P22	0.5622	0 1647			0.4726
P23	0.3528	0.1355			0.2483
P24	0.4986	0.1647			0.4177
P25	0.4406	0.2371			0.4751
P26	0.5870	0.2882			0.6776
P27	0.4885	0.2882			0.5925
P28	0.5299	0.1647			0.4447
P29	0.5288	0.1647			0.4438
P30	0.3371	0.1355			0.2347
P31	0.4738	0.2882			0.5797
P32	0.4332	0.2882			0.5447
P33	0.3910	0.1647			0.3247
P34	0.6058	0.2882			0.6938
P35	0.4064	0.1647			0.3380
P36	0.3780	0.1647			0.3135
P37	0.4961	0.1647			0.4155
P38	0.3641	0.1647			0.3015
P39	0.7477	0.4118			1.0000
P40	0.5182	0.2882			0.6182
P41	0.5084	0.1647			0.4261
P42	0.6113	0.4118			0.8821
P43	0.4989	0.2882			0.6015
P44	0.5769	0.2882			0.6688
P45	0.5635	0.4118			0.8408
P46	0.5414	0.2882			0.6382
P47	0.4365	0.1647			0.3640
P48	0.5441	0.1647			0.4570
P49	0.5287	0.2882			0.6272
P50	0.5611	0.1647			0.4716

Table 18

The names and c	odes of mi	dfield players.
-----------------	------------	-----------------

Code	Player Name	Code	Player Name
P1	Orkun Kökçü	P26	Bünyamin Balcı
P2	Yusuf Yazıcı	P27	Zeki Yavru
P3	Salih Özcan	P28	Soner Aydoğdu
P4	İrfan Can Kahv.	P29	Aytaç Kara
P5	Emirhan İlkhan	P30	Alpaslan Öztürk
P6	Okay Yokuşlu	P31	Necip Uysal
P7	Ferdi Kadıoğlu	P32	Umut Güneş
P8	Ozan Tufan	P33	Veysel Sarı
P9	Mahmut Tekdemir	P34	Kartal Kayra Y.
P10	Mert Yandaş	P35	Tolga Ciğerci
P11	Salih Uçan	P36	İsmail Yüksek
P12	Kaan Ayhan	P37	Abdulkadir Par.
P13	Recep Niyaz	P38	Yunus Mallı
P14	Berat Özdemir	P39	Onur Ergün
P15	Deniz Türüç	P40	Atakan Kesgin
P16	Emre Kılınç	P41	Hakan Arslan
P17	Fatih Aksoy	P42	Doğan Can Davas
P18	Oğuzhan Özyakup	P43	Furkan Soyalp
P19	Taylan Antalyalı	P44	Atakan Çankaya
P20	Berkan Kutlu	P45	Tarkan Serbest
P21	Berkay Özcan	P46	Eslem Öztürk
P22	Soner Dikmen	P47	Osman Çelik
P23	Turgay Gemicib.	P48	Muhammed Mert
P24	Hakan Çalhanoğlu	P49	Ali Kaan Güneren
P25	Mustafa Saymak	P50	Dorukhan Toköz

4.2.2. Evaluation of forward players

The names and codes of the 50 forward players who participated in the evaluation are given in Table 10. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 7.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the forward players are given in Table 11.

When the forward players are listed from smallest to largest according to their Z_m values, it is seen that the first three are the forward players named Enes Ünal, Serdar Dursun, and Halil Dervişoğlu.

4.2.3. Evaluation of stoppers

The names and codes of the 50 stoppers who participated in the evaluation are given in Table 12. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 8.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the stoppers are given in Table 13.

When the stopper players are listed from smallest to largest according to their Z_m values, it is seen that the first five are the stopper players named Merih Demiral, Çağlar Söyüncü, Kaan Ayhan, Ozan Kabak, and Abdülkerim Bardakçı.

4.2.4. Evaluation of right-back players

The names and codes of the 50 right-back players who participated in the evaluation are given in Table 14. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 9.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the right-back players are given in Table 15.

When the right-back players are listed from smallest to largest according to their Z_m values, it is seen that the first three are the right-back players named Zeki Çelik, Mert Müldür, and Ferdi Kadıoğlu.

4.2.5. Evaluation of left-back players

The names and codes of the 50 left-back players who participated in the evaluation are given in Table 16. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 10.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the left-back players are given in Table 17.

When the left-back players are listed from smallest to largest according to their Z_m values, it is seen that the first three are the left-back players named Uğur Çiftçi, Rıdvan Yılmaz, and Eren Elmalı.

4.2.6. Evaluation of midfield players

The names and codes of the 50 midfield players who participated in the evaluation are given in Table 18. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 11.

	T1	T2	T3	T4	T5	T6	17	T8	T9	T10	T11	T12	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
P1	0.71666667	0.7166667	0.4833333	0.6166667	0.7166667	0.716666667	0.3833333	0.716666667	0.283333333	0.3833333	0.7166667	0.7166667	0.483333333	0.6166667	0.483333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.3833333
P2	0.48333333	0.4833333	0.6166667	0.3833333	0.4833333	0.483333333	0.4833333	0.4833333333	0.283333333	0.6166667	0.6166667	0.4833333	0.716666667	0.6166667	0.716666667	0.6166667	0.4833333	0.7166667	0.6166667	0.4833333333	0.4833333	0.7166667	0.4833333	0.6166667	0.6166667	0.6166667
P3	0.61666667	0.6166667	0.7166667	0.6166667	0.7166667	0.616666667	0.4833333	0.616666667	0.383333333	0.3833333	0.7166667	0.6166667	0.616666667	0.6166667	0.483333333	0.6166667	0.6166667	0.4833333	0.6166667	0.483333333	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333	0.4833333
P4	0.71666667	0.7166667	0.7166667	0.4833333	0.6166667	0.716666667	0.4833333	0.716666667	0.283333333	0.1833333	0.7166667	0.4833333	0.383333333	0.4833333	0.483333333	0.7166667	0.4833333	0.4833333	0.4833333	0.4833333333	0.4833333	0.6166667	0.3833333	0.6166667	0.4833333	0.4833333
P5	0.61666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.3833333	0.616666667	0.483333333	0.2833333	0.6166667	0.6166667	0.483333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.6166667	0.3833333	0.6166667	0.6166667	0.4833333
P6	0.38333333	0.4833333	0.4833333	0.4833333	0.6166667	0.483333333	0.6166667	0.483333333	0.283333333	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.616666667	0.6166667	0.4833333	0.4833333	0.6166667	0.4833333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667
P7	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.383333333	0.3833333	0.483333333	0.616666667	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.483333333	0.6166667	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P8	0.28333333	0.2833333	0.6166667	0.6166667	0.6166667	0.283333333	0.6166667	0.616666667	0.383333333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.716666667	0.6166667	0.4833333	0.4833333	0.6166667	0.4833333333	0.4833333	0.6166667	0.4833333	0.4833333	0.4833333	0.6166667
P9	0.18333333	0.3833333	0.3833333	0.3833333	0.4833333	0.183333333	0.4833333	0.383333333	0.383333333	0.6166667	0.4833333	0.4833333	0.483333333	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.7166667	0.483333333	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333
P10	0.61666667	0.4833333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.616666667	0.183333333	0.2833333	0.6166667	0.4833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.6166667	0.4833333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P11	0.61666667	0.4833333	0.4833333	0.4833333	0.6166667	0.616666667	0.3833333	0.483333333	0.183333333	0.2833333	0.6166667	0.6166667	0.483333333	0.6166667	0.483333333	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P12	0.38333333	0.2833333	0.3833333	0.3833333	0.6166667	0.483333333	0.6166667	0.483333333	0.383333333	0.6166667	0.6166667	0.3833333	0.483333333	0.6166667	0.616666667	0.6166667	0.4833333	0.7166667	0.6166667	0.483333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.4833333
P13	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.383333333	0.4833333	0.483333333	0.283333333	0.6166667	0.4833333	0.2833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.7166667	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.6166667	0.6166667
P14	0.61666667	0.6166667	0.6166667	0.4833333	0.6166667	0.716666667	0.2833333	0.616666667	0.283333333	0.3833333	0.6166667	0.6166667	0.483333333	0.4833333	0.483333333	0.6166667	0.4833333	0.4833333	0.4833333	0.4833333333	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P15	0.38333333	0.3833333	0.4833333	0.3833333	0.6166667	0.383333333	0.6166667	0.4833333333	0.183333333	0.6166667	0.6166667	0.4833333	0.616666667	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667
P16	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.483333333	0.3833333	0.4833333333	0.283333333	0.3833333	0.6166667	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.3833333
P17	0.28333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.6166667	0.383333333	0.483333333	0.6166667	0.6166667	0.3833333	0.616666667	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333333	0.4833333	0.4833333	0.6166667	0.6166667	0.6166667	0.6166667
P18	0.61666667	0.6166667	0.6166667	0.3833333	0.6166667	0.483333333	0.2833333	0.383333333	0.283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.6166667	0.483333333	0.4833333	0.4833333	0.3833333	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P19	0.483333333	0.4833333	0.4833333	0.3833333	0.6166667	0.483333333	0.3833333	0.4833333333	0.283333333	0.3833333	0.6166667	0.4833333	0.4833333333	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P20	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.283333333	0.4833333	0.4833333333	0.383333333	0.6166667	0.4833333	0.4833333	0.616666667	0.6166667	0.616666667	0.6166667	0.6166667	0.6166667	0.7166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.7166667	0.4833333
P21	0.61666667	0.6166667	0.4833333	0.3833333	0.6166667	0.616666667	0.3833333	0.483333333	0.383333333	0.2833333	0.6166667	0.4833333	0.383333333	0.4833333	0.616666667	0.6166667	0.3833333	0.4833333	0.6166667	0.383333333	0.4833333	0.7166667	0.3833333	0.4833333	0.4833333	0.6166667
P22	0.483333333	0.3833333	0.4833333	0.2833333	0.4833333	0.483333333	0.4833333	0.4833333333	0.283333333	0.4833333	0.4833333	0.4833333	0.4833333333	0.4833333	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667
P23	0.483333333	0.4833333	0.4833333	0.4833333	0.6166667	0.483333333	0.4833333	0.483333333	0.383333333	0.6166667	0.6166667	0.4833333	0.716666667	0.6166667	0.483333333	0.4833333	0.4833333	0.6166667	0.6166667	0.483333333	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667	0.6166667
P24	0.28333333	0.4833333	0.6166667	0.4833333	0.6166667	0.383333333	0.3833333	0.4833333333	0.183333333	0.3833333	0.4833333	0.3833333	0.383333333	0.4833333	0.483333333	0.4833333	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.3833333
P25	0.61666667	0.4833333	0.6166667	0.3833333	0.4833333	0.483333333	0.3833333	0.483333333	0.283333333	0.2833333	0.6166667	0.3833333	0.4833333333	0.6166667	0.616666667	0.4833333	0.4833333	0.4833333	0.4833333	0.616666667	0.6166667	0.3833333	0.3833333	0.6166667	0.4833333	0.3833333
P26	0.28333333	0.4833333	0.4833333	0.3833333	0.4833333	0.383333333	0.3833333	0.4833333333	0.283333333	0.4833333	0.4833333	0.4833333	0.4833333333	0.6166667	0.616666667	0.4833333	0.6166667	0.2833333	0.6166667	0.4833333333	0.4833333	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P27	0.61666667	0.6166667	0.3833333	0.2833333	0.4833333	0.616666667	0.3833333	0.483333333	0.483333333	0.4833333	0.6166667	0.4833333	0.616666667	0.3833333	0.716666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.4833333	0.6166667	0.6166667
P28	0.61666667	0.6166667	0.4833333	0.6166667	0.6166667	0.616666667	0.3833333	0.616666667	0.283333333	0.3833333	0.6166667	0.6166667	0.283333333	0.4833333	0.383333333	0.6166667	0.4833333	0.3833333	0.4833333	0.383333333	0.4833333	0.4833333	0.3833333	0.4833333	0.4833333	0.4833333
P29	0.61666667	0.4833333	0.3833333	0.3833333	0.6166667	0.616666667	0.4833333	0.616666667	0.383333333	0.4833333	0.6166667	0.6166667	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.4833333333	0.3833333	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667
P30	0.28333333	0.3833333	0.3833333	0.4833333	0.4833333	0.483333333	0.6166667	0.483333333	0.383333333	0.4833333	0.4833333	0.7166667	0.716666667	0.4833333	0.616666667	0.6166667	0.4833333	0.6166667	0.6166667	0.483333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667
P31	0.18333333	0.1833333	0.4833333	0.2833333	0.4833333	0.283333333	0.6166667	0.283333333	0.283333333	0.6166667	0.3833333	0.3833333	0.716666667	0.4833333	0.716666667	0.4833333	0.4833333	0.7166667	0.7166667	0.4833333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667
P32	0.38333333	0.4833333	0.4833333	0.4833333	0.6166667	0.383333333	0.4833333	0.383333333	0.383333333	0.6166667	0.6166667	0.2833333	0.4833333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.4833333	0.6166667	0.4833333	0.4833333	0.6166667	0.6166667
P33	0.28333333	0.2833333	0.4833333	0.3833333	0.4833333	0.383333333	0.6166667	0.483333333	0.483333333	0.6166667	0.4833333	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333	0.6166667
P34	0.61666667	0.6166667	0.4833333	0.3833333	0.6166667	0.616666667	0.2833333	0.383333333	0.283333333	0.3833333	0.6166667	0.4833333	0.483333333	0.6166667	0.483333333	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P35	0.61666667	0.4833333	0.4833333	0.3833333	0.4833333	0.483333333	0.4833333	0.483333333	0.383333333	0.4833333	0.6166667	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.6166667	0.7166667	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667
P36	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.483333333	0.3833333	0.483333333	0.483333333	0.6166667	0.6166667	0.3833333	0.616666667	0.2833333	0.716666667	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.4833333	0.6166667	0.6166667	0.4833333	0.4833333	0.6166667
P37	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.4833333	0.483333333	0.183333333	0.4833333	0.4833333	0.3833333	0.616666667	0.4833333	0.483333333	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.4833333	0.6166667	0.4833333
P38	0.61666667	0.4833333	0.6166667	0.6166667	0.6166667	0.483333333	0.3833333	0.483333333	0.283333333	0.2833333	0.6166667	0.6166667	0.483333333	0.6166667	0.383333333	0.4833333	0.3833333	0.3833333	0.6166667	0.483333333	0.4833333	0.4833333	0.3833333	0.3833333	0.4833333	0.3833333
P39	0.38333333	0.3833333	0.4833333	0.3833333	0.6166667	0.383333333	0.4833333	0.4833333333	0.183333333	0.2833333	0.7166667	0.6166667	0.4833333333	0.6166667	0.483333333	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333
P40	0.48333333	0.4833333	0.4833333	0.3833333	0.6166667	0.383333333	0.3833333	0.483333333	0.283333333	0.4833333	0.6166667	0.4833333	0.483333333	0.6166667	0.283333333	0.6166667	0.6166667	0.4833333	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P41	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.283333333	0.6166667	0.383333333	0.283333333	0.6166667	0.4833333	0.3833333	0.616666667	0.6166667	0.716666667	0.4833333	0.6166667	0.7166667	0.7166667	0.4833333333	0.4833333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667
P42	0.48333333	0.4833333	0.6166667	0.6166667	0.6166667	0.483333333	0.2833333	0.483333333	0.183333333	0.2833333	0.6166667	0.4833333	0.283333333	0.4833333	0.383333333	0.6166667	0.4833333	0.6166667	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.4833333
P43	0.48333333	0.4833333	0.4833333	0.4833333	0.6166667	0.483333333	0.3833333	0.4833333333	0.283333333	0.2833333	0.6166667	0.3833333	0.283333333	0.4833333	0.383333333	0.6166667	0.4833333	0.4833333	0.3833333	0.4833333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.4833333
P44	0.28333333	0.2833333	0.3833333	0.3833333	0.4833333	0.283333333	0.4833333	0.4833333333	0.383333333	0.6166667	0.4833333	0.4833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.6166667	0.483333333	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.6166667
P45	0.38333333	0.3833333	0.3833333	0.2833333	0.4833333	0.483333333	0.3833333	0.383333333	0.383333333	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.616666667	0.3833333	0.6166667	0.6166667	0.6166667	0.616666667	0.4833333	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333
P46	0.61666667	0.4833333	0.4833333	0.4833333	0.6166667	0.483333333	0.3833333	0.483333333	0.183333333	0.3833333	0.6166667	0.3833333	0.616666667	0.4833333	0.383333333	0.6166667	0.4833333	0.6166667	0.4833333	0.483333333	0.6166667	0.6166667	0.3833333	0.4833333	0.4833333	0.4833333
P47	0.28333333	0.2833333	0.3833333	0.1833333	0.4833333	0.383333333	0.4833333	0.383333333	0.383333333	0.4833333	0.4833333	0.3833333	0.716666667	0.4833333	0.716666667	0.3833333	0.6166667	0.7166667	0.6166667	0.616666667	0.6166667	0.3833333	0.4833333	0.4833333	0.6166667	0.4833333
P48	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.2833333	0.383333333	0.283333333	0.2833333	0.6166667	0.4833333	0.383333333	0.4833333	0.616666667	0.6166667	0.3833333	0.2833333	0.4833333	0.616666667	0.6166667	0.3833333	0.3833333	0.6166667	0.3833333	0.3833333
P49	0.38333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.3833333	0.616666667	0.283333333	0.3833333	0.6166667	0.4833333	0.383333333	0.4833333	0.383333333	0.4833333	0.6166667	0.6166667	0.6166667	0.616666667	0.6166667	0.4833333	0.2833333	0.6166667	0.4833333	0.4833333
P50	0.61666667	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.1833333	0.483333333	0.183333333	0.2833333	0.6166667	0.6166667	0.483333333	0.6166667	0.383333333	0.6166667	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.3833333	0.1833333	0.3833333	0.4833333	0.2833333
Type	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive

Fig. 11. Initial decision matrix for midfield players.

Table 19 Evaluation results for midfield players ($\upsilon = 0.5$).

Alternatives	g_m	h_m	<i>g</i> *	g_	Z_m
P1	0.1331	0.0983	0.0546	0.7602	0.1585
P2	0.4079	0.1324	h^*	h^-	0.3980
РЗ	0.0546	0.0199	0.0199	0.4009	0.0000
P4	0.2471	0.1324			0.2841
P5	0.2259	0.1203			0.2531
P6	0.4220	0.1324			0.4080
P7	0.2824	0.1203			0.2932
P8	0.3945	0.1324			0.3885
Р9	0.6501	0.2806			0.7642
P10	0.4671	0.1324			0.4399
P11	0.2853	0.1203			0.2952
P12	0.5099	0.1404			0.4808
P13	0.6519	0.2806			0.7654
P14	0.2546	0.1203			0.2735
P15	0.4412	0.1324			0.4216
P16	0.2887	0.1203			0.2976
P17	0.4989	0.1324			0.4625
P18	0.2747	0.1203			0.2877
P19	0.4414	0.1324			0.4218
P20	0.4689	0.2806			0.6357
P21	0.4556	0.1324			0.4318
P22	0.6398	0.2806			0.7568
P23	0.4561	0.1324			0.4322
P24	0.4709	0.2806			0.6372
P25	0.3343	0.1203			0.3299
P26	0.6333	0.2806			0.7523
P27	0.5092	0.1404			0.4803
P28	0.4499	0.1324			0.4278
P29	0.5744	0.2317			0.6463
P30	0.6230	0.2806			0.7449
P31	0.7602	0.4009			1.0000
P32	0.4809	0.1324			0.4497
P33	0.6408	0.2806			0.7576
P34	0.3141	0.1203			0.3156
P35	0.4626	0.1324			0.4368
P36	0.4819	0.1324			0.4504
P37	0.4429	0.2806			0.6173
P38	0.3853	0.1324			0.3820
P39	0.3002	0.1324			0.3217
P40	0.3149	0.1203			0.3162
P41	0.6321	0.2806			0.7514
P42	0.2648	0.1203			0.2807
P43	0.3789	0.1203			0.3615
P44	0.5379	0.2806			0.6846
P45	0.5149	0.1404			0.4844
P46	0.3591	0.1203			0.3475
P47	0.5684	0.2806			0.7062
P48	0.2955	0.1203			0.3024
P49	0.2640	0.1203			0.2801
P50	0.2604	0.1203			0.2776

Table 20

The names and	l codes of	offensive	midfield	players.
---------------	------------	-----------	----------	----------

Code	Player Name	Code	Player Name
P1	Yusuf Yazıcı	P26	Abdulkadir Par.
P2	Cengiz Ünder	P27	Soner Aydoğdu
P3	Hakan Çalhanoğlu	P28	Görkem Sağlam
P4	Orkun Kökçü	P29	Furkan Soyalp
Р5	İrfan Can Kahv.	P30	Recep Niyaz
P6	Ozan Tufan	P31	Olcay Şahan
P7	Güven Yalçın	P32	Doğan Can Davas
P8	Deniz Türüç	P33	Cem Türkmen
P9	Mert Yandaş	P34	Okan Aydin
P10	Arda Güler	P35	Ahmed İldiz
P11	Abdülkadir Ömür	P36	Muhammed Akars.
P12	Halil Dervişoğlu	P37	Ufuk Akyol
P13	Doğukan Sinik	P38	Muhammed Gümüş.
P14	Oğuzhan Özyakup	P39	Sinan Kurt
P15	Emre Kılınç	P40	Tunay Torun
P16	Berkay Özcan	P41	Sefa Yılmaz
P17	Emre Akbaba	P42	Hakan Özmert
P18	Emirhan İlkhan	P43	Deniz Hümmet
P19	Barış Atik	P44	Sercan Sararer
P20	Eren Tozlu	P45	Malik Batmaz
P21	Atakan Kesgin	P46	Aral Simsir
P22	Yunus Mallı	P47	Burak İnce
P23	Mustafa Saymak	P48	Serdar Deliktaş
P24	Umut Güneş	P49	Kerim Avcı
P25	Ahmed Kutucu	P50	Tayfun Aydoğan

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the midfield players are given in Table 19.

When the midfield players are listed from smallest to largest according to their Z_m values, it is seen that the first five are the midfield players named Salih Özcan, Orkun Kökçü, Emirhan İlkhan, Berat Özdemir, and Dorukhan Toköz.

4.2.7. Evaluation of offensive midfield players

The names and codes of the 50 offensive midfield players who participated in the evaluation are given in Table 20. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 12.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the offensive midfield players are given in Table 21.

When the offensive midfield players are listed from smallest to largest according to their Z_m values, it is seen that the first three are the offensive midfield players named Hakan Çalhanoğlu, Yusuf Yazıcı, and Arda Güler.

4.2.8. Evaluation of right-left wing players

The names and codes of the 50 right-left wing players who participated in the evaluation are given in Table 22. The initial decision matrix of these players is created as shown in Eq. (6) and the initial decision matrix is given in Fig. 13.

The initial decision matrix and the process steps of the VIKOR method were followed respectively (by using Eqs. (7–(11) and the results obtained for the right-left wing players are given in Table 23.

When the right-left wing players are listed from smallest to largest according to their Z_m values, it is seen that the first five are the right-left wing players named Abdülkadir Ömür, Cengiz Ünder, Serdar Gürler, Yunus Akgün, and Efecan Karaca.

5. Results

In this study, a selection problem is discussed to determine the goalkeeper and players that are in different positions for a football team. As a result of the evaluations made by the decision-making team, it was concluded that criteria such as agility, reflexes and jumping are very important when selecting a goalkeeper. It is obvious that a goalkeeper who is agile, has strong reflexes and jumps very well will have a low chance of conceding a goal. In their study, Fleg and his colleagues concluded that the most important criteria for goalkeepers are handling, reflexes and jumping [63]. In another study, aerial ability, agility and anticipation are listed among the most important criteria [64]. When selecting football players, selection criteria such as marking, passing ability, agility, dribbling, and footwork are among the top priorities. Ozceylan determined acceleration, anticipation, balance and agility as the most important criteria for football players [62]; Tavana and his friends determined the most important criteria for football players as heading, jumping and shooting [17]. As a result of the evaluations, the list of players to be selected for the Turkish Football National Team is given in Table 24.

Lineup in football refers to an arrangement that determines how the team will position its players on the field and perform their tasks. Lineups shape the team's game strategy and tactical approach.

	T1	T2	T3	T4	T5	T6	17	T8	T9	T10	T11	T12	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
P1	0.71666667	0.7166667	0.4833333	0.6166667	0.7166667	0.716666667	0.3833333	0.716666667	0.283333333	0.3833333	0.7166667	0.7166667	0.483333333	0.6166667	0.483333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.3833333
P2	0.61666667	0.6166667	0.6166667	0.4833333	0.6166667	0.616666667	0.3833333	0.616666667	0.183333333	0.1833333	0.4833333	0.3833333	0.383333333	0.4833333	0.383333333	0.6166667	0.4833333	0.4833333	0.4833333	0.716666667	0.7166667	0.6166667	0.3833333	0.7166667	0.4833333	0.3833333
P3	0.61666667	0.6166667	0.7166667	0.6166667	0.7166667	0.616666667	0.4833333	0.616666667	0.383333333	0.3833333	0.7166667	0.6166667	0.616666667	0.6166667	0.4833333333	0.6166667	0.6166667	0.4833333	0.6166667	0.483333333	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333	0.4833333
P4	0.61666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.3833333	0.616666667	0.483333333	0.2833333	0.6166667	0.6166667	0.483333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.6166667	0.3833333	0.6166667	0.6166667	0.4833333
P5	0.71666667	0.7166667	0.7166667	0.4833333	0.6166667	0.716666667	0.4833333	0.716666667	0.283333333	0.1833333	0.7166667	0.4833333	0.383333333	0.4833333	0.4833333333	0.7166667	0.4833333	0.4833333	0.4833333	0.483333333	0.4833333	0.6166667	0.3833333	0.6166667	0.4833333	0.4833333
P6	0.28333333	0.2833333	0.6166667	0.6166667	0.6166667	0.283333333	0.6166667	0.616666667	0.383333333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.716666667	0.6166667	0.4833333	0.4833333	0.6166667	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.4833333	0.6166667
P7	0.38333333	0.4833333	0.6166667	0.6166667	0.6166667	0.283333333	0.6166667	0.616666667	0.283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.6166667	0.4833333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333
P8	0.61666667	0.6166667	0.6166667	0.4833333	0.6166667	0.716666667	0.2833333	0.616666667	0.283333333	0.3833333	0.6166667	0.6166667	0.483333333	0.4833333	0.4833333333	0.6166667	0.4833333	0.4833333	0.4833333	0.483333333	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P9	0.61666667	0.4833333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.616666667	0.183333333	0.2833333	0.6166667	0.4833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.6166667	0.483333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P10	0.61666667	0.3833333	0.7166667	0.4833333	0.6166667	0.483333333	0.2833333	0.4833333333	0.283333333	0.2833333	0.6166667	0.4833333	0.716666667	0.6166667	0.4833333333	0.4833333	0.3833333	0.6166667	0.4833333	0.716666667	0.7166667	0.6166667	0.2833333	0.6166667	0.6166667	0.2833333
P11	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.3833333	0.616666667	0.183333333	0.3833333	0.6166667	0.4833333	0.483333333	0.6166667	0.616666667	0.6166667	0.6166667	0.7166667	0.6166667	0.616666667	0.7166667	0.3833333	0.3833333	0.6166667	0.4833333	0.3833333
P12	0.38333333	0.3833333	0.6166667	0.4833333	0.7166667	0.383333333	0.4833333	0.483333333	0.283333333	0.2833333	0.6166667	0.4833333	0.383333333	0.4833333	0.383333333	0.6166667	0.3833333	0.4833333	0.4833333	0.4833333333	0.6166667	0.6166667	0.4833333	0.4833333	0.4833333	0.4833333
P13	0.48333333	0.4833333	0.6166667	0.3833333	0.4833333	0.383333333	0.3833333	0.4833333333	0.283333333	0.3833333	0.4833333	0.4833333	0.616666667	0.4833333	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.616666667	0.4833333	0.6166667	0.3833333	0.6166667	0.4833333	0.4833333
P14	0.61666667	0.6166667	0.6166667	0.3833333	0.6166667	0.4833333333	0.2833333	0.383333333	0.283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.6166667	0.4833333333	0.4833333	0.4833333	0.3833333	0.6166667	0.4833333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P15	0.483333333	0 4833333	0.6166667	0 4833333	0.48333333	0.4833333333	0.3833333	0.4833333333	0 283333333	0.3833333	0.6166667	0 4833333	0.616666667	0.48333333	0.616666667	0.48333333	0 48333333	0.48333333	0.6166667	0.616666667	0.6166667	0.48333333	0.3833333	0.6166667	0.6166667	0.3833333
P16	0.61666667	0.6166667	0.48333333	0.3833333	0.6166667	0.616666667	0.3833333	0.4833333333	0.3833333333	0.2833333	0.6166667	0.48333333	0.383333333	0.4833333	0.616666667	0.6166667	0.3833333	0.48333333	0.6166667	0.3833333333	0.48333333	0.7166667	0.3833333	0.4833333	0.48333333	0.6166667
P17	0.61666667	0.6166667	0.6166667	0.6166667	0.6166667	0.616666667	0 4833333	0.616666667	0 383333333	0 1833333	0.6166667	0.6166667	0.616666667	0.6166667	0.383333333	0.6166667	0 48333333	0 48333333	0.6166667	0 4833333333	0.6166667	0 4833333	0 3833333	0 48333333	0.48333333	0 4833333
P18	0.283333333	0.4833333	0.6166667	0.48333333	0.6166667	0.383333333	0.3833333	0.4833333333	0.1833333333	0.3833333	0.48333333	0.38333333	0.383333333	0.48333333	0.4833333333	0.48333333	0.48333333	0.6166667	0.48333333	0.616666667	0.6166667	0.48333333	0.3833333	0.6166667	0.6166667	0.3833333
P19	0 483333333	0 4833333	0.6166667	0 4833333	0.6166667	0.616666667	0 2833333	0.616666667	0 183333333	0 2833333	0.6166667	0.6166667	0 383333333	0.48333333	0 4833333333	0.48333333	0 3833333	0.6166667	0 3833333	0.616666667	0.6166667	0 48333333	0 3833333	0 48333333	0.48333333	0 3833333
P20	0.383333333	0.3833333	0.48333333	0.6166667	0.48333333	0.383333333	0.6166667	0.4833333333	0.1833333333	0.3833333	0.48333333	0.48333333	0.616666667	0.6166667	0.4833333333	0.6166667	0.6166667	0.6166667	0.61666667	0.616666667	0.6166667	0.48333333	0.3833333	0.6166667	0.48333333	0.48333333
P21	0.483333333	0.48333333	0.48333333	0 3833333	0.6166667	0 383333333	0 3833333	0.4833333333	0 283333333	0.48333333	0.6166667	0 4833333	0 4833333333	0.6166667	0 2833333333	0.6166667	0.6166667	0.48333333	0.6166667	0 4833333333	0.6166667	0.48333333	0 3833333	0.48333333	0.48333333	0 3833333
P22	0.61666667	0.4833333	0.6166667	0.6166667	0.6166667	0.4833333333	0.3833333	0.4833333333	0 2833333333	0.28333333	0.6166667	0.6166667	0.4833333333	0.6166667	0.3833333333	0.48333333	0.38333333	0.38333333	0.6166667	0.4833333333	0.48333333	0.48333333	0.3833333	0.3833333	0.48333333	0.3833333
P23	0.61666667	0.4833333	0.6166667	0 3833333	0.48333333	0.4833333333	0 3833333	0.4833333333	0 283333333	0 2833333	0.6166667	0 3833333	0.4833333333	0.6166667	0.616666667	0.4833333	0.48333333	0.48333333	0.4833333	0.616666667	0.6166667	0 3833333	0 3833333	0.6166667	0.48333333	0 3833333
P24	0.383333333	0.4833333	0.48333333	0.4833333	0.6166667	0.3833333333	0.48333333	0.3833333333	0.3833333333	0.6166667	0.6166667	0 2833333	0.4833333333	0.48333333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.48333333	0.6166667	0.48333333	0.48333333	0.6166667	0.6166667
P25	0.61666667	0.4833333	0.4833333	0.6166667	0.48333333	0.4833333333	0.4833333	0.616666667	0 283333333	0 2833333	0.4833333	0.4833333	0 716666667	0.48333333	0.616666667	0.4833333	0.48333333	0.6166667	0.6166667	0.4833333333	0.6166667	0.6166667	0.48333333	0.48333333	0.6166667	0 4833333
P26	0.483333333	0 4833333	0.6166667	0.4833333	0.6166667	0.4833333333	0.4833333	0 4833333333	0 183333333	0 4833333	0.48333333	0 3833333	0.616666667	0.4833333	0 4833333333	0.48333333	0.6166667	0.48333333	0.6166667	0.616666667	0.6166667	0 4833333	0 3833333	0.48333333	0.6166667	0 4833333
P27	0.61666667	0.6166667	0.48333333	0.6166667	0.6166667	0.616666667	0.3833333	0.616666667	0.2833333333	0.3833333	0.6166667	0.6166667	0.283333333	0.4833333	0.3833333333	0.6166667	0.48333333	0.3833333	0.4833333	0.3833333333	0.48333333	0.48333333	0.3833333	0.48333333	0.48333333	0.4833333
P28	0.483333333	0.6166667	0.48333333	0.4833333	0.48333333	0.4833333333	0 2833333	0.616666667	0 2833333333	0.28333333	0.6166667	0.48333333	0.4833333333	0.4833333	0.4833333333	0.6166667	0.38333333	0.48333333	0.4833333	0.4833333333	0.6166667	0.48333333	0.3833333	0.48333333	0.4833333	0.4833333
P29	0.483333333	0 4833333	0.48333333	0.4833333	0.6166667	0 4833333333	0.3833333	0 4833333333	0 2833333333	0.2833333	0.6166667	0.3833333	0 283333333	0 4833333	0.3833333333	0.6166667	0.48333333	0.48333333	0.3833333	0.4833333333	0.6166667	0.48333333	0.3833333	0.48333333	0.4833333	0.4833333
P30	0.61666667	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333333	0.1833333	0.4833333333	0.1833333333	0.2833333	0.6166667	0.6166667	0.483333333	0.6166667	0.383333333	0.6166667	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.3833333	0.1833333	0.3833333	0.4833333	0.2833333
P31	0.383333333	0 4833333	0.48333333	0.4833333	0.6166667	0.383333333	0.3833333	0.3833333333	0 2833333333	0.3833333	0.48333333	0 4833333	0.616666667	0.6166667	0.3833333333	0.48333333	0.6166667	0.6166667	0 7166667	0 4833333333	0.6166667	0.3833333	0.3833333	0.6166667	0.3833333	0 4833333
P32	0.48333333	0.4833333	0.6166667	0.6166667	0.6166667	0.4833333333	0.2833333	0.4833333333	0.1833333333	0.2833333	0.6166667	0.4833333	0.283333333	0.4833333	0.383333333	0.6166667	0.48333333	0.6166667	0.6166667	0.4833333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.4833333
P33	0 48333333	0.3833333	0 4833333	0 4833333	0.3833333	0 4833333333	0 3833333	0.383333333	0 183333333	0 4833333	0.6166667	0 2833333	0 283333333	0.6166667	0 4833333333	0 4833333	0 48333333	0.3833333	0 4833333	0.616666667	0.6166667	0 4833333	0.3833333	0.6166667	0 4833333	0.3833333
P34	0.48333333	0.4833333	0.6166667	0.3833333	0.6166667	0.616666667	0.2833333	0.616666667	0.183333333	0.2833333	0.48333333	0.4833333	0.383333333	0.4833333	0.383333333	0.6166667	0.3833333	0.3833333	0.4833333	0.616666667	0.6166667	0.3833333	0.3833333	0.4833333	0.4833333	0.3833333
P35	0 483333333	0 4833333	0 48333333	0.3833333	0.6166667	0 4833333333	0 3833333	0 4833333333	0 283333333	0.3833333	0.6166667	0 4833333	0 4833333333	0 3833333	0.616666667	0 4833333	0 48333333	0.6166667	0.6166667	0 4833333333	0 4833333	0 4833333	0 3833333	0 4833333	0.6166667	0 4833333
P36	0.61666667	0.4833333	0.48333333	0.6166667	0.6166667	0.616666667	0.3833333	0.4833333333	0.1833333333	0.28333333	0.6166667	0.3833333	0.283333333	0.48333333	0.3833333333	0.6166667	0.48333333	0 48333333	0.6166667	0.616666667	0.6166667	0.48333333	0.18333333	0.48333333	0.48333333	0.2833333
P37	0.48333333	0.4833333	0.4833333	0.3833333	0.4833333	0.4833333333	0.4833333	0.4833333333	0.1833333333	0.3833333	0.48333333	0.4833333	0.4833333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.4833333333	0.4833333	0.4833333	0.3833333	0.4833333	0.48333333	0.4833333
P38	0.38333333	0 4833333	0.6166667	0.3833333	0.6166667	0.4833333333	0.48333333	0.4833333333	0 283333333	0.3833333	0.48333333	0.3833333	0.383333333	0.4833333	0.383333333	0.48333333	0.28333333	0.7166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.48333333	0.3833333
P39	0.48333333	0.4833333	0.3833333	0.3833333	0.4833333	0.4833333333	0.3833333	0.4833333333	0.1833333333	0.1833333	0.6166667	0.4833333	0.616666667	0.4833333	0.716666667	0.4833333	0.48333333	0.4833333	0.6166667	0.4833333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P40	0.483333333	0.4833333	0.6166667	0 4833333	0.6166667	0.4833333333	0.2833333	0.4833333333	0 283333333	0.2833333	0.48333333	0.4833333	0.483333333	0.3833333	0.2833333333	0.3833333	0 2833333	0.3833333	0.4833333	0.4833333333	0.48333333	0.48333333	0.28333333	0.48333333	0.6166667	0 4833333
P41	0.38333333	0.3833333	0.48333333	0.3833333	0.48333333	0.383333333	0.4833333	0.3833333333	0.2833333333	0.2833333	0.48333333	0.4833333	0.4833333333	0.4833333	0.3833333333	0.48333333	0.48333333	0.3833333	0.4833333	0.616666667	0.48333333	0.4833333	0.48333333	0.4833333	0.48333333	0.4833333
P42	0.61666667	0.6166667	0.48333333	0.48333333	0.6166667	0.616666667	0.48333333	0.616666667	0.3833333333	0.3833333	0.6166667	0.48333333	0.616666667	0.6166667	0.4833333333	0.6166667	0.48333333	0.6166667	0.48333333	0.383333333	0.48333333	0.48333333	0.3833333	0.3833333	0.3833333	0.48333333
P43	0 38333333	0 3833333	0.48333333	0.4833333	0.48333333	0 383333333	0.4833333	0 383333333	0 383333333	0 3833333	0.4833333	0.4833333	0.4833333333	0.4833333	0.4833333333	0.48333333	0.48333333	0.48333333	0.4833333	0.4833333333	0.48333333	0.48333333	0.6166667	0.48333333	0.48333333	0.6166667
P44	0.483333333	0.6166667	0.6166667	0.6166667	0.6166667	0.3833333333	0.2833333	0.616666667	0.4833333333	0.28333333	0.48333333	0.48333333	0.4833333333	0.4833333	0.6166666667	0.48333333	0.48333333	0.48333333	0.48333333	0.4833333333	0.48333333	0.48333333	0.38333333	0.48333333	0.48333333	0.48333333
P45	0 28333333	0 3833333	0.48333333	0.6166667	0.48333333	0 383333333	0.2833333	0.4833333333	0 283333333	0 2833333	0.4833333	0.4833333	0 383333333	0.6166667	0.4833333333	0.4833333	0.48333333	0.6166667	0.4833333	0.4833333333	0.4833333	0.48333333	0.48333333	0.6166667	0.48333333	0.4833333
P46	0 28333333	0.48333333	0.6166667	0.48333333	0.48333333	0 283333333	0 3833333	0 383333333	0 2833333333	0 1833333	0.48333333	0.48333333	0.4833333333	0 3833333	0 3833333333	0 3833333	0 3833333	0.6166667	0.48333333	0.616666667	0.48333333	0.48333333	0 3833333	0.6166667	0.3833333	0 3833333
P47	0.61666667	0.6166667	0.6166667	0.3833333	0.6166667	0.616666667	0.2833333	0.616666667	0.1833333333	0.2833333	0.6166667	0.6166667	0.383333333	0.3833333	0.3833333333	0.48333333	0.3833333	0.48333333	0.48333333	0.4833333333	0.6166667	0.3833333	0.3833333	0.48333333	0.3833333	0.3833333
P48	0.38333333	0.4833333	0.6166667	0.6166667	0.6166667	0.383333333	0.48333333	0.3833333333	0.2833333333	0.2833333	0.6166667	0.4833333	0.4833333333	0.6166667	0.3833333333	0.6166667	0.48333333	0.48333333	0.6166667	0.4833333333	0.4833333	0.6166667	0.3833333	0.4833333	0.3833333	0.3833333
P49	0.483333333	0.4833333	0.48333333	0.48333333	0.6166667	0.616666667	0.1833333	0.616666667	0 2833333333	0 2833333	0.6166667	0.48333333	0.383333333	0.6166667	0.3833333333	0.6166667	0.38333333	0.48333333	0.48333333	0.4833333333	0.48333333	0.48333333	0.3833333	0.3833333	0.3833333	0.2833333
P50	0.48333333	0.4833333	0.6166667	0.3833333	0.6166667	0.616666667	0.3833333	0.4833333333	0.283333333	0.2833333	0.6166667	0.2833333	0.283333333	0.4833333	0.383333333	0.6166667	0.4833333	0.4833333	0.4833333	0.4833333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
Type	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive

Fig. 12. Initial decision matrix for offensive midfield players.

Evaluation results for offensive midfield players (v = 0.5).

Alternatives	8m	h_m	g *	<i>g</i> ⁻	Z_m
P1	0.2300	0.0993	0.1541	0.8713	0.0529
P2	0.5760	0.4009	h*	h^-	0.7942
РЗ	0.1541	0.0993	0.0993	0.4009	0.0000
P4	0.3721	0.1718			0.2722
Р5	0.3406	0.2317			0.3495
P6	0.5394	0.2317			0.4882
P7	0.4030	0.1718			0.2937
P8	0.3988	0.1718			0.2908
P9	0.6073	0.2317			0.5355
P10	0.2936	0.1718			0.2175
P11	0.3058	0.1718			0.2260
P12	0.4233	0.1718			0.3079
P13	0.8102	0.4009			0.9574
P14	0.4203	0.1718			0.3058
P15	0.4280	0.1718			0.3111
P16	0.5990	0.2317			0.5297
P17	0.3832	0.1718			0.2799
P18	0.6844	0.4009			0.8697
P19	0.4309	0.1718			0.3132
P20	0.7012	0.4009			0.8814
P21	0.4626	0.1718			0.3352
P22	0.5286	0.2317			0.4806
P23	0.4747	0.1718			0.3437
P24	0.6273	0.2317			0.5494
P25	0.7096	0.4009			0.8873
P26	0.6587	0.4009			0.8518
P27	0.5943	0.2317			0.5265
P28	0.5050	0.1718			0.3648
P29	0.5241	0.1718			0.3781
P30	0.4059	0.1718			0.2958
P31	0.6872	0.4009			0.8717
P32	0.4094	0.1718			0.2982
P33	0.5581	0.1718			0.4019
P34	0.6670	0.4009			0.8576
P35	0.6046	0.2317			0.5336
P36	0.4848	0.1718			0.3507
P37	0.8706	0.4009			0.9995
P38	0.6945	0.4009			0.8768
P39	0.6577	0.2317			0.5706
P40	0.8135	0.4009			0.9597
P41	0.8713	0.4009			1.0000
P42	0.6221	0.2317			0.5458
P43	0.8711	0.4009			0.9999
P44	0.8010	0.4009			0.9510
P45	0.8695	0.4009			0.9987
P46	0.8256	0.4009			0.9681
P47	0.4223	0.1718			0.3072
P48	0.5418	0.2317			0.4898
P49	0.6262	0.2317			0.5487
P50	0.4723	0.1718			0.3420

Lineups determine players' positions and roles on the field. They are usually expressed with numbers. The numbers in a lineup's name represent the number of goalkeepers, stoppers, midfielders, and forwards, respectively. For example, in the 4-4-2 lineup, the team consists of 1 goalkeeper, 4 stoppers, 4 midfielders and 2 forwards.

Lineups may vary depending on the team's player squad, the manager's playing philosophy and the opposing team's strengths and weaknesses. Additionally, within a match the team can change the lineup by making strategic changes or substitutions of players.

5.1. Best top 11 players for 4-4-2 lineup

In this lineup, the team consists of four stoppers, four midfielders and two forwards, starting with the goalkeeper. This arrangement is preferred to provide security in defense and to support the forwards in attack. An example of this lineup is represented in Fig. 14.

5.2. Best top 11 players for 4-3-3 lineup

In this lineup, the team consists of four soppers, three midfielders and two wingers and a forward player. This arrangement is

Table 22

The	names	and	codes	of	right-left	wing	players.
					0		1 2

Code	Player Name	Code	Player Name
P1	Yunus Akgün	P26	Cengiz Ünder
P2	Abdülkadir Ömür	P27	Barış Yılmaz
Р3	Kerem Aktürkoğlu	P28	Mustafa Pektemek
P4	Emrah Başsan	P29	Mustafa Saymak
P5	Deniz Türüç	P30	İlkay Durmuş
P6	Yusuf Sarı	P31	Doğan Can Davas
P7	Hakan Çalhanoğlu	P32	Oğuz Ceylan
P8	Emre Mor	P33	Yasin Öztekin
P9	Halil Akbunar	P34	Ali Kaan Güneren
P10	Güven Yalçın	P35	Ahmet İlhan Özek
P11	Halil Dervişoğlu	P36	Efecan Karaca
P12	Burak Kapacak	P37	Görkem Sağlam
P13	Doğukan Sinik	P38	Oğulcan Çağlayan
P14	Emre Kılınç	P39	Olcay Şahan
P15	Berkay Özcan	P40	Okan Aydin
P16	Güray Vural	P41	Bilal Başacıko.
P17	Yusuf Erdoğan	P42	Anıl Koç
P18	Kenan Karaman	P43	Muhammed Gümüş.
P19	Ömer Ali Şahiner	P44	Tunay Torun
P20	Mehmet Aydin	P45	Buğra Çağıran
P21	Barış Atik	P46	Cengizhan Akgün
P22	Barış Alıcı	P47	Berk Yıldız
P23	Emircan Altıntaş	P48	Serdar Cansu
P24	Serdar Gürler	P49	Ömer Bayram
P25	Tayfur Bingöl	P50	Onur Ayık

frequently used by teams aiming to be effective in attack. Wingers often play an important role in attack. An example of this lineup is represented in Fig. 15.

5.3. Best top 11 players for 4-3-2-1 lineup

In this lineup, the team consists of four stoppers, three midfielders, two offensive midfielders and a forward player. This arrangement is used by teams that aim to control the ball in midfield and be effective with more than one player in attack. An example of this lineup is represented in Fig. 16.

5.4. Best top 11 players for 3-5-2 lineup

In this lineup, the team consists of three stoppers, five midfielders and two forward players. This arrangement can be preferred by teams that aim to have more possession of the ball in the midfield and want to be effective in wide areas with their wing players. An example of this lineup is represented in Fig. 17.

5.5. Best top 11 players for 3-4-3 lineup

The 3-4-3 lineup is an attack-oriented formation. The midfield quartet ensures that the team is both solid in defense and effective in attack. Wing midfielders support the attack by providing width. This arrangement is preferred by teams with high offensive power and aiming to put the opponent's defense under pressure. However, the defense may remain weak, and the opponent team may face pressure in the midfield. An example of this lineup is represented in Fig. 18.

5.6. Sensitivity analysis

In this section, a sensitivity analysis will be conducted to ascertain the variations in the ranking of alternatives under different conditions. Initially, the response of alternative rankings to different v values was investigated. As depicted in Fig. 19, there were negligible alterations in the rankings of the goalkeepers across different v values. For instance, Uğurcan Çakır (GK2), who consistently held the top rank across all v values, dropped to second place only when v assumed a value of 1. Similarly, Altay Bayındır (GK3), consistently occupying the second position across all v values, descended to third place for v equal to 1. While Sinan Bolat (GK1) consistently held the third position across all v values, he ascended to the first rank for a singular value of v.

Likewise, the variations in the rankings of the strikers for different v values are illustrated in Fig. 20. Serdar Dursun (P7) consistently emerged as the top-ranked forward player across all *v* values, yet he slipped to second place solely when *v* equaled 0. Similarly, Enes Ünal (P4) consistently occupied the second position for all *v* values, except for when *v* was 0, where he claimed the first rank. Halil Dervişoğlu (P15) consistently retained his third-place ranking across all *v* values.

	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	M1	M2	M3	M4	M5	M6	M7	P1	P2	P3	P4	P5	P6	P7
P1	0.71666667	0.7166667	0.4833333	0.6166667	0.7166667	0.716666667	0.3833333	0.716666667	0.283333333	0.3833333	0.7166667	0.7166667	0.483333333	0.6166667	0.4833333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.3833333
P2	0.61666667	0.6166667	0.6166667	0.4833333	0.6166667	0.616666667	0.3833333	0.616666667	0.183333333	0.1833333	0.4833333	0.3833333	0.383333333	0.4833333	0.383333333	0.6166667	0.4833333	0.4833333	0.4833333	0.716666667	0.7166667	0.6166667	0.3833333	0.7166667	0.4833333	0.3833333
P3	0.61666667	0.6166667	0.7166667	0.6166667	0.7166667	0.616666667	0.4833333	0.616666667	0.383333333	0.3833333	0.7166667	0.6166667	0.616666667	0.6166667	0.483333333	0.6166667	0.6166667	0.4833333	0.6166667	0.483333333	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333	0.4833333
P4	0.61666667	0.4833333	0.6166667	0.4833333	0.6166667	0.616666667	0.3833333	0.616666667	0.4833333333	0.2833333	0.6166667	0.6166667	0.483333333	0.4833333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.483333333	0.6166667	0.6166667	0.3833333	0.6166667	0.6166667	0.4833333
P5	0.71666667	0.7166667	0.7166667	0.4833333	0.6166667	0.716666667	0.4833333	0.716666667	0.283333333	0.1833333	0.7166667	0.4833333	0.383333333	0.4833333	0.483333333	0.7166667	0.4833333	0.4833333	0.4833333	0.483333333	0.4833333	0.6166667	0.3833333	0.6166667	0.4833333	0.4833333
P6	0.283333333	0.2833333	0.6166667	0.6166667	0.6166667	0.283333333	0.6166667	0.616666667	0.383333333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.716666667	0.6166667	0.4833333	0.4833333	0.6166667	0.483333333	0.4833333	0.6166667	0.4833333	0.4833333	0.4833333	0.6166667
P7	0.38333333	0.4833333	0.6166667	0.6166667	0.6166667	0.283333333	0.6166667	0.616666667	0.283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.6166667	0.483333333	0.6166667	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.6166667	0.4833333	0.6166667	0.6166667	0.4833333
P8	0.61666667	0.6166667	0.6166667	0.4833333	0.6166667	0.716666667	0.2833333	0.616666667	0.283333333	0.3833333	0.6166667	0.6166667	0.483333333	0.4833333	0.4833333333	0.6166667	0.4833333	0.4833333	0.4833333	0.483333333	0.6166667	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P9	0.61666667	0.4833333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.616666667	0.183333333	0.2833333	0.6166667	0.4833333	0.716666667	0.4833333	0.716666667	0.4833333	0.6166667	0.7166667	0.6166667	0.483333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P10	0.61666667	0.3833333	0.7166667	0.4833333	0.6166667	0.483333333	0.2833333	0.483333333	0.283333333	0.2833333	0.6166667	0.4833333	0.716666667	0.6166667	0.483333333	0.4833333	0.3833333	0.6166667	0.4833333	0.716666667	0.7166667	0.6166667	0.2833333	0.6166667	0.6166667	0.2833333
P11	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.483333333	0.3833333	0.616666667	0.183333333	0.3833333	0.6166667	0.4833333	0.483333333	0.6166667	0.616666667	0.6166667	0.6166667	0.7166667	0.6166667	0.616666667	0.7166667	0.3833333	0.3833333	0.6166667	0.4833333	0.3833333
P12	0.38333333	0.3833333	0.6166667	0.4833333	0.7166667	0.383333333	0.4833333	0.483333333	0.283333333	0.2833333	0.6166667	0.4833333	0.383333333	0.4833333	0.383333333	0.6166667	0.3833333	0.4833333	0.4833333	0.4833333333	0.6166667	0.6166667	0.4833333	0.4833333	0.4833333	0.4833333
P13	0.48333333	0.4833333	0.6166667	0.3833333	0.4833333	0.383333333	0.3833333	0.483333333	0.283333333	0.3833333	0.4833333	0.4833333	0.616666667	0.4833333	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.616666667	0.4833333	0.6166667	0.3833333	0.6166667	0.4833333	0.4833333
P14	0.61666667	0.6166667	0.6166667	0.3833333	0.6166667	0.4833333333	0.2833333	0.383333333	0.283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.6166667	0.4833333333	0.4833333	0.4833333	0.3833333	0.6166667	0.483333333	0.6166667	0.4833333	0.3833333	0.4833333	0.4833333	0.3833333
P15	0.48333333	0.4833333	0.6166667	0.4833333	0.4833333	0.4833333333	0.3833333	0.483333333	0.2833333333	0.3833333	0.6166667	0.4833333	0.616666667	0.4833333	0.616666667	0.4833333	0.4833333	0.4833333	0.6166667	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.3833333
P16	0.61666667	0.6166667	0.4833333	0.3833333	0.6166667	0.616666667	0.3833333	0.483333333	0.383333333	0.2833333	0.6166667	0.4833333	0.383333333	0.4833333	0.616666667	0.6166667	0.3833333	0.4833333	0.6166667	0.383333333	0.4833333	0.7166667	0.3833333	0.4833333	0.4833333	0.6166667
P17	0.61666667	0.6166667	0.6166667	0.6166667	0.6166667	0.616666667	0.48333333	0.616666667	0.383333333	0.18333333	0.6166667	0.6166667	0.616666667	0.6166667	0.383333333	0.6166667	0.48333333	0.48333333	0.6166667	0.4833333333	0.6166667	0.48333333	0.3833333	0.48333333	0 48333333	0.48333333
P18	0.283333333	0.48333333	0.6166667	0.48333333	0.6166667	0.3833333333	0.3833333	0.4833333333	0.1833333333	0.3833333	0.48333333	0.3833333	0.383333333	0.4833333	0.4833333333	0.48333333	0.4833333	0.6166667	0.4833333	0.616666667	0.6166667	0.4833333	0.3833333	0.6166667	0.6166667	0.3833333
P19	0.483333333	0 4833333	0.6166667	0 4833333	0.6166667	0.616666667	0 2833333	0.616666667	0 183333333	0 2833333	0.6166667	0.6166667	0 383333333	0.48333333	0 4833333333	0.48333333	0.3833333	0.6166667	0.3833333	0.616666667	0.6166667	0.48333333	0.3833333	0.48333333	0 4833333	0.3833333
P20	0.383333333	0.3833333	0.48333333	0.6166667	0.48333333	0.3833333333	0.6166667	0.4833333333	0.1833333333	0.3833333	0.48333333	0.48333333	0.616666667	0.6166667	0.4833333333	0.6166667	0.6166667	0.6166667	0.6166667	0.6166666667	0.6166667	0.4833333	0.3833333	0.6166667	0.4833333	0.4833333
P21	0.483333333	0.48333333	0.48333333	0 3833333	0.6166667	0 383333333	0.3833333	0 483333333	0 283333333	0.48333333	0.6166667	0 4833333	0 483333333	0.6166667	0 2833333333	0.6166667	0.6166667	0.48333333	0.6166667	0 4833333333	0.6166667	0.48333333	0 3833333	0.48333333	0 48333333	0.3833333
P22	0.61666667	0.48333333	0.6166667	0.6166667	0.6166667	0.4833333333	0.3833333	0.4833333333	0.2833333333	0.28333333	0.6166667	0.6166667	0.4833333333	0.6166667	0.3833333333	0.48333333	0.3833333	0.3833333	0.6166667	0.4833333333	0.48333333	0.48333333	0.3833333	0.3833333	0.48333333	0.3833333
P23	0.61666667	0.48333333	0.6166667	0 3833333	0.48333333	0.4833333333	0 3833333	0 4833333333	0 283333333	0 2833333	0.6166667	0 3833333	0 483333333	0.6166667	0.616666667	0.4833333	0.48333333	0.48333333	0.48333333	0.616666667	0.6166667	0 3833333	0 3833333	0.6166667	0.48333333	0 3833333
P24	0.383333333	0.48333333	0.48333333	0.48333333	0.6166667	0.3833333333	0.48333333	0.3833333333	0.383333333	0.6166667	0.6166667	0.2833333	0 4833333333	0.48333333	0.616666667	0.6166667	0.6166667	0.6166667	0.6166667	0.4833333333	0.48333333	0.6166667	0.48333333	0.48333333	0.6166667	0.6166667
P25	0.61666667	0 4833333	0.48333333	0.6166667	0 4833333	0 4833333333	0.48333333	0.616666667	0 283333333	0 2833333	0 48333333	0.48333333	0 716666667	0.48333333	0.616666667	0.4833333	0.48333333	0.6166667	0.6166667	0 4833333333	0.6166667	0.6166667	0.48333333	0.48333333	0.6166667	0 4833333
P26	0.483333333	0.48333333	0.6166667	0.48333333	0.6166667	0.4833333333	0.48333333	0.4833333333	0 1833333333	0.48333333	0.48333333	0.3833333	0.616666667	0.48333333	0.4833333333	0.48333333	0.6166667	0.48333333	0.6166667	0.6166666667	0.6166667	0.48333333	0.3833333	0.48333333	0.6166667	0.48333333
P27	0.61666667	0.6166667	0.48333333	0.6166667	0.6166667	0.616666667	0 3833333	0.616666667	0 283333333	0 3833333	0.6166667	0.6166667	0 283333333	0.48333333	0 3833333333	0.6166667	0.48333333	0 3833333	0.4833333	0 383333333	0 4833333	0.48333333	0 3833333	0.48333333	0.48333333	0.4833333
P28	0.48333333	0.6166667	0.4833333	0.4833333	0.4833333	0.483333333	0.2833333	0.616666667	0 283333333	0.2833333	0.6166667	0.4833333	0.483333333	0.4833333	0.4833333333	0.6166667	0.3833333	0.48333333	0.4833333	0.4833333333	0.6166667	0.4833333	0 3833333	0.4833333	0.4833333	0.4833333
P29	0.483333333	0.48333333	0.4833333	0.4833333	0.6166667	0.4833333333	0.3833333	0.4833333333	0 2833333333	0.2833333	0.6166667	0 3833333	0.283333333	0.4833333	0 383333333	0.6166667	0.4833333	0.4833333	0.3833333	0.4833333333	0.6166667	0.48333333	0.3833333	0.48333333	0.4833333	0.48333333
P30	0.61666667	0.48333333	0.6166667	0.48333333	0.6166667	0.4833333333	0.18333333	0.4833333333	0 1833333333	0.28333333	0.6166667	0.6166667	0 4833333333	0.6166667	0.3833333333	0.6166667	0.48333333	0.6166667	0.48333333	0.616666667	0.6166667	0.3833333	0 1833333	0.3833333	0.4833333	0.28333333
P31	0 38333333	0.4833333	0.48333333	0.4833333	0.6166667	0 383333333	0 3833333	0 383333333	0 283333333	0 3833333	0.48333333	0.4833333	0.616666667	0.6166667	0 3833333333	0.4833333	0.6166667	0.6166667	0 7166667	0 4833333333	0.6166667	0 3833333	0 3833333	0.6166667	0 3833333	0.4833333
P32	0.483333333	0.48333333	0.6166667	0.6166667	0.6166667	0 4833333333	0.28333333	0.4833333333	0 1833333333	0.28333333	0.6166667	0.48333333	0 283333333	0.48333333	0.3833333333	0.6166667	0.48333333	0.6166667	0.6166667	0 4833333333	0.6166667	0.48333333	0.38333333	0.48333333	0.48333333	0.48333333
P33	0.48333333	0 3833333	0.48333333	0.4833333	0 3833333	0.4833333333	0 3833333	0 383333333	0 183333333	0.4833333	0.6166667	0.2833333	0 283333333	0.6166667	0.4833333333	0.4833333	0.4833333	0 3833333	0.4833333	0.616666667	0.6166667	0.48333333	0 3833333	0.6166667	0.4833333	0 3833333
P34	0.483333333	0.48333333	0.6166667	0.38333333	0.6166667	0.6166666667	0.28333333	0.616666667	0 183333333	0.28333333	0.48333333	0.48333333	0.383333333	0.48333333	0.3833333333	0.6166667	0.3833333	0.3833333	0.48333333	0.616666667	0.6166667	0.38333333	0.38333333	0.48333333	0.4833333	0.38333333
P35	0.48333333	0.4833333	0.48333333	0 3833333	0.6166667	0.4833333333	0 3833333	0.4833333333	0 283333333	0 3833333	0.6166667	0.4833333	0.483333333	0 3833333	0.616666667	0.4833333	0.4833333	0.6166667	0.6166667	0.483333333	0.4833333	0.4833333	0 3833333	0.4833333	0.6166667	0.4833333
P36	0.61666667	0.48333333	0.48333333	0.6166667	0.6166667	0.6166666667	0.38333333	0.4833333333	0 183333333	0.2833333	0.6166667	0.3833333	0 283333333	0.48333333	0.3833333333	0.6166667	0.48333333	0.48333333	0.6166667	0.616666667	0.6166667	0.48333333	0 18333333	0.48333333	0.4833333	0 2833333
P37	0.48333333	0.4833333	0.4833333	0 3833333	0.4833333	0.483333333	0.4833333	0.483333333	0 1833333333	0 3833333	0.4833333	0.4833333	0.483333333	0.4833333	0.4833333333	0.4833333	0.4833333	0.6166667	0.4833333	0.483333333	0.4833333	0.4833333	0 3833333	0.4833333	0.4833333	0.4833333
P38	0.383333333	0.48333333	0.6166667	0.3833333	0.6166667	0.4833333333	0.48333333	0.4833333333	0 283333333	0.3833333	0.48333333	0.3833333	0.383333333	0.4833333	0 383333333	0.4833333	0.28333333	0.7166667	0.4833333	0.616666667	0.6166667	0.48333333	0.3833333	0.6166667	0.4833333	0.3833333
P39	0.48333333	0.4833333	0.3833333	0.3833333	0.4833333	0.4833333333	0.3833333	0.483333333	0 1833333333	0 1833333	0.6166667	0.4833333	0.616666667	0.4833333	0.716666667	0.4833333	0.48333333	0.48333333	0.6166667	0.483333333	0.4833333	0.6166667	0.3833333	0.4833333	0.6166667	0.4833333
P40	0.48333333	0.4833333	0.6166667	0.4833333	0.6166667	0.4833333333	0.2833333	0.483333333	0.283333333	0.2833333	0.48333333	0.4833333	0.4833333333	0.3833333	0.2833333333	0.3833333	0.2833333	0.3833333	0.4833333	0.4833333333	0.4833333	0.48333333	0.2833333	0.4833333	0.6166667	0.4833333
P41	0.38333333	0.3833333	0.4833333	0.3833333	0.4833333	0.383333333	0.4833333	0 383333333	0.283333333	0.2833333	0.4833333	0.4833333	0.483333333	0.4833333	0.383333333	0.4833333	0.48333333	0.3833333	0.4833333	0.6166666667	0.4833333	0.4833333	0.48333333	0.4833333	0.4833333	0.4833333
P42	0.61666667	0.6166667	0.48333333	0.4833333	0.6166667	0.6166666667	0.48333333	0.616666667	0 383333333	0 3833333	0.6166667	0.48333333	0.616666667	0.6166667	0.4833333333	0.6166667	0.48333333	0.6166667	0.4833333	0 383333333	0.4833333	0.48333333	0 3833333	0 3833333	0 3833333	0.48333333
P43	0.383333333	0.38333333	0.48333333	0.48333333	0.48333333	0.3833333333	0.48333333	0.3833333333	0.3833333333	0.38333333	0.48333333	0.48333333	0.4833333333	0.48333333	0.4833333333	0.48333333	0.48333333	0.48333333	0.48333333	0 4833333333	0.48333333	0.48333333	0.6166667	0.48333333	0.48333333	0.6166667
P44	0.483333333	0.6166667	0.6166667	0.6166667	0.6166667	0.383333333	0.2833333	0.616666667	0.4833333333	0.2833333	0.48333333	0.48333333	0.4833333333	0.4833333	0.616666667	0.4833333	0.4833333	0.4833333	0.4833333	0.4833333333	0.4833333	0.48333333	0.3833333	0.4833333	0.4833333	0.48333333
P45	0.28333333	0.3833333	0.4833333	0.6166667	0.4833333	0.383333333	0.2833333	0.483333333	0.283333333	0.2833333	0.4833333	0.4833333	0.383333333	0.6166667	0.493333333	0.4833333	0.4833333	0.6166667	0.4833333	0.493333333	0.4833333	0.4833333	0.4833333	0.6166667	0.4833333	0.4833333
P46	0.28333333	0.4833333	0.6166667	0.4833333	0.4833333	0.2833333333	0.3833333	0 383333333	0 283333333	0 1833333	0.48333333	0.4833333	0.483333333	0 3833333	0 3833333333	0.3833333	0.3833333	0.6166667	0.4833333	0.6166666667	0.4833333	0.4833333	0.3833333	0.6166667	0.3833333	0 3833333
P47	0.61666667	0.6166667	0.6166667	0.38333322	0.6166667	0.616666667	0.28333322	0.616666667	0 183333333	0.2833333	0.6166667	0.6166667	0 3833333222	0.3833333	0.383333333	0.48333322	0.38333333	0.48333322	0.48333322	0.4833333333	0.6166667	0.3833333	0.3833333	0.48333322	0.3833333	0.38333322
P48	0 38333333	0.4833333	0.6166667	0.6166667	0.6166667	0 383333333	0.48333333	0 383333333	0 283333333	0.2833333	0.6166667	0.48333333	0.483333333	0.6166667	0 3833333333	0.6166667	0.48333333	0.4833333	0.6166667	0.4833333333	0.4833333	0.6166667	0.3833333	0.48333333	0.3833333	0 3833333
P49	0.483333333	0.48333333	0.48333333	0.48333333	0.6166667	0.616666667	0 1833333	0.616666667	0 2833333333	0 2833333	0.6166667	0.48333333	0 383333333	0.6166667	0 383333333	0.6166667	0.38333333	0.48333333	0.48333333	0.4833333333	0.4833333	0.48333333	0.38333333	0.3833333	0.3833333	0 2833333
P50	0.48333333	0.48333333	0.6166667	0.3833333	0.6166667	0.616666667	0.3833333	0.4833333333	0 2833333333	0.28333333	0.6166667	0.28333333	0 2833333333	0.4833333	0.3833333333	0.6166667	0.48333333	0.48333333	0.48333333	0.4833333333	0.6166667	0.4833333	0.3833333	0.4833333	0.48333333	0.38333333
Type	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
	1.001010				. voicerd	1001010							. topard		1001010	. opining				1001010						. oprand

Fig. 13. Initial decision matrix for right-left wing players.

Table 23 Evaluation results for right-left wing players ($\upsilon=0.5$).

Alternatives	g_m	h_m	g *	<i>g</i> ⁻	Z_m
P1	0.2705	0.1234	0.2255	0.7416	0.1216
P2	0.2255	0.0702	h^*	h^-	0.0000
P3	0.4361	0.2341	0.0702	0.4113	0.4444
P4	0.3863	0.1234			0.2338
Р5	0.4911	0.2879			0.5765
P6	0.3535	0.1234			0.2020
P7	0.4415	0.1639			0.3466
P8	0.3630	0.2341			0.3735
Р9	0.3580	0.1639			0.2657
P10	0.4062	0.1639			0.3124
P11	0.6229	0.2879			0.7041
P12	0.4187	0.1639			0.3246
P13	0.4856	0.1639			0.3893
P14	0.4779	0.1639			0.3819
P15	0.6431	0.4113			0.9046
P16	0.5957	0.2879			0.6778
P17	0.3623	0.1639			0.2699
P18	0.7416	0.2879			0.8191
P19	0.4684	0.1639			0.3727
P20	0.4810	0.1639			0.3849
P21	0.4541	0.1639			0.3588
P22	0.3762	0.1639			0.2833
P23	0.3731	0.1639			0.2804
P24	0.2819	0.0830			0.0733
P25	0.4021	0.1639			0.3085
P26	0.2407	0.0830			0.0334
P27	0.5435	0.2341			0.5484
P28	0.5281	0.2341			0.5335
P29	0.4924	0.1639			0.3959
P30	0.4322	0.1234			0.2783
P31	0.5711	0.2879			0.6540
P32	0.5270	0.1639			0.4294
P33	0.6460	0.2879			0.7265
P34	0.4124	0.1639			0.3184
P35	0.4907	0.1639			0.3942
P36	0.3368	0.1234			0.1858
P37	0.59/2	0.2879			0.6793
P38	0.5226	0.1639			0.4252
P39	0.6315	0.2879			0.7125
P40	0.4488	0.1639			0.3537
P41	0.3911	0.1234			0.2384
P42	0.4990	0.1639			0.4023
r43 D44	0.4009	0.1039			0.3006
r44 D45	0.0120	0.2879			0.0936
P40 D46	0.7320	0.2879			0.6098
P40	0.54/1	0.1039			0.4489
r4/ D40	0.5/08	0.4341			0.5806
F40 D40	0.5454	0.1039			0.44/3
P49	0.5231	0.2879			0.00/5
r JU	0.43/9	0.1039			0.3431

The proposed Turkish Football National team.

Goalkeepers	Right Back Players	Left Back Players	
Uğurcan Çakır	Zeki Çelik	Rıdvan Yılmaz	
Altay Bayındır	Mert Müldür	Eren Elmalı	
Sinan Bolat	Ferdi Kadıoğlu	Uğur Çiftçi	
Stopper	Midfield Players	Right-Left Wing Players	
Merih Demiral	Salih Özcan	Abdülkadir Ömür	
Çağlar Söyüncü	Orkun Kökçü	Cengiz Ünder	
Kaan Ayhan	Emirhan İlkhan	Serdar Gürler	
Ozan Kabak	Berat Özdemir	Yunus Akgün	
Abdülkerim Bardakçı	Dorukhan Toköz	Efecan Karaca	
Forward Players	Offensive Midfield Players		
Serdar Dursun	Hakan Çalhanoğlu		
Enes Ünal	Yusuf Yazıcı		
Halil Dervişoğlu	Arda Güler		

Fig. 14. The best 11 players for 4-4-2 lineup.

6. Conclusions

Player selection of the national football team is a critical process that has a great impact on the success and performance of the national team. The effective and best selection of the national team squad increases the team's performance and competitiveness. Selection of suitable players allows the team to highlight its strengths. It provides tactical flexibility, allowing the team to gain advantage in different scenarios.

As a result of the study, it was observed that the candidate team selected for the National Team is 60 % like the candidate team announced by Turkish National Team for the 2024 UEFA European Championship. The fact that the football players selected for the squad in the study had previous National Team experiences reveals that the study was successful in the squad selection process.

The biggest difficulty during the study was experienced during data collection. In fact, it would be more appropriate to conduct global research for the football game, which is of global importance. Exchanging ideas for expert opinions not only with Turkish club managers and coaches but also with individuals doing this job at the international level will increase the validity of the study.

Fig. 15. The best 11 players for 4-3-3 lineup.

Fig. 16. The best 11 players for 4-3-2-1 lineup.

Fig. 17. The best 11 players for 3-5-2 lineup.

Fig. 18. The best 11 players for 3-4-3 lineup.

•••••• GK2 ••••• GK3 •••••• GK1 ••••• GK8 ••••• GK29 ••••• GK9 ••••• GK10 ••••• GK18 •••••• GK12 ••••• GK13

Fig. 19. The ranking of goalkeepers for different v values.

In the future, statistical data can be added to the study and the number of main criteria to be evaluated may be increased. In this way, the scope of the study can be expanded, and football players can be scrutinized not only with their talents but also with their performances in real life. In the future study, the answer to the question of how the solution to the problem would change if different decision-making methods were used will be investigated and different fuzzy sets are used.

Funding support

This research did not receive any specific funding.

Informed consent statement

All participants provided informed consent before joining the study.

Data availability statement

Data is contained within the article.

CRediT authorship contribution statement

Elif Çaloğlu Büyükselçuk: Writing – original draft, Visualization, Validation, Methodology, Formal analysis, Conceptualization. **Eray Badem:** Visualization, Methodology, Data curation.

Fig. 20. The ranking of forward players for different v values.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- A. Ati, P. Bouchet, R.B. Jeddou, Using multi-criteria decision-making and machine learning for football player selection and performance prediction: a systematic review, Data Sci. Manage. 7 (2024) 79–88, https://doi.org/10.1016/j.dsm.2023.11.001.
- [2] O. Müller, A. Simons, M. Weinmann, Beyond crowd judgments: data-driven estimation of market value in association football, Eur. J. Oper. Res. 263 (2) (2017) 611–624, https://doi.org/10.1016/j.ejor.2017.05.005.
- [3] M. Rohde, C. Breuer, The market for football club investors: a review of theory and empirical evidence from professional European football, Eur. Sport Manag. Q. 17 (3) (2017) 265–289, https://doi.org/10.1080/16184742.2017.1279203.
- [4] J.R. Katzenbach, D.K. Smith, The Discipline of Teams, Harvard Business Press, 2008.
- [5] M.A. Qader, B.B. Zaidan, A.A. Zaidan, S.K. Ali, M.A. Kamaluddin, W.B. Radzi, A methodology for football players selection problem based on multi-
- measurements criteria analysis, Measurement 111 (2017) 38-50, https://doi.org/10.1016/j.measurement.2017.07.024.
- [6] B.H. Boon, G. Sierksma, Team formation: Matching quality supply and quality demand, Eur. J. Oper. Res. 148 (2) (2003) 277–292, https://doi.org/10.1016/ S0377-2217(02)00684-7.
- [7] F. Carmichael, D. Thomas, R. Ward, Team performance: the case of English premiership football, Manag. Decis. Econ. 21 (1) (2000) 31–45, https://doi.org/ 10.1002/1099-1468.
- [8] B. Dežman, S. Trninić, D. Dizdar, Expert model of decision-making system for efficient orientation of basketball players to positions and roles in the game-Empirical verification, Colleg. Antropol. 25 (1) (2001) 141–152.
- [9] S. Trninić, V. Papić, V. Trninić, D. Vukičević, Player selection procedures in team sports games, Acta Kinesiol. 2 (1) (2008) 24–28.
- [10] M. Rohde, C. Breuer, Europe's elite football: financial growth, sporting success, transfer investment, and private majority investors, Int. J. Financ. Stud. 4 (2) (2016) 12, https://doi.org/10.3390/ijfs4020012.
- [11] S. Szymanski, R. Smith, The English football industry: profit, performance and industrial structure, Int. Rev. Appl. Econ. 11 (1) (1997) 135–153.

- [12] S. Dadelo, Z. Turskis, E.K. Zavadskas, R. Dadeliene, Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set, Expert Syst. Appl. 41 (14) (2014) 6106–6113, https://doi.org/10.1016/j.eswa.2014.03.036.
- [13] I.N. Purwanto, A. Widodo, S. Handoyo, System for selection starting lineup of a football players by using analytical hierarchy process (AHP), J. Theore. Appl. Infor. Technol. 96 (1) (2018).
- [14] S.A. Salles, H. daHora, M. Erthal, A.C. Santos, A. Shimoya, Operations research contributions for football teams formation: a systematic review, Pesqui. Oper. 39 (2) (2019) 277–293, https://doi.org/10.1590/0101-7438.2019.039.02.0277.
- [15] A. Arnason, S.B. Sigurdsson, A. Gudmundsson, I. Holme, L. Engebretsen, R. Bahr, Physical fitness, injuries, and team performance in soccer, Med. Sci. Sport Exer. 36 (2) (2004) 278–285, https://doi.org/10.1249/01.MSS.0000113478.92945.CA.
- [16] M.M. Nasiri, M. Ranjbar, M. Tavana, F.J. Santos Arteaga, R. Yazdanparast, A novel hybrid method for selecting soccer players during the transfer season, Expet Syst. 36 (1) (2019) e12342, https://doi.org/10.1111/exsy.12342.
- [17] M. Tavana, F. Azizi, F. Azizi, M. Behzadian, A fuzzy inference system with application to player selection and team formation in multi-player sports, Sport Manag. Rev. 16 (1) (2013) 97–110, https://doi.org/10.1016/j.smr.2012.06.002.
- [18] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Inf. Cont. 1 (1) (1965) 3-28.
- [19] K.T. Atanassov, Intuitionistic Fuzzy Sets, HD, Physica-Verlag, 1999, pp. 1–137.
- [20] Z. Xu, J. Chen, J. Wu, Clustering algorithm for intuitionistic fuzzy sets, Inf. Sci. 178 (19) (2008) 3775–3790, https://doi.org/10.1016/j.ins.2008.06.008.
- [21] R.R. Yager, Some aspects of intuitionistic fuzzy sets. Fuzzy Optim, Decis. Mak. 8 (2009) 67–90, https://doi.org/10.1007/s10700-009-9052-7.
 [22] M. Aggarwal, Rough information set and its applications in decision making, IEEE Trans. Fuzzy Syst. 25 (2) (2017) 265–276, https://doi.org/10.1109/ TFUZZ.2017.2670551.
- [23] W. Wei, J. Liang, Information fusion in rough set theory: an overview, Inf. Fusion 48 (2019) 107–118, https://doi.org/10.1016/j.inffus.2018.08.007.
- [24] S. Ayub, M. Shabir, M. Riaz, W. Mahmood, D. Bozanic, D. Marinkovic, Linear diophantine fuzzy rough sets: a new rough set approach with decision making, Symmetry 14 (3) (2022) 525, https://doi.org/10.3390/sym14030525.
- [25] Web of Science. Available online: https://www.webofscience.com/wos/woscc/analyze-results/f52f7b3e-765d-4e1b-9add-8a7085a97d6b-ddff9173 (accessed on 11 April 2024).
- [26] D. Abidin, A case study on player selection and team formation in football with machine learning, Turk. J. Electr. Eng. Co. 29 (3) (2021) 1672–1691, https:// doi.org/10.3906/elk-2005-27.
- [27] J.Q. Barden, S. Kozlak, Resource deprivation, decision stakes, and the selection of foreign players in the NBA draft, Sport Manag. Rev. 27 (2) (2024) 175–196, https://doi.org/10.1080/14413523.2023.2259147.
- [28] A. Adhikari, A. Majumdar, G. Gupta, A. Bisi, An innovative super-efficiency data envelopment analysis, semi-variance, and Shannon-entropy-based methodology for player selection: evidence from cricket, Ann. Oper. Res. 284 (1) (2020) 1–32, https://doi.org/10.1007/s10479-018-3088-4.
- [29] T. Koopmann, I.R. Faber, F. Lath, F. Loffing, J. Schorer, Exploring the subjective beliefs of expert coaches on 'talent' and player selection in German table tennis, Int. J. Sports Sci. Coa. 18 (6) (2023) 1952–1963, https://doi.org/10.1177/17479541231185544.
- [30] T.C. Wen, K.H. Chang, H.H. Lai, Y.Y. Liu, J.C. Wang, A novel rugby team player selection method integrating the TOPSIS and IPA methods, Int. J. Sport Psyc. 52 (2) (2021) 137–158, https://doi.org/10.7352/IJSP.2021.52.137.
- [31] N.R. Das, I. Mukherjee, A.D. Patel, G. Paul, An intelligent clustering framework for substitute recommendation and player selection, J. Supercomput. 79 (15) (2023) 16409–16441, https://doi.org/10.1007/s11227-023-05314-z.
- [32] W. Salabun, A. Shekhovtsov, D. Pamucar, J. Watróbski, B. Kizielewicz, J. Wiceckowski, D. Bozanic, K. Urbaniak, B. Nyczaj, A fuzzy inference system for players evaluation in multi-player sports: the football study case, Symmetry 12 (12) (2020), https://doi.org/10.3390/sym12122029.
- [33] V.S. Vetukuri, N. Sethi, R. Rajender, Generic model for automated player selection for cricket teams using recurrent neural networks, Evol. Intell. 14 (2) (2021) 971–978, https://doi.org/10.1007/s12065-020-00488-4.
- [34] J. Wieckowski, W. Salabun, Evaluation of football players' performance based on multi-criteria decision analysis approach and sensitivity analysis, in: B. Luo, L. Cheng, Z.G. Wu, H. Li, C. Li (Eds.), Lecture Notes in Computer Science, 30th International Conference on Neural Information Processing (ICONIP) of the Asia-Pacific-Neural-Network-Society, APNNS, China, November 2023, pp. 20–23, https://doi.org/10.1007/978-981-99-8067-3_45.
- [35] G. Budak, I. Kara, A multiobjective mathematical model to form the best team at sports clubs: team harmony and player performance objectives, Team Perform. Manag. 28 (3/4) (2022) 145–159, https://doi.org/10.1108/TPM-06-2021-0047.
- [36] P. Agarwalla, S. Mukhopadhyay, Efficient player selection strategy based diversified particle swarm optimization algorithm for global optimization, Inf. Sci. 397–398 (2017) 69–90, https://doi.org/10.1016/j.ins.2017.02.027.
- [37] P.K. Dey, D.N. Ghosh, A.C. Mondal, A MCDM approach for evaluating baulers performance in IPL, J. Emerg. Trends Comput. Inf. Sci. 2 (11) (2011) 564-573.
- [38] B. Dezman, S. Trninic, D. Dizdar, Expert model of decision-making system for efficient orientation of basketball players to positions and roles in the game-Empirical verification, Coll. Antropol. 25 (7) (2001) 141–152.
- [39] L. Pappalardo, P. Cintia, P. Ferragina, E. Massucco, D. Pedreschi, F. Giannotti, PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach, ACM Trans. Intell. Syst. Technol. 10 (5) (2019) 1–27.
- [40] B. Kizielewicz, L. Dobryakova, MCDA based approach to sports players' evaluation under incomplete knowledge, Proced. Comp. Sci. 176 (2020) 3524–3535, https://doi.org/10.1016/j.procs.2020.09.034.
- [41] B. Nikjo, J. Rezaeian, N. Javadian, Decision making in best player selection: an integrated approach with AHP and Extended TOPSIS methods based on WeFA Freamwork in MAGDM problems, Int. J. Res. Ind. Eng. 4 (2015) 1–14, https://doi.org/10.22105/riej.2017.49166.
- [42] M.K. Manju, A.O. Philip, Novel method for ranking batsmen in Indian Premier League, Data Sci. Manag. 6 (3) (2023) 158–173, https://doi.org/10.1016/j. dsm.2023.06.004.
- [43] Web of Science. Available online: https://www.webofscience.com/wos/woscc/analyze-results/d52b38be-baef-41ca-80ff-6667545ad3f8-de1c6ef7 (accessed on 11 April 2024).
- [44] G. Gezmisoglu, A. Ünlü, G. Cagil, Supplier evaluation with factor analysis based hybrid SWARA-VIKOR methods, J. Fac. Eng. Archit. Gaz. 38 (4) (2023) 2231–2239, https://doi.org/10.17341/gazimmfd.1106644.
- [45] R. Hokmabadi, E. Zarei, A. Karimi, Identifying, assessing and prioritizing pressure reduction station risks using FMEA based on SWARA-VIKOR multi-criteria decision-making methods br, J. Health Saf. Work. 12 (3) (2022) 632–651.
- [46] P. Rani, A.R. Mishra, A. Mardani, F. Cavallaro, D. Streimikiene, S.A.R. Khan, Pythagorean fuzzy SWARA-VIKOR framework for performance evaluation of solar panel selection, Sustainability 12 (10) (2020) 4278, https://doi.org/10.3390/su12104278.
- [47] A. Koska, M.B. Erdem, Performance analysis of manufacturing waste using SWARA and VIKOR methods: evaluation of Turkey within the scope of the circular economy, Sustainability 15 (16) (2023) 12110, https://doi.org/10.3390/su151612110.
- [48] G.N. Yücenur, K. Senol, Sequential SWARA and fuzzy VIKOR methods in elimination of waste and creation of lean construction processes, J. Build. Eng. 44 (2021) 103196, https://doi.org/10.1016/j.jobe.2021.103196.
- [49] M. Alimardani, S. Hashemkhani Zolfani, M.H. Aghdaie, J. Tamosaitiene, A novel hybrid SWARA and VIKOR methodology for supplier selection in an agile environment, Technol. Econ. Dev. Eco. 19 (3) (2013) 533–548, https://doi.org/10.3846/20294913.2013.814606.
- [50] E.K. Zavadskas, Z. Turskis, R. Volvaciovas, S. Kildiene, Multi-criteria assessment model of technologies, Stud. Inform. Control 22 (4) (2013) 249–258.
- [51] S. Rezaee, A. Sadeghi-Niaraki, M. Shakeri, S.M. Choi, Personalized augmented reality based tourism system: Big data and user demographic contexts, Appl. Sci-Basel 11 (13) (2021) 6047, https://doi.org/10.3390/app11136047.
- [52] M.S. Hassan, Y. Ali, A. Petrillo, F. De Felice, Risk assessment of circular economy practices in construction industry of Pakistan, Sci. Total Environ. 868 (2023) 161418, https://doi.org/10.1016/j.scitotenv.2023.161418.
- [53] F. Khan, Y. Ali, A facilitating framework for a developing country to adopt smart waste management in the context of circular economy, Environ. Sci. Pollut. R. 29 (18) (2022) 26336–26351doi, https://doi.org/10.1007/s11356-021-17573-5.

- [54] M.R. Seikh, R. Chatterjee, Determination of best renewable energy sources in India using SWARA-ARAS in confidence level based interval-valued Fermatean fuzzy environment, Appl. Soft Comp. 155 (2024) 111495, https://doi.org/10.1016/asoc.2024.111495.
- [55] Q. Zhou, C. Ye, X. Geng, A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment, Ocean Eng 291 (2024) 116416, https://doi.org/10.1016/oceaneng.2023.116416.
- [56] N. Kumar, J. Mahanta, A matrix norm-based Pythagorean fuzzy metric and its application in MEREC-SWARA-VIKOR framework for solar panel selection, Appl. Soft Comp. 158 (2024) 111592, https://doi.org/10.1016/j.asoc.2024.111592.
- [57] E. Soltani, M.M. Aliabadi, Risk assessment of firefighting job using hybrid SWARA-ARAS methods in fuzzy environment, Heliyon 9 (2023) e22230, https://doi. org/10.1016/j.heliyon.2023.e22230.
- [58] D.E. Ighravwe, D. Mashao, Application of a fuzzy multi-criteria decision framework for safety-critical maritime infrastructure evaluation, Heliyon 9 (2023) e17782, https://doi.org/10.1016/j.heliyon.2023.e17782.
- [59] A. Alinezhad, J. Khalili, SWARA method. In: new methods and applications in Multiple Attribute decision making (MADM), in: International Series in Operations Research & Management Science, vol 277, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-15009-9_14.
- [60] A.A. Salamai, An integrated neutrosophic SWARA and VIKOR method for ranking risks of green supply chain, Neutrosophic Set. Syst. 41 (2021) 113–126.[61] S. Opricovic, G.W. Tzeng, The compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, Euro. J. Oper. Res. 156 (2) (2004)
- 445–455. [62] M. Gul, E. Celik, N. Aydin, A. Taskin Gumus, A.F. Guneri, A state of the art literature review of VIKOR and its fuzzy extensions on applications, Appl. Soft
- Comput. 46 (2016) 60–89, 10/1016/j.asoc.2016.04.040.
- [63] M. Fleg, C.A. Jimenez-Bandala, C. Lozano, L. Andrade, Personnel selection incomplex organizations: a case of Mexican football team for the 2018 World Cup in Russia, Rev. Centro Invest. Univers. Salle 13 (49) (2018) 43–66, https://doi.org/10.26457/recein.v13i49.1510.
- [64] E. Ozceylan, A mathematical model using AHP priorities for soccer player selection: a case study, S. Afr. J. Ind. Eng. 27 (2) (2016), https://doi.org/10.7166/27-2-1265.