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ABSTRACT
Introduction: The retentive niches of deep caries lesions have a distinct biome.  
Methods: We evaluated the site-specific (occlusal and proximal) Candida-biome of Severe- 
Early Childhood Caries (S-ECC) in 66- children (132 lesions). Asymptomatic primary molars 
fitting the definition of the International Caries Detection and Assessment-(ICDAS)-caries- 
code 5/6 were analyzed. Deep-dentinal sampling and simultaneous assessment of pH were 
performed. Clinical isolates were speciated using multiplex-PCR and evaluated for their 
acidogenic and aciduric potential. 
Results: Surprisingly, a high prevalence of Candida species (72.7%), either singly or in 
combination, was noted from both the proximal and occlusal cavities. C. tropicalis was the 
most prevalent species (47%; 34/72), followed by C. krusei (43.1%; 31/72) and C. albicans 
(40.3%; 29/72), with C. glabrata being the least (9.7%; 7/72). Over 45% low-pH niches (pH <7) 
of both sites yielded either dual or triple species of Candida. Genotyping revealed three 
distinct C. albicans genotypes (A, B, and C) with (14/29; 48.3%) of strains belonging to 
Genotype A. All four evaluated Candida species exhibited acidogenic and aciduric potential, 
C. tropicalis being the most potent. 
Conclusion: This, the first report of the high-density, multispecies, yeast colonization of deep- 
dentinal lesions in S-ECC, suggests that the Candida-biome plays a significant etiologic role in 
the condition, possibly due to their profound acidogenicity in milieus rich in dietary 
carbohydrates.
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Introduction

Early Childhood Caries (ECC) is perhaps the most 
globally prevalent, insidious form of dental caries 
affecting virtually millions of primary teeth of pre
school children [1,2]. A hypervirulent variant of this 
intractable infection is called severe-early childhood 
caries (S-ECC). If untreated, the disease progresses 
into extensive cavitation, resulting in painful pulp 
involvement, loss of teeth, and possibly, systemic 
infection [3,4]. The major etiological agent of ECC 
is the plaque biofilm microbiome comprising 
a bacteriome and a mycobiome [5].

Factors such as the diet and the individual’s oral 
hygiene critically impact the composition and func
tionality of this poly-microbial biofilm community 
with diverse inter-kingdom interactions [6,7]. 
Dietary carbohydrates, in particular, play a key role 
in promoting the recruitment and colonization of the 
biofilm matrix - including pathogens such as the 
mutans-streptococci, which are both acidogenic and 
aciduric. Subsequent acidification of the matrix- 

microenvironment by the cariogens leads to initial 
enamel demineralization and the eventual lesion 
[8–10].

It is also likely that the specific anatomical location 
in which these cariogens reside mainly the occlusal 
and proximal tooth surfaces may modify the disease 
process, and some have suggested differential initia
tion and progression rates of caries in occlusal and 
proximal lesions of ECC. For instance, Vanderas et al. 
(2006), in a 4-year longitudinal study, observed that 
the caries progression was more rapid on the prox
imal surfaces of teeth compared to the occlusal sur
faces [11]. Allison et al. (2003) found a strong 
correlation between enclosed, proximal spaces in the 
primary dentition and caries incidence [12]. Others 
have suggested that the rapid progression of proximal 
caries lesions, in comparison to the occlusal lesions, 
may be due to the increased rate of plaque accumula
tion due to difficulty in access for oral hygiene mea
sures, sequestration from the neutralizing effect of 
salivary flow, compounded by the highly aciduric/ 
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acidophilic resident microbes, thriving at a low pH 
location [13–16].

Streptococcus mutans and lactobacilli have tradition
ally been cited as the prime drivers of ECC [17,18], 
although reports from recent clinical studies have indi
cated the intriguingly high prevalence of Candida spe
cies in plaque biofilm in ECC [19–22]. Indeed, several 
researchers studying the cariogenic process have sur
mised that the Candida species cohabiting with 
S. mutans may play a significant causal role in the 
initiation and progression of dental caries [1,2,9]. This 
is evidenced by the fact that Candida spp, in general, 
have a remarkable ability to adhere and colonize dental 
enamel and exposed dentine surfaces while producing 
copious quantities of carboxylic acids through dietary 
carbohydrate metabolism [23–25]. Moreover, the 
intense aciduric and acidogenic attributes of Candida 
spp. ensure their continued survival and growth in 
a low pH, dysbiotic ecosystem, hostile for healthy, bio
film propagation [25–27].

Based on this background, and in the absence of 
any data in the literature on the yeast carriage of 
proximal and occlusal lesions of S-ECC, we hypothe
sized that the prevalence of yeasts in the latter two 
niches differ in terms of their Candida-biome. Hence, 
in a cohort of Emirati children with S-ECC, we eval
uated the site-specific prevalence of candidal load in 
infected dentine harvested from primary molars. As 
acidogenicity is a surrogate indicator of the cario
genic potential of a pathogen, and the opportunity 
was also taken to evaluate in vitro the relative acid
ogenicity of a select group of 35, C. albicans (10 
isolates), C. tropicalis (10), C. krusei (10) and 
C. glabrata (5) isolates from S-ECC lesions.

Material and Methods

Study subjects

A cohort of 66 Emirati children, aged 48 months to 
72-months-old, attending the routine pedodontics 
teaching clinic at the University Dental Hospital 
Sharjah, UAE, were invited to participate in the 
study. After obtaining informed consent from the 
parent of each child participant, under a protocol 
approved by the Research Ethics Committee (REC), 
University of Sharjah (REC-18-02-18-03), all healthy, 
cooperative participants underwent a full dental 
examination. Exclusion criteria included i) the like
lihood of pulp exposure during the carie excavation 
process, ii) receipt of antibiotics 4 weeks prior to the 
study, iii) those wearing orthodontic appliance/s/, iv) 
congenital tooth anomaly, (v) dentine samples from 
endodontically treated teeth, or bleeding from the 
cavity during the sample collection process.

Caries diagnosis, sample collection, microbiologi
cal and molecular biological analyses were performed 

as described below, with minor variations to the pro
tocol from a recently published study [28].

Caries diagnosis

Caries status was documented using the World 
Health Organization (WHO) criterion of decayed, 
missing, and filled (dmft) index via an oral examina
tion. The severity of occlusal and proximal caries 
lesions was assessed and documented according to 
the International Caries Detection and Assessment 
System (ICDAS)-classification criteria codes [29]. 
A trained paediatric dentist (KSF) conducted all the 
clinical investigations. Children with more than five 
decayed teeth and at least two asymptomatic primary 
molars with occlusal or proximal cavitated carious 
lesions involved were selected. The severity of cavi
tated lesions was classified according to the ICDAS 
code 5/6 (code 5-distinct cavity with visible dentine; 
code 6-extensive and distinct cavity with visible den
tine affecting more than half of the surface) [29].

Sample collection

Each selected symptom-free, caries active, deep- 
dentin, occlusal, and proximal lesions were isolated 
with cotton wool rolls to obviate salivary contamina
tion. The pH of both the occlusal and proximal 
cavities was evaluated using pH indicator strip 
(Spezialindikator, pH 4.0–7.0, Merck, Germany) by 
a single operator (KSF) according to the protocol 
described by Carlen et al. [30].

After cleaning and drying the occlusal and prox
imal cavities with a prophy brush without using 
a prophy paste supplement, the infected-dentine sam
ples were collected by excavating soft dentine from 
the cavitated dentine lesions. Each sample was split 
into two aliquots, and one aliquot was put in a 1.5 ml 
microcentrifuge tube containing 300 µl of Phosphate 
Buffered Saline (PBS) for multiplex PCR. The second 
aliquot was dispersed in Brain Heart Infusion Broth 
(BHI) (Thermo Scientific Remel, USA) and was 
immediately frozen at −20°C prior to evaluation by 
microbial culture.

Microbiological analysis

In the laboratory setting, an aliquot in BHI broth was 
cultured aerobically on chloramphenicol supplemen
ted (50 mg/mL) Sabourauds dextrose agar (SDA) at 
37°C for 48 h, and the resultant growth was observed. 
Five colonies of each sample that yielded yeast growth 
on the SDA plate were then sub-cultured on 
CHROMagar (HiCrome™ Candida Differential Agar, 
M1297A) for 24 h. Pure cultures of different species 
were then obtained by selecting colony forming units 
(CFUs) based on their colony appearance on 
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CHROM agar. The different candidal species 
obtained from each sample were then sub-cultured 
in Sabouraud dextrose broth containing 100 mM glu
cose for 24 hours to evaluate their acidogenic poten
tial as well.

DNA isolation and multiplex PCR

DNA extraction of the infected-dentine samples was 
performed using MasterPure™ Complete DNA and 
RNA Purification (Epicenter, USA) following the 
manufacturer’s instructions. The extracted DNA 
quality and quantity was assessed using the Colibri 
Microvolume Spectrometer (Titertek-Berthold 
Detection Systems GmbH, Germany). DNA samples 
were considered pure if the A260/280 ratio were 
more than 1.8 and the A260/230 values were in the 
range of 1 to 2.2.

Clinical isolates were identified and confirmed by 
the multiplex PCR amplification, which allowed the 
identification of six common, clinically pathogenic 
yeasts of the Candida genus, namely C. albicans, 
C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, 
and C. dubliniensis. The working method was estab
lished on the amplification of the two fragments from 
the ITS1 and ITS2 regions by the combination of two 
yeast specific and six species-specific primers [31] 
using PCR (Table 1).

PCR involved the following thermal cycling con
ditions: 40 cycles of 15 s at 94°C, then 30 s at 55°C, 
and 45 s at 65°C, following an initial 10-min period 
of DNA denaturation and enzyme activation at 94°C 
[32]. All amplicons were assessed by electrophoresis 
in 2.0% (w/v) agarose gels run at 90 V/cm2 for 
60 mins. Samples containing multiple species were 
further re-confirmed by quantitative PCR analysis 

using species-specific primers for the identified phe
notypes. This was particularly necessary for the case 
as discrimination of C. tropicalis and C. albicans 
within multispecies samples was difficult using gel 
electrophoresis due to the relatively close proximity 
of bands derived from multiplex PCR amplification.

C. albicans genotyping

Candida albicans sequences were characterized into 
five genotypes A, B, C, D, and E based on the band 
patterns, with genotype A-450 bp, genotype B-840 bp, 
genotype C-450-840 bp, genotype D-1080 bp, and 
genotype E-1400bp. C. albicans genotyping was per
formed using the following primers: CA-INT- L 
(5ʹ-ATAAGGGAAGTCGG-CAAAATAGATCCGTAA- 
3ʹ) and CA-INT-R (5ʹCCTTGGCTGTGGTTTCGCTAG 
ATAGTAGAT-3ʹ) (Table 2). The amplification process 
follows an initial denaturation at 93°C for 5 mins, then 
40 cycles of denaturation for 30 s at 93°C, with primer 
annealing at 55°C for 45 s and extension at for 45 s at 
72°C, with a final extension for 7 mins at 72°C [33]. 
The PCR products were loaded into a 2% (w/v) agar
ose gel (Bio-Rad, Hercules, CA, USA) and electrophor
esed at 100 V/cm2 for 30 mins and stained using 
ethidium bromide solution.

Acid production and Acid tolerance

Investigations on acid production and acid tolerance 
involved 35 randomly selected isolates, comprising 10 
strains each of C. albicans, C. tropicalis, C. krusei, and 
five strains of C. glabrata. A protocol previously 
described by Qiu et al., with some modifications 
was used for this purpose [20].

Table 1. Amplicon sizes (base pairs) results from multiplex PCR amplification using yeast specific (Universal- 
UNI1 and UNI2) and corresponding species-specific primers of Candida spp.

Species Primer Sequence (5ʹ-3ʹ) Amplicon size (bp)

UNI 1 TTCTTTTCCTCCGCTTATTG
UNI 2 GTCAAACTTGGTCATTTA

C. albicans Calb AGCTGCCGCCAGAGGTCTAA 583/446
C. tropicalis Ctro GATTTGCTTAATTGCCCCAC 583/507
C. krusei Ckru CTGGCCGAGCGAACTAGACT 590/169
C. glabrata Cgla TTGTCTGAGCTCGGAGAGAG 929/839
C. dubliniensis Cdub CTCAAACCCCTAGGGTTTGG 591/217
C. parapsilosis Cpar GTCAACCGATTATTTAATAG 570/370

Table 2. Primers used for the determination of Candida albicans genotypes.
Primer Sequence (5ʹ-3ʹ) Expected PCR product size (bp)

Identification PCR
Primer 1 CACCAACTCGACCAGTAGGC C. albicans 125
Primer 2 CGGGTGGTCTATATTGAGAT

Genotype determination
CA-INT-L ATAAGGGAAGTCGG-CAAAATAGATCCGTAA C. albicans genotype A 450

C. albicans genotype B 840
C. albicans genotype C 450–840

CA-INT-R CCTTGGCTGTGGTTTCGCTAGATAGTAGAT C. albicans genotype D 1080
C. albicans genotype E 1400
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Candida was suspended in PBS and adjusted to 
an optical density (OD) of 1.0 at 530 nm (1×108 

cells/mL) for both assays. Sabouraud dextrose broth 
(SDB) containing 100 mM glucose was adjusted to 
pH 4.0, 5.0, 5.5, 6.0, and 7.0 using sterile HCl and 
NaOH. Then, 50 µl of suspension of the selected 
isolate was inoculated into 5 mL SDB and cultured 
at 37°C for 48-h. After incubation, the growth was 
centrifuged at 5000 rpm for 5 min at 4°C, and the 
pH of the supernatant was measured using a pH 
meter (JK-PHM-002 Desktop pH meter). Acid pro
duction was assessed as change of pH over the 
incubation period.

To determine acid-tolerance of Candida spp., 
under different pH values, the growth of different 
species was evaluated by washing the precipitate 
(above) three times with PBS and then resuspending 
in 2 mL PBS. Finally, the turbidity was measured at 
530 nm (OD530) using a spectrophotometer (Genova 
Bio Spectrophotometer).

Higher ∆pH and OD530 values were taken as 
a surrogate indicator of acidogenicity and survival 
potency in an acidic milieu, respectively. All tests 
were done in triplicate on two separate occasions.

Acidogenicity in glucose supplemented media

The relative acidogenic potential of the 35 clinical 
isolates of Candida species in dietary sucrose (as 
opposed to glucose) was also evaluated. For this pur
pose, 100 mM sucrose supplemented SDB in multi
well plates was used, and pH reduction assessed at 24 
h and 48 h time intervals as per the method of 
Samaranayake et al. (1983) with some modifications 
[26]. Separate overnight growth of yeast suspension 
from each of the four species was adjusted to an 
optical density (OD) of 1.0 at 530 nm (1×108 cells/ 
ml), and 50 µl of each of the selected isolates were 
added to each well of 5 ml SDB containing 100 mM 
sucrose (adjusted to pH 7.0 using NaOH) followed by 
incubation for 48 h at 37°C. At the above time points, 
the pH was assessed using a pH meter (Portable pH 
meter-H1991, Hanna, USA).

Statistical analyses

Results were presented as mean ± SD, and data were 
evaluated using t-tests. Chi-square test, Fischer exact 
tests, and analysis of variance (ANOVA) for compar
ing group differences between Candida species were 
used. Statistical significance was considered signifi
cant at p ≤ 0.05.

Results

Candida species were detected in occlusal and prox
imal deep caries lesions of 48/66 (72.7%) children 

(mean-age 5.3 ± 0.78 years) with S-ECC. The mean 
decayed teeth per child was 8.32 ± 2.66, while the 
subset of children who were yeast positive had 
8.44 ± 2.77 mean-decayed teeth. In total 72/132 
(54.5%) proximal and occlusal sites harboured yeasts 
either as single or multiple species (Table 3). Among 
children with Candida positive caries lesions, 25/72 
(34.7%), and 9/72 (12.5%) of the occlusal lesions at 
pH <7 and pH 7, respectively, harboured single or 
dual/multispecies Candida.

Of children with deep caries lesions (66-occlusal 
and 66-proximal lesions; total 132), 26/66 (39.4%) of 
occlusal lesions and 35/66 (53%) proximal lesions 
were acidic, i.e. pH <7 (Table 3; Figure 1). Similarly, 
33 (45.8%) and 5 (6.9%) of the proximal lesions, each 
at pH <7 and pH 7, respectively, yielded single or 
dual/multispecies Candida. Thus, the total isolation 
frequency of yeasts from both the proximal and 
occlusal lesions was 72/132 (54.5%) (Table 3).

All Candida isolates from both the proximal and 
occlusal lesions belonged to four species, C. krusei, 
C. albicans, C. tropicalis, and C. glabrata (Figure 2). 
The highly prevalent species were C. tropicalis, 
C. krusei, and C. albicans isolated from 34/72 (47%), 
31/72 (43.1%), and 29/72 (40.3%) of the clinical sam
ples, respectively (p > 0.05); C. glabrata species was 
the least prevalent, being present only in 7/72 (9.7%) 
samples (Table 3).

A predominance of C. albicans in proximal lesions 
in 19/29 (65.5%) samples was evident, either singly or 
in cohabitation with another Candida species but 
mostly with C. tropicalis (Table 3; p < 0.001). 
Interestingly, C. krusei, when isolated, was found on 
significantly more occasions in occlusal lesions com
pared with proximal lesions (22/72, 30.6%; p < 0.001) 
either as a single species or in combination with 
C. tropicalis, p < 0.05) (Table 3). There was no sig
nificant difference in the isolation frequency of yeasts 
between occlusal and proximal lesions (Table 3).

Significant variations in candidal species coloniza
tion profiles could be discerned depending on the 
alkalinity or the acidity of deep-dentinal lesions. In 
general, the low pH niches (<pH 7) tended to har
bour multispecies of yeasts, while mono-species 
Candida was mainly seen in high pH localities 
(pH 7). In comparison to 33/72 (45.8%) occasions 
of multispecies of Candida in the acidic milieu of 
proximal lesions, and none of the alkaline lesions 
yielded multispecies of Candida. Only 5/72 (6.9%) 
yielded single species of Candida at an alkaline pH 
(p = 0.001; Table 3; Figure 1).

C. tropicalis, C. albicans, and C. krusei demon
strated a high propensity for colonization of acidic 
pH locales of both the occlusal and proximal caries 
lesions (Figure 1; Table 3; p < 0.001). Curiously, 
C tropicalis was exceptional in that they were noted 
only in acidic pH lesions (Table 3).
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Interestingly, this study provided some indications 
of candidal interspecies interactions in occlusal and 
proximal caries lesions. Only 9/72 (12.5%) occlusal 
lesions at pH 7 were yeast positive, compared to 25/ 
72 (34.7%) of occlusal lesions with an acidic niche 
(pH < 7; p = 0.001). Moreover, low pH environments 
of deep, proximal lesions exhibited either dual or 
triple species communities of Candida. Notably, we 

found C. albicans cohabited almost exclusively with 
C. tropicalis in relatively more acidic, proximal cav
ities (Table 3).

All C. albicans isolated fell into either A, B or C, 
genotypes, while the genotypes D and E were not 
found among our isolates. Genotype A was the most 
predominant (14/29; 48.3%) followed by the geno
types C (9/29; 31.0%), and B (6/29; 20.7%). We 

Table 3. Frequency distribution of prevalence of different Candida species in terms of their occurrences as single, dual and triple 
species in total 72 Candida positive sites (34 occlusal and 38 proximal).

Candida species

Candida 
isolation 

frequency from 
26 occlusal 

lesions at pH <7  
(n, per cent)

Candida 
isolation 

frequency from 
40 occlusal 

lesions at pH 7  
(n, per cent)

P- 
value

Candida isolation 
frequency from 35 
proximal lesions at 
pH <7 (n, per cent)

Candida isolation 
frequency from 31 
proximal lesions at 
pH 7 (n, per cent)

P- 
value

Total isolation 
frequency in 
132 occlusal/ 

proximal 
lesions

Mono species carriage
C. albicans 0 5 (12.5) - 8 (22.8) 1 (3.2) 0.001** 14
C. krusei 8 (30.7) 4 (10) 0.04* 2 (5.7) 2 (6.4) - 16
C. tropicalis 5 (19.2) 0 - 6 (17.1) 0 - 11
C. glabrata 0 0 - 1 (2.8) 2 (6.4) - 3
C. parapsilosis 0 0 0 0
Dual species carriage
C. albicans + C. krusei 1 (3.8) 0 - 3 (8.5) 0 - 4
C. tropicalis + C. krusei 7 (26.9) 0 - 2 (5.7) 0 - 9
C. albicans + C. tropicalis 2 (7.7) 0 - 5 (14.2) 0 - 7
C. albicans + C. glabrata 0 0 - 1 (2.8) 0 - 1
C. tropicalis + C. glabrata 0 0 - 3 (8.5) 0 - 3
C. tropicalis + C. parapsilosis 0 0 - 1 (2.8) 0 - 1
Triple species carriage
C. albicans +C. tropicalis+ 

C. glabrata
0 0 - 1 (2.8) 0 _ 1

C. albicans +C. tropicalis+ 
C. krusei

1 (1.5) 0 - 0 0 _ 1

C. albicans +C. tropicalis+ 
C. krusei

1 (1.5) 0 - 0 0 _ 1

TOTAL ISOLATION FREQUENCY 
(from 25 -occlusal sites at 
pH<7; 9-occlusal sites at pH 7; 
33-proximal sites at pH<7; 
5-proximal sites at pH7 
Totaling 72 sites harboring 
yeasts)

25/72 (34.7) 9/72 (12.5) 0.001** 33/72 (45.8) 5/72 (6.9) 0.001** 72/132 (54.5)

# Candida species were isolated from 34 of 66 Occlusal lesions (51.5%) and 38 of 66 Proximal lesions (57.6%) 
P values* obtained through Fischer’s exact test and Chi-squared test; No significant differences are indicated by a (-) 

Figure 1.Prevalence of Candida in proximal and occlusal S-ECC categorized as per the pH of the lesions.
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noted a high prevalence of strains belonging to geno
type A in the proximal isolates, whereas the geno
types B and C were predominantly found in occlusal 
cavities (Figure 3). In terms of dual-species interac
tions, Genotype A and B were predominantly present 
in proximal caries lesions with an acidic pH and 
cohabited almost exclusively with C. krusei and 
C. tropicalis, respectively.

All four isolated Candida species exhibited a high 
degree of acidogenic potential in metabolizing the 
dietary carbohydrate glucose, depressing the pH of 
the growth milieu from pH 7 to pH 4 (Table 4). This 
was the case when the experiment was repeated with 
varying starter pH values of the suspensions. Among 
all four Candida spp, C. tropicalis demonstrated the 
highest potency for acid production, followed by 
C. albicans. Significant interspecies differences in 
the acidogenic potential were noted between 
C. tropicalis and C. glabrata (p ≤ 0.05). 
Additionally, all yeast isolates exhibited a relatively 
high acid tolerance and continued to grow at a low 
pH 4 when pulsed with 100 mM of glucose (Tables 4 
and 5). C. tropicalis was noticeably more aciduric 
than C. glabrata despite varying the initial pH levels 
(p ≤ 0.05).

In terms of acidogenicity of the four yeast species 
in dietary sucrose (100 mM) supplemented media, all 
isolates uniformly reduced the pH from 7.0 to 3.2–3.8 
(Figure 4). C. glabrata, once again, appeared to exhi
bit the highest acidogenic potential, although no 

significant inter-species differences were noted 
among the four species (Figure 4).

When the acidogenicity of the different genotypes 
were assessed, all three genotypes A, B, and C of 
C. albicans displayed varying degrees of acidogenicity 
and aciduricity and grew uniformly well in a milieu 
rich in glucose. However, C. albicans genotypes B and 
C of were significantly more acidogenic than geno
type A, particularly at pH 4, after pairwise compar
isons (p < 0.05; Table 4). No significant difference in 
∆pH was observed between genotypes B and C.

Discussion

Early Childhood Caries (ECC), and in particular its 
hypervirulent variant, severe-early childhood caries 
(S-ECC) affects virtually millions of primary teeth of 
preschool children globally [1,2]. Although the classic 
microbial pathogens associated with caries are 
mutans-streptococci and lactobacilli [34], there are 
an increasing number of studies that indicate the 
intimate association of Candida species, an opportu
nistic oral commensal, with caries etiology [35]. As 
there were no published reports, to our knowledge, 
on the prevalence of Candida species in S-ECC, we 
embarked on the current study to obtain baseline 
data on the presence of oral yeasts in S-ECC in 
a cohort of Emirati children with a very high preva
lence of the disease [28]. An experienced pedodontist 
performed site-specific mycobiological sampling of 

Figure 2.Candida species habitation at <pH 7 (acidic) and pH7 of deep-dentine caries lesions -ICDAS caries code 5 and 6.
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Figure 3.Distribution of C. albicans (n = 29) genotypes (A, B and C) as single, dual, and mixed species at neutral pH 7 and acidic 
<pH 7 in occlusal and proximal -dentine caries lesions.

Table 4. The in vitro acidogenic potential of clinical isolates of Candida species and genotypes of C. albicans from ECC lesions at 
24 hours- post exposure to 100 mM glucose (mean ± SD).

∆pH value of supernatant

Candida spp. 4.0 5.0 5.5 6.0 7.0

C. albicans (n = 10) 0.25 ± 0.05 1.39 ± 0.11 1.99 ± 0.02 2.58 ± 0.05 3.81 ± 0.03
C. krusei (n = 10) 0.22 ± 0.02 1.34 ± 0.13 1.87 ± 0.03 2.37 ± 0.04 3.42 ± 0.02
C. tropicalis (n = 10) 0.33 ± 0.04 1.49 ± 0.07 2.08 ± 0.06 2.63 ± 0.02 3.89 ± 0.01
C. glabrata (n = 5) 0.17 ± 0.08 1.26 ± 0.05 1.82 ± 0.04 2.34 ± 0.04 3.35 ± 0.03
p-value 0.08 0.03* 0.08 0.06 0.09
C. albicans genotypes
Genotype A (n = 14) 0.07 ± 0.02 0.45 ± 0.03 0.64 ± 0.01 0.83 ± 0.02 1.23 ± 0.01
Genotype B (n = 6) 0.12 ± 0.03 0.48 ± 0.05 0.69 ± 0.02 0.90 ± 0.04 1.31 ± 0.03
Genotype C (n = 9) 0.09 ± 0.02 0.47 ± 0.06 0.67 ± 0.02 0.88 ± 0.03 1.29 ± 0.01
p-value 0.04* 0.16 0.19 0.06 0.08

*Obtained using ANOVA. 
-Comparison of the acidogenic potential at pH 5.0 between non-albicans C. tropicalis and C. glabrata (p ≤ 0.03) 
-Comparison of the acidogenic potential at pH 4.0 between C. albicans genotype A and C. albicans genotype B (p ≤ 0.04) 

Table 5. Aciduric potential of clinical isolates of Candida species and genotypes of C. albicans at 24 hours- post consumption 
100 mM of glucose (mean ± SD).

OD530 value of yeasts growth

Candida spp. 4.0 5.0 5.5 6.0 7.0

C. albicans (n = 10) 1.46 ± 0.10 1.54 ± 0.08 1.57 ± 0.06 1.62 ± 0.12 1.68 ± 0.09
C. krusei (n = 10) 1.35 ± 0.07 1.44 ± 0.05 1.47 ± 0.03 1.54 ± 0.06 1.62 ± 0.03
C. tropicalis (n = 10) 1.52 ± 0.02 1.58 ± 0.05 1.60 ± 0.03 1.68 ± 0.02 1.76 ± 0.04
C. glabrata (n = 5) 1.32 ± 0.04 1.33 ± 0.03 1.35 ± 0.02 1.52 ± 0.03 1.59 ± 0.01
p-value 0.06 0.09 0.04* 0.12 0.07
C. albicans genotypes
Genotype A (n = 14) 1.43 ± 0.08 1.49 ± 0.07 1.53 ± 0.07 1.59 ± 0.03 1.64 ± 0.02
Genotype B (n = 6) 1.51 ± 0.06 1.57 ± 0.04 1.60 ± 0.02 1.67 ± 0.04 1.72 ± 0.03
Genotype C (n = 9) 1.49 ± 0.09 1.54 ± 0.03 1.59 ± 0.01 1.66 ± 0.02 1.70 ± 0.02
p-value 0.07 0.21 0.18 0.25 0.14

*Obtained using ANOVA 
-Comparison of the aciduric potential at pH 5.5 between non-albicans C. tropicalis and C. glabrata (p ≤ 0.04) 
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a total of 132 (occlusal and proximal) lesions in 66 
children. Subsequent species-specific molecular ana
lyses were performed on purified isolates to elicit 
their genotypes, followed by phenotypic analyses to 
evaluate in vitro aciduricity and acidogenicity.

There were three major observations in this study. 
The first was the surprisingly high oral yeast isolation 
rate from S-ECC lesions, with almost three-quarters 
of the lesions (72.7%) harbouring Candida species. 
Second, the predominance of non-albicans Candida 
species (NACS) in the lesions, and finally, the multi
species communities of Candida species, mainly in 
acidic caries niches.

In general, oral yeast carriage rates in healthy 
populations are reported to range from 2.0 to 
71.0%, although these figures can vary considerably 
depending on factors such as the age, the wearing of 
oral appliances, and the nutritional status of indivi
duals, including a high carbohydrate diet [36]. In one 
of the most comprehensive 4-year longitudinal study 
to date on the oral carriage of yeast in 116 Chinese 
primary schoolchildren in Hong Kong, Sedgley et al. 
(1997) noted the oral prevalence of yeasts for each 
consecutive year to be 7.7%, 12.0%, 14.4%, and 15.5%, 
respectively, together with a weighted mean of 12.5%. 
Although the caries status of the children was not 
recorded, the vast majority (84%) of the isolates were 
C. albicans as opposed to the current findings [37]. It 
would appear that in comparison the yeast prevalence 
in S-ECC lesions, and by extension, the oral yeast 
carriage in over one-half of our cohort was 

remarkably high. As discussed below, such high 
yeast prevalence may be related to the multiple, stag
nant deep caries lesions with acidic pH milieus.

Although C. albicans is thought to be a key driver 
of the caries process aided and abetted by other 
cariogens [35], a predominance of NACS (particu
larly C. krusei and C. tropicalis), were noted in the 
caries samples from our cohort. Candida krusei in 
particular, was the predominant species in occlusal 
samples, isolated either singly or in combination with 
other Candida species. In a comprehensive review of 
44 publications for which statistics on rates of human 
carriage of C. krusei are available, Samaranayake and 
Samaranayake noted that the highest oral carriage 
rates for C. krusei were 6.1% either in health or in 
disease [38] a figure significantly lower than 43.1% 
noted here.

The predominant oral prevalence of C. krusei has, 
to our knowledge, been reported only on a single 
previous occasion in a group of recluse leprosy 
patients in Chiang Mai, Thailand [39]. The authors 
of this latter paper could not attribute a specific rea
son for this observation, although sharing food and 
utensils in the secluded community was suspected. 
Such reasons, however, would not explain the unu
sually high prevalence of C. krusei in our cohort, 
although it is tempting to speculate that, in general, 
poor oral hygiene in relatively inaccessible deep, par
ticularly in proximal, caries lesions, as well as high 
sucrose dietary regimens, may have contributed to 
this phenomenon.

Figure 4.In vitro acid production by a total of 35 isolates belonging to C. albicans (10 isolates), C. krusei (10) C. tropicalis (10) and 
C. glabrata (5) isolated from S-ECC samples, over a 48-hour period in 100 mM sucrose supplemented media.
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Compared to other medically significant Candida 
species, C. krusei has been isolated from a wide range 
of natural habitats. These include the atmosphere, 
fruits, sewage, silage, soil, wine, and beer [40]. 
Recently, C. krusei has been identified as an impor
tant agent of nosocomial candidiasis owing to its 
inherent resistance to azoles, especially fluconazole 
[38]. Hence, it is considered to be a facultative sapro
phyte which may cause opportunistic infections when 
host defences are impaired.

Candida tropicalis, together with C. krusei and 
C. albicans, was the second most predominant spe
cies, particularly in the high acidic caries milieus 
(below pH 7), of both occlusal and proximal- 
cavitated lesions. It is known that C. albicans and 
C. tropicalis, are genetically similar, and group 
together in phenotypic assays relative to other patho
genic Candida species [41]. In addition, both of these 
species appear to have the capacity for cell-wall remo
delling for survival, in the face of adverse ecological 
pH [42], in addition, to possessing twin attributes of 
surface adherence and robust biofilm-producing 
potential essential for successful colonization [43– 
47]. These may plausibly explain why C. albicans 
and C. tropicalis species are effective pathogens in 
S-ECC in comparison to their counterparts. Further 
work, however, is required to confirm or refute our 
nascent findings and the reasons for the preponder
ance of specific yeast species in S-ECC.

The thriving and cohabiting commune habitats of 
Candida spp. in S-ECC were another unexpected 
finding of our study (Table 3). Multispecies commu
nities of Candida in the oral cavity were first reported 
by Samaranayake et al. over three decades ago [48]. 
These authors noted the phenomenon in 15.3% of 
150 clinical oral samples, and the most common 
cohabitants were reported to be C. albicans and 
C. glabrata. Others have subsequently confirmed 
these findings in health and disease, with various 
species combinations, in different body regions, 
including the oral cavity [49,50].

With regard to multispecies yeast carriage in the 
current study, there were two striking findings. First, 
none of the dentinal lesions with alkaline or neutral 
pH had multispecies carriage, and the phenomenon 
was exclusively seen in cavities with an acidic pH 
(Figure 2). Second, proximal cavities had a higher 
mixed-species fungal incidence compared to occlusal- 
deep dentine niches. These observations tend to con
cur with the fact that low-pH habitats promote yeast 
growth, and the proximal lesions with low accessibil
ity for oral hygiene with possible entrapped cario
genic, nutritional food sources [9] combined with 
a stagnant salivary flow devoid of its flushing action, 
may have all fostered the aciduric communities of 
yeasts [16,51].

Filamentation being a foremost contributor to 
their biofilm formation and virulence [52]. In 
a recent study, Pathirana and colleagues (2019) ele
gantly demonstrated that, in dual-species co-cultures 
of C. albicans and C. tropicalis, biofilm formation was 
associated with intense filamentation and suggested 
that this promoted a mutualistic survival advantage 
for the yeasts [53]. Others, however, have suggested 
antagonistic behaviour between these species in co- 
culture and observed that C. tropicalis negatively 
impacted on growth and virulence of C. albicans 
[52]. The precise role of their interspecies interplay 
in the caries pathogenesis needs further analysis.

As previously observed [20,33,54], we also noted 
that the commonest oral C. albicans genotypes in 
S-ECC lesions were A, B, and C. This preliminary 
observation needs to be confirmed due to the small 
sample size of our study.

The cariogenic process is intimately intertwined 
with acid production and acid-stress tolerance of the 
cariogens [26,27,55]. Aciduricity is a complex trait 
that involves many contributing factors regulating 
adaptive acid resistance [56–60]. Our in vitro growth 
data confirm previous reports where, in glucose and 
sucrose containing environments, all tested Candida 
species produce robust growth and were acid-tolerant 
to pH 3.00, with few interspecies variations 
[26,27,61]. Interestingly, C. tropicalis was the most 
acidogenic of the tested species, both in glucose and 
sucrose supplemented media, closely followed by 
C. albicans. Considering that the enamel deminerali
zation process that initiates the carious process begins 
at pH 5.5 [62,63], it is entirely plausible that yeasts in 
these lesions contribute to S-ECC. However, for bet
ter insight of yeast survival potential in a low pH 
environment as well as their total contribution to 
the caries process, it would be useful to evaluate the 
colony forming units (CFUs) from the primary isola
tion plates in future studies. Alternately, quantitative 
PCR (qPCR) or more accurate, next-generation 
sequencing data of the mycological burden would 
be of added value.

Acidogenicity and aciduricity of C. albicans are 
well-known hallmark traits of these opportunists 
[26,27]. Our data indicated that all three genotypes 
A, B, and C, were acidogenic and were well adapted 
to grow in a low acidic milieu. Interestingly the 
acidogenicity of genotypes B and C differed signifi
cantly from that of genotype A. An identical observa
tion was made by Qiu et al. [20], who studied the 
genotypic diversity and carcinogenicity of C. albicans 
isolated from Chinese children with and without ECC 
(but not S-ECC). This previous investigation also 
detected genotypes B and C more frequently in the 
ECC group than in the caries-free group. Yet, 
whether genotypic diversity is related to the virulence 
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of C. albicans is unclear, as there are contrasting 
reports. Karahan et al. [64] showed that in patients 
with deep-seated infections, genotype A was more 
invasive, compared with genotypes B and C. In con
trast, another study found that genotype C was the 
most invasive and genotype A the least invasive in 
a selection of clinical isolates [65]. Others could not 
discern any difference in invasiveness of the geno
types in patients with bloodborne candidal infections 
and concluded that the genotypic distribution of 
C. albicans was unrelated to invasiveness [66].

Finally, the presence of a significant oral reservoir 
of multiple Candida species in this cohort of children 
is of concern, as it may serve as a nexus for systemic 
infections, especially in compromised individuals 
who may be at risk [4,18]. There have been 
a number of reports where oral fungal pathogens 
originating from an oral niche have been implicated 
in systemic infections ranging from infective endo
carditis to various fungaemia [67–70]. Thus, the high 
prevalence of fluconazole-resistant C. krusei species 
in our cohort is particularly noteworthy in this 
context.

To the best of our knowledge, this is the first 
comprehensive report highlighting the Candida 
mycobiome in the infected dentine-niche of occlusal 
and proximal cavities of S-ECC. Furthermore, we 
have unequivocally demonstrated the presence of 
multiple Candida species in deep dentinal caries 
lesions of S-ECC. However, further work is needed 
to assess the contribution of Candida species in the 
initiation and progression (S-ECC) as well as their 
impact, particularly on the therapeutic management 
of the condition.
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