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Abstract
Background: Mutations of EFNB1 cause the X-linked malformation syndrome craniofrontonasal syndrome (CFNS). 
CFNS is characterized by an unusual phenotypic pattern of inheritance, because it affects heterozygous females more 
severely than hemizygous males. This sex-dependent inheritance has been explained by random X-inactivation in 
heterozygous females and the consequences of cellular interference of wild type and mutant EFNB1-expressing cell 
populations. EFNB1 encodes the transmembrane protein ephrin-B1, that forms bi-directional signalling complexes with 
Eph receptor tyrosine kinases expressed on complementary cells. Here, we studied the effects of patient-derived EFNB1 
mutations predicted to give rise to truncated ephrin-B1 protein or to disturb Eph/ephrin-B1 reverse ephrin-B1 
signalling. Five mutations are investigated in this work: nonsense mutation c.196C > T/p.R66X, frameshift mutation 
c.614_615delCT, splice-site mutation c.406 + 2T > C and two missense mutations p.P54L and p.T111I. Both missense 
mutations are located in the extracellular ephrin domain involved in Eph-ephrin-B1 recognition and higher order 
complex formation.

Methods: Nonsense mutation c.196C > T/p.R66X, frameshift mutation c.614_615delCT and splice-site mutation 
c.406+2T > C were detected in the primary patient fibroblasts by direct sequencing of the DNA and were further 
analysed by RT-PCR and Western blot analyses.

The impact of missense mutations p.P54L and p.T111I on cell behaviour and reverse ephrin-B1 cell signalling was
analysed in a cell culture model using NIH 3T3 fibroblasts. These cells were transfected with the constructs generated
by in vitro site-directed mutagenesis. Investigation of missense mutations was performed using the Western blot
analysis and time-lapse microscopy.

Results and Discussion: Nonsense mutation c.196C > T/p.R66X and frameshift mutation c.614_615delCT escape 
nonsense-mediated RNA decay (NMD), splice-site mutation c.406+2T > C results in either retention of intron 2 or 
activation of a cryptic splice site in exon 2. However, c.614_615delCT and c.406+2T > C mutations were found to be not 
compatible with production of a soluble ephrin-B1 protein. Protein expression of the p.R66X mutation was predicted 
unlikely but has not been investigated.

Ectopic expression of p.P54L ephrin-B1 resists Eph-receptor mediated cell cluster formation in tissue culture and
intracellular ephrin-B1 Tyr324 and Tyr329 phosphorylation. Cells expressing p.T111I protein show similar responses
as wild type expressing cells, however, phosphorylation of Tyr324 and Tyr329 is reduced.

Conclusions: Pathogenic mechanisms in CFNS manifestation include impaired ephrin-B1 signalling combined with 
cellular interference.

Background
Mutations in EFNB1 (OMIM 300035 [1]), encoding the
transmembrane protein ephrin-B1, have been detected in

the majority of patients with familial and sporadic cranio-
frontonasal syndrome [2,3]. Craniofrontonasal syndrome
(CFNS; OMIM 304110 [1]) is an X-linked developmental
malformation syndrome with variable phenotypic expres-
sion. It affects females more severely than males which is
quite unusual for X-linked genetic diseases [4]. The
unusual phenotypic pattern of inheritance has been
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explained by heterozygosity for an EFNB1 mutation and
the consequences of random X-inactivation in the female
patients [2].

Ephrin-B1 forms signalling complexes with Eph recep-
tor tyrosine kinases that are involved in cell sorting,
migration and adhesion, midline fusion, axon guidance,
neural plasticity and synaptogenesis [5,6]. In many
embryonic and adult tissues, ephrin ligand and Eph
receptor show complementary expression that function
in bi-directional cell signalling [7,8]. Contact of Eph-
receptor expressing cells with ephrin-B1-expressing cells
drives forward signalling in the Eph-expressing cells and
reverse signalling in the ephrin-B1-expressing cells. For-
ward signalling leads to cell repulsion, whereas reverse
signalling appears to affect mostly cell-cell communica-
tion through gap junctions [6,9]. Upon Eph/ephrin bind-
ing of opposing cells, several tyrosines (corresponding to
human Tyr313, Tyr317, Tyr324, Tyr329, Tyr343 and
Tyr344) in the ephrin cytoplasmic tail are phosphorylated
by Src family tyrosine kinases (SFKs), that co-localize in
lipid rafts and use phosphotyrosine-independent docking
mechanisms [10,11,8]. Phosphorylated ephrin-B1 serves
as a docking site for SH2-containing adaptor proteins,
such as Grb4, which then activate signalling pathways
ultimately leading to changes in actin cytoskeleton and
focal adhesion [12,13]. In addition, other signalling mole-
cules are recruited such as the GTP exchange factor PDZ-
RGS3 and the signal transducer and activator of tran-
scription 3 (STAT3) by highly conserved C-terminal
motifs [14,15]. Phosphorylation of Tyr324 and Tyr329
was shown to be most important for ephrin-B1 reverse
signalling [16-18]. Bi-directional signalling leads to
restriction of cell intermingling and communication, par-
ticularly, at cellular interfaces and tissue boundaries [19].
In the pathological condition existing in CFNS female
patients, mutant and wild type cellular compartments
have been proposed to cause cellular interference that
leads to disturbed border formation [2,3].

EFNB1 gene consists of 5 exons. The extracellular eph-
rin domain is encoded by exons 2 and 3, the transmem-
brane and intracellular domains are encoded by exon 5.
The major types of EFNB1 mutations (up to 55%) are
frameshift, nonsense, and splice site mutations that lead
to premature termination codons (PTCs). Missense
mutations constitute about 42% of all EFNB1 mutations
[3,20]. Most of them occur in exons 2 and 3, leading to
the exchange of amino acid residues that are important
for receptor-ligand interaction and signalling. Loss of
gene function has been proposed for most mutations and
has been shown for some of them, but it has not been
proven for missense mutations, splice site mutations, and
for mutations causing premature termination in exons 4
and 5 [21-23,2,24,25].

The concept of cellular interference appears to be not
unique to CFNS. Dibbens et al. [26] described the molec-
ular cause of epilepsy and mental retardation limited to
females (EFMR, OMIM 300088 [1]). This X-linked disor-
der affects females, while male carriers are unaffected.
EFMR is caused by mutations in PCDH19 gene encoding
the cell-cell adhesion molecule protocadherin 19. Like in
CFNS, somatic mosaicism may cause cellular interference
leading to malformations in the brain and development of
epilepsy [27]. This pathogenic mechanism has been
strongly supported by a mosaic male patient harbouring a
PCDH19 mutation, who was identified in a cohort of
patients with Dravet syndrome-like epileptic encephalop-
athy [28].

Here we analysed the impact of patient-derived EFNB1
on ephrin-B1 reverse signalling in vitro and in a cell cul-
ture model.

Methods
Cell culture
Genetic testing of the patients was performed after writ-
ten informed consent from the patients' parents and com-
plies with the tenets of the declaration of Helsinki.
Biopsies of CFNS patients were obtained from skin
(c.196C > T/p.R66X and c.406+2T > C) or following sur-
gical therapeutic interventions (c.614_615delCT). Patient
fibroblast cultures were established and maintained
according to standard cell culture conditions and har-
vested for genomic DNA and total RNA or protein isola-
tion.

NIH 3T3 cells were cultivated in tissue culture flasks
(Cellstar®) with Dulbecco's modified Eagle's medium
(DMEM, Sigma) containing 15% fetal calf serum (FCS,
Sigma) in a 5% CO2 atmosphere at 37°C.

Mutation detection
Genomic DNA and RNA from cultured cells were iso-
lated using standard protocols. Mutations were detected
by direct sequencing with the DYEnamic ET terminator
cycle sequencing kit (GE Healthcare Europe), and run on
a MegaBace sequence analyser (GE Healthcare).
Sequences were processed by DNASIS software (Mirai-
Bio, Alameda, USA). The sequencing data were com-
pared with EFNB1 reference sequence GenBank
accession number NM_004429.4 and NG_008887.71 [29]
and Ensembl number ENST00000204961 [30]. Mutations
were confirmed by exon-specific PCR amplification and
restriction enzyme digestion in all of the primary cell cul-
tures. PCR primers were 5'-CAAGTTCCTGAGTGG-
GAAGG-3' and 5'-GTGTGGCCATCTTGACAGTG-3'
producing a 455 bp product from exons 2-4 for analysing
c.196C > T/p.R66X. Primer pair 5'-GGCTCTTGTC-
CGCTTCCCTG-3' and 5'-CCAGTCTTCAAAGGG-
GATCA-3' producing a 502 bp fragment containing exon
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2 was used for analysing c.406+2T > C, and primer pair
5'-AGGAACAGTCAGCCAGGGG-3' and 5'-GGGGAG-
CAGGCGTAGGGTTA-3' producing a 377 bp product
containing exon 4 was used for analysing c.614_615
delCT. Primers were designed using the program Primer3
v.0.4.0 [31]. The PCR products were cleaved with restric-
tion enzymes: AvaI detecting c.196C > T/p.R66X, HinfI
detecting c.614_615delCT and BfuAI detecting c.406+2T
> C (all enzymes were from New England Biolabs).

RT-PCR and cloning
For expression analysis, total RNA was reverse tran-
scribed using SuperScript™ One-Step™ RT-PCR System
(Life Technologies) as recommended by the supplier.
Primer pair 5'-CAAGTTCCTGAGTGGGAAGG-3' and
5'-GTGTGGCCATCTTGACAGTG-3' was used to
amplify a 455 bp product from exons 2-4, and primer pair
5'-ATCATGAAGGTTGGGCAAGA-3' and 5'-TGGGGG
CAGTAGTTGTTCTC-3' was used to amplify a 467 bp
product from exons 4 and 5 of EFNB1. RT-PCR products
from cells carrying nonsense mutation c.196C > T/
p.R66X and frameshift mutation c.614_615delCT were
cleaved with AvaI and HinfI, respectively. RT-PCR prod-
ucts obtained from the c.406+2T > C EFNB1 allele were
cloned into pGEM-Teasy vector (Promega) and
sequenced as described [20].

Generation of the mutant EFNB1 cDNA constructs by site-
directed in vitro mutagenesis
EFNB1 RNA was prepared from placenta and reverse
transcribed as described above. Amplification of EFNB1
cDNA was performed using primer pair 5'-GGCAGAG-
GAAGGCGAGGCGA-3' and 5'-GCAAGGGGAGGGG
GTGTG-3' that generates an 1.2 Kb product. This RT-
PCR product was cloned into the pCR 2.1 vector (Invitro-
gen). Mutant EFNB1 cDNA containing c.161C > T/
p.P54L and c.332C > T/p.T111I mutations were gener-
ated using QuikChange® II Site-Directed Mutagenesis Kit
(Stratagene) according to the kit's protocol and EFNB1-
specific primers: 5'-GGGCTTGGTGATCTATCTGAAA
ATTGGAGACAAGC-3' and 5'-GCTTGTCTCCAATT
TTCAGATAGATCACCAAGCCC-3' for c.161C > T, 5'-
CAGAGCAGGAAATACGCTTTATAATCAAGTTCCA
GGAGTTCA-3' and 5'-CTGAACTCCTGGAACTT-
GATTATAAAGCGTATTTCCTGCTCTG-3' for c.332C
> T with nucleotide exchanges underlined. Primers were
designed using the web-based primer software program
(Stratagene) [32]. In the patients, nucleotide exchange
c.332C > T leads to the codon exchange ACC > ATC and
amino acid exchange threonine to isoleucine. In this work
nucleotide exchange c.332_333CC > TA was used. It
leads to the codon exchange ACC > ATA and the same
amino acid exchange. This was done because the threo-
nine codon ATA is more frequently used then ATC.

The presence of mutations was confirmed by sequenc-
ing with the AutoRead™ Sequencing Kit (Amersham Bio-
sciences) according to the kit's protocol. Wild type and
mutant EFNB1 cDNA inserts were recloned in pcDNA
3.1(+) vector (BD Biosciences) using EcoRI restriction
(MBI Fermentas).

NIH 3T3 transfection
NIH 3T3 cells were placed on a 6-well plate (1 × 105 cells/
well, Greiner Labortechnik). Cells were cultivated until
they reached 70% confluence (usually within 24 h). Plated
cells were co-transfected with pcDNA 3.1(+) vector con-
taining the mutant or the wild type EFNB1 cDNA (4 μg/
well) and the pEGFP-N3 vector (4 μg/well, BD Biosci-
ences). Transfections were done using PerFectin™ Trans-
fection reagent (PeqLab) according to the supplier's
recommendations. Transfection efficiency was measured
using fluorescent cytometry cell sorting (FACS) 24 h post
transfection as described below.

FACS analysis
Transfected cells were washed in PBS (Sigma) and treated
with trypsine (Sigma) 24 h post-transfection. After the
treatment, PBS was added and part of the cells was taken
for the FACS analysis using the ectopic GFP-fluorescence
and BD FACSCanto™ Flow Cytometer (BD Bioscience), 3
× 104 events were counted. Untransfected NIH 3T3 cells
served as controls.

NIH 3T3 stimulation
Stimulation of NIH3T3 cells with EphB2-receptor was
performed according to a modified protocol of Davy et al.
[9]. Briefly, NIH 3T3 cells were transfected and cultivated
for 32 h. Cells were prepared for EphB2-Fc (R&D Sys-
tems) stimulation by washing in PBS and incubation in
DMEM containing 0.5% FCS for 16 h. EphB2-Fc/Fc (50
μg/ml) were pre-clustered with anti-human rabbit IgG
(100 μg/ml, R&D Systems) in DMEM for 30 min at room
temperature. Starvation medium was aspirated, pre-clus-
tered EphB2-Fc/Fc containing medium was diluted to the
final EphB2-Fc/Fc concentration of 4 μg/ml and added to
the cells. After time intervals of 5 to 30 min of stimula-
tion, cells were washed in PBS and cultivated in DMEM
with 15% FCS as described above. As a control, stimula-
tion with Fc (R&D Systems) was performed. Analysis of
cluster formation was done 24 h after stimulation. Pic-
tures were taken by fluorescent microscopy method
(Axiovert 25 Inverse Microscope and AxioCam MRc5
0450-354, Carl Zeiss).

Western blot analysis
Patient fibroblasts were lysed with RIPA buffer [33] and
used for the SDS-PAGE and Western blot analysis using
anti-ephrin-B1 antibody (A-20, Santa Cruz Biotechnol-
ogy, Inc.). Immediately after the EphB2-Fc stimulation of
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NIH 3T3, cells were washed in PBS and lysed in RIPA
buffer containing PhosphoStop solution (Roche). Lysates
were used for the Western blot analysis using Phospho-
Ephrin B (Tyr324/329) antibody (Cell Signaling Technol-
ogy®) and anti-ephrin-B1 antibody (A-20). According to
the manufacturer (Santa Cruz), rabbit polyclonal anti-
body A-20 was raised against a 20 amino acid peptide
encoded by exon 3 that maps in the extracellular ephrin-
B1 domain.

All the experiments were performed at least twice.

Results
Expression of EFNB1 nonsense mutation c.196C > T/
p.R66X that is located in exon 2, frameshift mutation
c.614_615delCT in exon 4 and splice-site mutation
c.406+2T > C at the junction of exons 2 and 3 was analy-
sed, respectively. Two missense mutations located in
exon 2 of EFNB1 were functionally studied (Figure 1).
Both, missense mutation p.P54L and p.T111I, likely
change the conformation of the extracellular globular
part of the ephrin-B1 protein that interacts with the Eph-
receptor [2,34]. Their impact on ephrin-B1 reverse sig-
nalling was investigated in a cell culture model. All muta-
tions investigated were found in CFNS patients.

Molecular analysis of protein-truncating EFNB1 mutations 
in patient fibroblasts
Previously, it has been shown that PTC-causing muta-
tions occurring in internal exons of EFNB1 cause tran-
script depletion by nonsense-mediated mRNA decay
(NMD). Escape from NMD, however, has been observed
for the c.196C > T/p.R66X mutation that is located in
exon 2. In patient fibroblast cultures, a mutant EFNB1
transcript was detected by RT-PCR in addition to the
wild type transcript (Figure 2A and 2B). Mutation
c.614_615delCT is located in exon 4 of EFNB1 and also
showed escape from NMD [25] (Figure 2C and 2D). In

another girl from unaffected parents, de novo occurrence
of the heterozygous splice-site mutation c.406+2T > C
was detected in her genomic DNA (Figure 3A). Splice-site
mutation c.406+2T > C alters the consensus splice donor
site "GT" at the junction of exons 2 and 3. Analysis of the
patient fibroblasts by RT-PCR revealed the wild type
EFNB1 transcript to be the main transcript, but addi-
tional transcripts were derived from the mutant allele
c.406+2T > C (Figure 3B). Cloning and sequencing dem-
onstrated retention of intron 2, or activation of a cryptic
splice site within exon 2, resulting in premature termina-
tion of ephrin-B1 (Figure 3D). Retention of intron 2 gen-
erated an 1.2 kb RT-PCR product. The same product has
been shown previously for splice site mutation c.407-2A
> T [25], that has been used as a control (pc1). As a sec-
ond control (pc2) wt EFNB1 expressing fibroblasts were
used. The band above 1.2 kb observed in all three samples
was identified as a genomic DNA contamination.

Frameshift mutation c.614_615delCT and splice site
mutation c.406+2T > C, both, were predicted to result in
protein truncation preceding the transmembrane domain
of ephrin-B1. This prompted us to investigate whether
the observed transcripts will give rise to a truncated solu-
ble ephrin-B1 protein product that may exhibit domi-
nant-negative or gain-of-functions effects. To determine
whether mutant transcripts give rise to a truncated eph-
rin-B1 protein, Western blot analysis was performed. In
contrast to presence of wild type and mutant RNA in
patient fibroblasts, only wild type but not a mutant trun-
cated ephrin-B1 protein was detected for both mutations
using a polyclonal anti-human ephrin-B1 antibody (Fig-
ure 2E, 3C). In addition to the 50 kDa protein, a smaller
≈40 kDa band was detected (Figure 3C). A faint band is
also detected in Figure 2E and also can be seen in the
control wt fibroblasts (Figure 3C, left lane). Presumably,
this is an unglycosylated or degraded form of the wild
type ephrin-B1. Taken together, Western blot results sug-
gest that truncated ephrin-B1 is rapidly degraded in the
patient fibroblasts. Absence of the mutant protein shows
that mutations c.614_615delCT and c.406+2C > T appear
to have a loss-of-function effect.

Analysis of missense mutations in a cell culture model
To determine the role of p.P54L and p.T111I missense
mutations in EphB2/ephrin-B1 signalling, a cell culture
model was established. Expression constructs containing
wild type, p.P54L and pT111I EFNB1 cDNA, respectively,
were generated by site-directed mutagenesis and used for
transfection of NIH 3T3 cells. NIH 3T3 were chosen
because they do not express mouse homologues of B-type
ephrin genes (Figure 4A, [35]). Transfection efficiency of
the constructs in NIH3T3 was monitored by RT-PCR and
FACS analysis (Figure 4).

Figure 1 Schematic representation of the EFNB1 coding cDNA. 
The boxes represent the 5 exons with the functional domains of the 
protein shown in different colours. The position and type of the inves-
tigated mutations is shown in the upper part.
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To understand the impact of missense mutations on
cell behaviour and ephrin-B1 reverse signalling, wild
type, p.P54L and p.T111I ephrin-B1 expressing NIH3T3
cells were stimulated with EphB2-Fc. Wild type and
p.T111I ephrin-B1 expressing NIH3T3 cells were forming
clusters (Figure 5A), whereas cells expressing p.P54L eph-
rin-B1 were scattered much like the ephrin-B1 expressing
cells in the control following Fc-only treatment. To deter-
mine the impact of p.P54L and p.T111I missense muta-
tions on Tyr-phosphorylation, wild type, p.P54L and
p.T111I EFNB1 expressing NIH 3T3 cells were stimulated
with pre-clustered EphB2-Fc from 5 to 30 min. After the
stimulation, Tyr324 and Tyr329 phosphorylation
response was monitored by Western blot analysis using
Tyr324/329-specific polyclonal antibodies (Figure 5B).
This showed phosphorylation of the wild type ephrin-B1
to peak at about 25 min after stimulation. We observe
reduced phosphorylation in p.T111I lysates compared
with wild type lysates at 30 min despite about equal

amounts of ephrin-B1 protein detected by anti-ephrin-B1
antibody (Figure 5B second row of upper panel). In
p.T111I expressing cells the level of Tyr-phosphorylation
appears lower than in wild type EFNB1-transfected NIH
3T3 and Tyr-phosphorylation seems to last for a shorter
period of time, e.g. in p.T111I cells only a weak signal was
detected at time point 30 min in contrast to the wild type
cells. For p.P54L mutant ephrin-B1 no phosphorylation
was detected like in the controls following Fc-only treat-
ment.

Discussion
In this study, we examined the impact of disease-causing
mutations in the ephrin-B1 gene. The major types of
mutations including frameshift, nonsense and splice site
mutations generate PTCs that elicit NMD. Usually, NMD
proceeds when the PTC occurs in internal exons or is
located more than 50-55 bp upstream the exon-intron
junction of the penultimate exon [36]. Unexpectedly, in

Figure 2 Expression of EFNB1 transcript and protein in primary patient fibroblasts harbouring heterozygous nonsense mutation c.196C > 
T/p.R66X and heterozygous frameshift mutation c.614_615delCT. (A) The mutation c.196C > T/p.R66X has been shown by direct sequencing of 
the cDNA. Nucleotide exchange C > T (indicated by an arrow) creates a premature termination codon TGA in exon 2. (B) Wild type and mutant EFNB1 
RNA were expressed in a patient fibroblast culture (lane mut). In the control (lane wt) only wild type EFNB1 RNA is expressed. Wild type and mutant 
transcripts were distinguished by RT-PCR followed by cleavage with restriction enzyme AvaI. Wild type allele is indicated by arrows, mutant allele is 
indicated by an arrowhead. In lane Ø the RT-PCR product prior to cleavage is shown. (C) Direct sequencing of EFNB1 cDNA of a control (upper panel) 
and mutation c.614_615delCT (lower panel). Deletion of the CT dinucleotide creates a premature termination codon TGA in exon 4 (indicated by ar-
rows). (D) Wild type and mutant EFNB1 RNA were expressed in a patient fibroblast culture (lane Er4). In the control (lane Er6) only wild type EFNB1 RNA 
is expressed. Wild type and mutant transcripts were determined by RT-PCR followed by cleavage with restriction enzyme HinfI. Wild type allele is in-
dicated by arrows, mutant allele is indicated by an arrowhead. Size markers are shown in lane M (100 bp DNA ladder, Invitrogen). (E) Western blot 
analysis of ephrin-B1 expression in lysates of patient fibroblast cultures. Er4 and Er6 show an approximately 50 kDa protein (indicated by an arrow). No 
smaller truncated protein corresponding to c.614_615delCT was detected at the predicted molecular weight of ≈20 kDa in Er4 (expected size indicat-
ed by an arrowhead) using an anti-ephrin-B1 antibody. Protein sizes were determined using Precision Plus Protein™ Standards Dual Color (BIO-RAD).

A
Exon 2 M Er4         Er6

DC
Ex 4                  Ex 5

c.196C>T/p.R66X

130 bp

337 bp

HinfI

465 bp

wt

Ex 4 Ex 5

386 bp
455 bp

M wt mut       øB E

50

Er4 Er6

[kDa]

wt
ephrin-B1

Ex 4 Ex 5

69 bp

AvaI

37

25 predicted
truncated
ephrin-B1

c.614_615delCT

p



Makarov et al. BMC Medical Genetics 2010, 11:98
http://www.biomedcentral.com/1471-2350/11/98

Page 6 of 10
this work it was shown that the c.196C > T/p.R66X muta-
tion escapes NMD. This mutation was described before
in both familial and sporadic cases [3,20,22,23]. A PTC
that is caused by c.196C > T/p.R66X is located in the sec-
ond exon 208 bp upstream the exon-intron junction. The
NMD escape of the PTC-causing mutations that are
located in the second exon appears to be not unique for
the EFNB1 gene. Kang and Macdonald described such
mutations in GABRA1 and GABRG2 genes [37], and
Jensen et al. in the JARID1C gene [38]. The reason for
NMD escape is still not clear. Bühler et al. [39] proposed a
NMD-promoting element (NPE) in exon 2 of the IGHM
gene. PTCs located downstream of the NPE will elicit
NMD, whereas PTCs located upstream of the NPE will
result in NMD escape. This has been experimentally
proven by deletion analysis demonstrating NMD failure

upon removal of the NPE from exon 2. We may propose
that a NPE also exists in GABRA1, GABRG2, JARID1C
and EFNB1 and that PTCs that are located upstream of
this element do not elicit NMD.

Another possible explanation for the NMD escape was
raised by Zhang and Maquat [40]. This group showed
that NMD in the TPI gene can be avoided by the re-initia-
tion of the translation by the 14th AUG codon including
the Kozak sequence. In EFNB1, translation re-initiation
could occur at the 156th codon (AUG). This could lead to
the synthesis of a truncated ephrin-B1 that lacks the sig-
nal peptide and almost the entire extracellular domain.
However, such a protein will not enter the endoplasmatic
reticulum and consequently will not appear on the cell
surface.

Figure 3 Sequence of EFNB1 splice site mutation c.406+2T > C and expression of EFNB1 transcript and protein in primary patient fibro-
blasts. (A) The mutation has been detected by direct sequencing of genomic DNA. Nucleotide exchange T > C in intron 2 at the splice donor site is 
indicated by an arrow. The major transcript expressed in patient fibroblasts was the wild type allele. (B) Wild type and mutant transcripts in patient 
fibroblasts (lane p) and control cell cultures (lanes pc1 and pc2) were determined by RT-PCR. The wild type RT-PCR product is indicated by an arrow, 
mutant RT-PCR products are indicated by arrowheads. Sequencing of the aberrant transcripts showed retention of intron 2 (generating a 1.2 kb RT-
PCR product) or activation of a cryptic splice site in exon 2 (generating a 288 bp RT-PCR product). (C) Western blot analysis of ephrin-B1 expression in 
patient fibroblasts and control cell culture lysates showed an approximately 50 kDa protein (indicated by an arrow). No smaller truncated protein was 
detected in patient fibroblasts. Protein sizes were determined using Precision Plus Protein™ Standards Dual Color (BIO-RAD). (D) The sequence of exon 
2 and 3 and part of intron 2 are shown. Coding sequences are shown in capital letters, flanking sequences of intron 2 are shown in small letters. The 
BfuAI site at the mutation site is underlined. Aberrant splicing is indicated by green letters, the cryptic splice junction is underlined. Premature termi-
nation codons (STOP) generated by aberrant splicing or retention of intron 2 are highlighted in red.
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Ex 2             In 2

tct aag tgg tgc aat gct att gca tgt agt taa ...
STOP             

... tgacttctctggcctcttcctgcagCA ACA TCC AAT GGA Exon 3
AGC CTG GAG GGG CTG GAA AAC CGG GAG GGC GGT GTG
TGC CGC ACA CGC ACC ATG AAG ATC ATC ATG AAG GTT
GGG CAA Ggt ... STOP

RT-PCR

288 bp

455 bp

C

retention of intron 2

Ex 2             Ex 3 control       patient[kDa]
wildtype

ephrin-B150

37

C

cryptic splice site
activation in exon 2

25
predicted
truncated
ephrin-B1
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Escape from NMD also could give rise to truncated,
soluble ephrin-B1 polypeptides that lack the transmem-
brane and intracellular domain. Such polypeptides could
exhibit dominant-negative or gain-of function effects.
Frameshift mutation c.614_615delCT occurred in exon 4
of EFNB1 and generates a PTC but the transcripts escape
NMD. Expression analysis of patient fibroblasts revealed
transcripts from mutant and wild type alleles at similar
amounts, whereas only the wild type but no truncated
ephrin-B1 was detected by Western blot analysis. This
rather suggests that truncated ephrin-B1 proteins are
unstable and do not contribute substantially to the CFNS
phenotype. In another female patient with classical CFNS
phenotype, splice site mutation c.406+2T > C was
detected. In the patient examined here c.406+2T > C
occurred de novo. Expression analysis of the patient's
fibroblasts revealed retention of intron 2 as has been pre-
viously detected for the splice acceptor "AG" mutation
c.407-2A > T at the same exon junction [25]. In addition,
activation of a cryptic splice site in the preceding exon 2
was detected for c.406+2T > C, which is generally a fre-
quent consequence of 5' splice site mutations [41,42].
Cryptic splice site activation has not been observed for wt
EFNB1, in fact, only a single EFNB1 transcript has been

reported [30]. Both, intron retention and cryptic splice
site activation resulted in PTCs and reduced transcript
amounts when compared with the wild type allele.

Like c.614_615delCT no truncated soluble ephrin-B1
polypeptide was generated from c.406+2T > C EFNB1
mutation in patient fibroblasts. Mutation c.196C > T/
p.R66X generates a PTC just 36 amino acids following the
signal peptide. Presumably, this will not allow production

Figure 4 Transfection of NIH 3T3 cells with the p.P54L and 
p.T111I EFNB1 cDNA constructs. (A) EFNB1 constructs p.P54L and 
p.T111I were generated by site-directed mutagenesis and transfected 
into the NIH 3T3 cells. After the transfection, RT-PCR using EFNB1 spe-
cific primers was performed. RT-PCR products of the primary NIH 3T3 
cells (lane 1), NIH 3T3 cells transfected with wild type, p.P54L, p.T111I 
EFNB1 cDNA constructs, respectively (lanes 2-4) and Cos-1 cells as a 
positive control (lane 5) are shown. Size markers are shown in lane M 
(100 bp DNA ladder, Invitrogen). (B) FACS analysis of the NIH 3T3 cells 
transfected with wild type and mutant EFNB1 constructs. Grey peaks 
show maximum of GFP fluorescence in NIH 3T3 transfected cells. Emp-
ty peaks show maximum of GFP fluorescence in untransfected control 
cells.

A M 1 2 3 4 5

455 bp

54,28 71,7071,70 49,4849,48

wt p.P54L p.T111I

o
u

n
t

B

GFP

C
o

Figure 5 EphB2-Fc stimulation of wild type, p.P54L, p.T111I eph-
rin-B1 expressing NIH 3T3 cells. (A) NIH 3T3 cells expressing wild 
type and p.T111I ephrin-B1 were detected by fluorescent microscopy 
as cell clusters after the EphB2-Fc stimulation (indicated by arrows). 
Cells expressing p.P54L were scattered like the cells in the control (Fc 
treatment). (B) Following a time course of 5 to 30 min of EphB2-Fc stim-
ulation, Western blot analysis of wild type, p.P54L and p.T111I ephrin-
B1 expressing NIH 3T3 cells using phospho-ephrin-B (Tyr324/329) an-
tibody and anti-ephrin-B1 antibody was performed. Cells transfected 
with wild type ephrin-B1 and treated with Fc only were used as a con-
trol. The anti-ephrin-B1 antibody (A-20) was used to demonstrate the 
whole amount of the ephrin-B1 protein loaded. Differences in the 
amount of ephrin-B1 on the Western blots can be explained by un-
equal amounts of ephrin-B1 in the lysates. This may be due to differ-
ences in the expression from the transiently transfected EFNB1 cDNA 
plasmids. Protein sizes were determined using Precision Plus Protein™ 
Standards Dual Color (BIO-RAD).

A
EphB2-Fc Fc

wt

p.P54L

p.T111I

5’    10’    15‘   20’   25’   30’

wt + Fc

B
5’    10’    15’   20’   25’   30’

wt +

EphB2-Fc

p.P54L +

EphB2-Fc

p.T111I +

EphB2-Fc
anti-ephrin-B1

antibody
anti-phospho-ephrin-B1

antibody
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of a functional polypeptide, however, we were not able to
further analyse it because the polyclonal anti-ephrin-B1
antibody we used does not recognize the N-terminal part
of ephrin-B1.

The impact of two missense mutations on ephrin-B1
signalling and cell behaviour was studied in a cell culture
model using NIH 3T3 fibroblasts. Reverse signalling
influences actin cytoskeletal rearrangement and may
result in transcriptional regulation of different genes
involved in extracellular matrix reorganization [12,43].
We performed Western blot analysis to analyse phospho-
rylation of Tyr324 and Tyr329 of wild type, p.P45L and
p.T111I proteins in response to EphB2-Fc receptor stimu-
lation. No Tyr324/329 phosphorylation of p.P54L mutant
protein was detected. In contrast, p.T111I ephrin-B1 still
showed Tyr324/329 phosphorylation like the wild type
protein, albeit the timing appeared slightly different.
Since p.T111I undoubtedly causes the CFNS phenotype,
phosphorylation of Tyr324/329 may be less important for
disease manifestation.

Altogether, eight different mutations were functionally
analysed at the mRNA and protein level, respectively
(Table 1). Most of them appear to result in loss of gene
function, but additional mechanisms are involved in
manifestation of CFNS. There is some evidence that
CFNS develops as a consequence of cellular interference,
hence the missense mutations were further investigated
in cell culture.

NIH3T3 cells expressing either wild type or mutant
ephrin-B1 exhibited differences in cluster formation after
EphB2-Fc stimulation. Cells expressing wild type or
mutant ephrin-B1 were visualized by the green fluores-

cent protein and showed a scattered distribution in tissue
culture dishes before stimulation. EphB2-Fc stimulation
induced formation of clusters in the wild type and
p.T111I protein expressing cells, whereas no cell clusters
were found in p.P54L expressing cells. This suggests that
phosphorylation of Tyr324/329 is closely linked with the
cluster formation, however, the mechanism for this is
unclear. Possible reasons are that wild type and p.T111I
expressing cells experience a proliferative signal upon
EphB2 stimulation. After division daughter cells do not
move apart but rather stay close together. Alternatively,
cells respond to EphB2 stimulation with increased motil-
ity and migrate into clusters. Embryonic mouse cells
expressing an ephrin-B1 lacking the most C-terminal
PDZ binding domain do not sort-out from wild type cells,
whereas ephrin-B1 null cells do [44,45,9]. In this respect,
it is striking that missense mutations detected in CFNS
patients have been detected exclusively in the exons
encoding the extracellular region of ephrin-B1, which
strongly argues for the involvement of Eph receptor for-
ward signalling in the pathogenic mechanism. We pro-
pose that CFNS is caused mostly by disturbance of Eph
receptor forward signalling and the consequences of cel-
lular interference in heterozygous females.

Conclusions
In this work three PTC-causing mutations were analysed:
nonsense c.196C > T/p.R66X, frameshift c.614_615delCT
and splice-site c.406+2T > C mutation. These mutations
give rise to the mutant RNA, but no mutant protein was
detected. According to these results and previously pub-
lished data, it can be concluded, that the majority of PTC-

Table 1: Summary of the functionally analysed EFNB1 mutations

Mutation Exon/intron Cell type EFNB1 mRNA Ephrin-B1 protein References

c.196C > T
p.R66X

Exon 2 Patient fibroblasts wt level N.d. This report

c.377_384
delTCAAGAAG

Exon 2 Patient fibroblasts Strongly reduced amount (NMD) N.d. [21]

c.614_615
delCT

Exon 4 Patient fibroblasts wt level (NMD escape) No protein detected This report, [21]

c.406+2T > C Intron 3 Patient fibroblasts Reduced amount No protein detected This report

c.407-2A > T Intron 3 Patient fibroblasts Strongly reduced amount (NMD) N.d. [21]

c.161C > T
p.P54L

Exon 2 Patient fibroblasts 
and transfected NIH 
3T3 cells

wt level Protein, but no EphB2-
activated 
phosphorylation

This report, [21]

c.332C > T
p.T111I

Exon 2 Transfected NIH 3T3 
cells

N.d.a Protein, but altered 
EphB2-activated 
phosphorylation

This report

c.409A > G
p.T137A

Exon 3 Patient fibroblasts wt level N.d. [21]

Not determined; aNot determined in patient fibroblasts.
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causing EFNB1 mutations have neither dominant-nega-
tive, nor gain-of-function effects but rather loss-of-func-
tion effect.

The analysis of missense mutations p.P54L and p.T111I
revealed that both cause CFNS but have different mecha-
nisms of ephrin-B1 disturbance of signalling. Mutation
p.P54L seems to have loss-of-function effect since no
Tyr324/329 phosphorylation of the p.P54L ephrin-B1 and
no cluster formation of the p.P54L expressing cells were
shown, whereas p.T111I ephrin-B1 differs slightly from
the wild type in phosphorylation timing. Therefore, addi-
tional mechanisms involved in phenotypic manifestation
need to be postulated. This may include other tyrosine
residues of ephrin-B1 are more important for reverse sig-
nalling. Another possibility could be impaired forward
signalling of Eph receptor expressing cells. Combined
with cellular interference this may be the main patho-
genic mechanism in CFNS manifestation in female
patients.
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