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Abstract

In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any sys-

tem of coupled differential conservative equations. This method obtains directly the primitive

variables applying the chain rule to the time term of the conservative equations. With this, a

traditional finite volume method for the flux is applied in order avoid violation of both, the

entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed

using a forward finite difference scheme. This numerical technique evades the recovery of

the primitive vector by solving an algebraic system of equations as it is often used and so, it

generalises standard techniques to solve these kind of coupled systems. The article is pre-

sented bearing in mind special relativistic hydrodynamic numerical schemes with an added

pedagogical view in the appendix section in order to easily comprehend the PVRS. We

present the convergence of the method for standard shock-tube problems of special relativ-

istic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the

numerical values with respect to exact analytic solutions. The PVRS circumvents the some-

times arduous computation that arises from standard numerical methods techniques, which

obtain the desired primitive vector solution through an algebraic polynomial of the charges.

Introduction

The use of numerical methods to solve differential equations has constituted a substantial

amount of work since the conception of approximate solutions to a given set of equations. In

the last few decades, digital computers have been a great help to heavily iterate complicated

partial differential equations using extensive numerical, parallel and adaptive mesh techniques

in personal computers and large clusters.

Physical laws are often written in a set of conservative differential equations, for which

there are many well established convergent numerical techniques to obtain accurate solutions.

In spite of this, there is an intermediate step that is often, depending on the nature of the prob-

lem, extremely cumbersome to deal with. This appears since the general solution to the prob-

lem is obtained as a set of vector charges q at every point or cell on a given domain of space at
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a particular time in the iteration. However, physical phenomena are described and measured

by means of a set of vector primitive variables u. Depending on the nature of the physical prob-

lem, the function u(q) may not have an analytic form and so, at every point or cell of the inte-

gration space a cumbersome technique requires to be performed for each time step. No matter

how fast this routine may be, it introduces an extra computational time that can heavily grow

when the space-time resolution increases. In problems of special relativistic hydrodynamics

this fact appears and, at each time step, a 10th degree algebraic polynomial has to be solved for

a unique given value of each component of the vector u (see e.g., for an excellent account on

this, [1]).

To make things even more complicated, for each particular physical problem it is necessary

to have either an analytic solution u(q) or a specific numerical technique to obtain it.

In this article we show how it is possible to construct a general numerical iteration method,

using a combination of finite differences and finite volume integration techniques for the time

and spatial evolutions respectively, to directly find the solutions u avoiding any middle cum-

bersome step such as the ones mentioned above. This technique is so general that requires no

analytical knowledge whatsoever of u(q). The method developed is general and valid to any set

of coupled conservative equations. We also show how this method can be applied in the partic-

ular case of 1D special relativistic hydrodynamics (1DRHD). For this particular case, we con-

struct convergence tests.

The article is organised as follows. In the Appendix, we briefly mention some (mostly used

in relativistic hydrodynamics for shock capturing) of the traditional methods to solve a set of

conservative equations. In Section 1 we construct our “Primitive Variable Recovery Scheme
(PVRS)” which can directly obtain the primitive variables from quite a standard numerical

procedure. Section 4 deals with different convergence relativistic Sod [2] shock-tube tests and

error estimates are given using a standard L1-norm. Also, the errors are graphically interpreted

using the fluctuations of the solution with respect to analytical known values is presented.

Finally, in Section 5 we discuss and conclude our results.

1 Primitive Variable Recovery Scheme (PVRS)

In the appendix we discuss some of the standard techniques for discretising any set of scalar

and coupled conservative equations. This is done in order to easy understand the further

developments of the article for the less expert reader, and not to interrupt the experienced one

with such well known methods. However, we note that in the appendix and in what follows

Einstein’s summation convention will be used throughout the equations displayed in this arti-

cle, something that does not usually appear in the literature.

The usual way to solve a system of hyperbolic equations (cf. Eq (15)):

@q
@t
þ
@f ðqÞ
@x
¼ 0; ð1Þ

is by implementing Finite Difference and Finite Volume Methods (FDM & FVM) in order to

obtain solutions for the conservative charges q. In the particular case of relativistic and non-

relativistic hydrodynamics, these charges are the linear momentum along the three dimensions

Si, the energy τ and the particle density D. In order to compare the numerical solution with

experiments and/or observations, a set of primitive physical measurable variables u needs to be

constructed. For this particular case, this primitive variable set is given by by the pressure p,

the velocity along three spacial dimensions vi and, the particle number density n. Some authors

prefer to find the particle mass density ρ rather than the particle number density n. For most

practical proposes, both variables are related by ρ = mn where m is the average mass per
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particle. In here and in what follows all thermodynamical quantities (pressure p, particle num-

ber density n and energy density e and so on, are measured on its proper reference frame fol-

lowing the convention in [3, 4]). The explicit dependences q = q(u(x, t)) and f = f(u(x, t)) for

1D flow in the special relativistic case are given by (see e.g. [3, 4]):

q1 ¼ D ¼
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2
p and f1 ¼ v

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2
p ; ð2Þ

q2 ¼ Sx ¼ v
eþ p
1 � v2

and f2 ¼ v2 eþ p
1 � v2

þ p; ð3Þ

q3 ¼ t ¼
eþ v2p
1 � v2

and f3 ¼ v
eþ p
1 � v2

: ð4Þ

where e is the total (rest plus internal) proper energy per unit volume which can be related

with the density and pressure via a state equation e = e(n, p) like the one derived by Tooper [5]

for a polytropic relativistic gas:

e ¼ nmþ
p

k � 1
; ð5Þ

where κ is the polytropic index. In the previous equations and in what follows we choose a sys-

tem of units in which the velocity of light is set to unity.

As we can see from Eqs (2–4), obtaining the inverse function u = u(q(x, t)) results in quite a

completed algebraic problem. In fact, the solution to this problem leads to a system of tran-

scendental algebraic equations that have been deeply studied by Riccardi [1]. One way of solv-

ing this system is by using a Newton-Raphson method (cf. [6]) but this or any other numerical

solution to obtain u(q(x, t)) will carry an extra error besides the proper numerical error of the

FDM or FVM. This procedure also adds a bit of computational processing time since an itera-

tion loop to find the solution needs to be carried out at each cell every time step. In order to

avoid this cumbersome task, we show now how it is possible to obtain a direct numerical solu-

tion of the primitive variables, which is valid for all conservative equation systems (cf. Eq (15)).

2 PVRS attempts with finite difference methods

Let us begin by writing the system of m hyperbolic equations showing the explicit dependence

on m primitive variables, i.e.:

@qaðu1; . . . ; umÞ
@t

þ
@faðu1; . . . ; umÞ

@x
¼ 0: ð6Þ

A necessary and sufficient condition for the existence of the solution u1, . . ., um is that a = 1,

. . .,m. Now, using the chain rule, the above equation can be written in the following quasi-

linear form:

@qa
@ub

@ub
@t
þ
@fa
@uc

@uc
@x
¼ 0; ð7Þ

where @q/@u and @f/@u are the Jacobian matrixes of the vectors q and f respectively. Multiply-

ing the previous equation by the inverse matrix (@q/@u)−1 we get

@ua
@t
þMab

@ub
@x
¼ 0; ð8Þ
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where

Mab ≔
@qc
@ua

� �� 1
@fc
@ub

� �

: ð9Þ

If we perform a discretisation of Eq (8) using a FDM (see e.g. Section Finite differences

approach of the appendix), we obtain the following numerical expression:

uaðxi; tnþ1Þ ¼ uaðxi; tnÞ �
Dt

2Dx
Mab½ubðxiþ1; tnÞ � ubðxi� 1; tnÞ�: ð10Þ

No matter how complicated the functional representations of q(u) and f(u), it is possible (if

not by hand, using a Computer Algebra System) to compute the matrix Mab only once before

implementing a discretisation scheme. In what follows we show how to implement a numeri-

cal scheme to find directly the primitive variables u solving Eq (8). By doing this, the cumber-

some step of recovering u from q at every cell for each time step is not needed anymore.

The discretisation Eq (10) is accurate to the first-order and yields quite good results on

smooth solutions. When the solution contains a shock wave, the method is stable but not

consistent and so no convergent. This could be understood because Eq (10) is mathematically

similar to Eq (16) of the appendix [7] with the substitution of the vector u instead of q. Further-

more, Eq (10) is written in a non-conservative form and so, the entropy and Rankine-Hugo-

niot jump conditions are not satisfied across the shock waves. Due to this fact, the obtained

solution converges to a different weak solution as compared to the one obtained by a conserva-

tive method (see e.g. [8]). In other words, this FDM scheme does not work and the approach

to follow is to consider flux contributions as in standard FVM.

3 Primitive Variable Recovery Scheme using combined FDM and

FVM

We now show how to implement a Primitive Variable Recovery Scheme (PVRS) using both a

FDM and a FVM schemes for the time and spatial evolution of the equations. As mentioned

at the end of the previous section, the fluxes contribution in the method must not be altered

because the entropy and Rankine-Hugoniot jump conditions must be accomplished. To do so,

the spatial derivative term must be evolved using a Godunov-type method (e.g. an HLL-type

Riemann solver).

In the appendix it is shown that the conservative set of Eq (1) can be discretised in the form

of relation Eq (48), which can be written in a semi-discrete form as:

@qaðxiÞ
@t

¼ �
1

Dx
ð½FHLLa �

n
iþ1=2
� ½FHLLa �

n
i� 1=2
Þ; ð11Þ

where FHLL stands for the HLL-type Riemann solver approximation for the spatial fluxes (see

appendix). Using the chain rule on the left hand side of the previous equation, it follows that:

@uaðxiÞ
@t

¼ �
Aabðxi; tnÞ

Dx
ð½FHLLa �

n
iþ1=2
� ½FHLLa �

n
i� 1=2
Þ: ð12Þ

where A ¼ ð@q=@uÞ� 1
. By applying a forward-difference formula scheme on the left hand side

of Eq (12), we get

uaðxi; tnþ1Þ ¼ uaðxi; tnÞ �
Dt
Dx

Aabðxi; tnÞð½F
HLL
b �

n
iþ1=2
� ½FHLLb �

n
i� 1=2
Þ: ð13Þ
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In Eq (13), we take a numerical flux approach as in standard FVM and a finite difference of

the time derivative over the primitive variables u. The approximate solution to the Riemann

problem, where Rankine-Hugoniot’s condition take place, is the same as the one presented in

the appendix HLL Riemann solver section. Furthermore, the characteristic velocities used in

the HLL solver which correspond to the the eigenvalues of the Jacobian @f/@q, can be com-

puted either from matrix Mab Eq (9) or from @fa/@qb since both matrixes are similar [7]. All

matrixes and vectors ðMab;Aab; fa; qaÞ are computed using a piecewise reconstruction ~u of the

primitive variables, except for matrix Aab which is evaluated on the midpoint xi of the cell Ci.
It is important to note that in Eqs (8) and (13) the second term on the right hand side has

an implicit sum over the repeated index a.

Note that, although it seems that the PVRS discretisation Eq (13) arises directly from discre-

tising the hybrid quasilinear equation @u=@t þA @f =@x ¼ 0 –which can be directly obtained

by using the chain rule on Eq (1), it is impossible to obtain the PVRS discretisation shown in

Eq (13) using a standard conservative FVM as presented in the appendix, and which satisfies

the entropy and Rankine-Hugoniot jump conditions.

By using Eq (13) on a numerical code, it would no longer be a concern to recover the primi-

tive variables from the computed conservative charges; they would instead be solved directly!

Therefore, it would not be necessary to create a module in the code to obtain the final required

solution u(x, t). In general terms, this procedure works out for any kind of conservative system

in which q(u(x, t)) and f(u(x, t)) are at least given at some initial time.

The time step evolution of the Eq (13) that we use for our numerical simulations is given by

the Method of Lines (MoL):

@uðxiÞ
@t

¼ � LðuðxiÞÞ; ð14Þ

where L(u(xi)) is the right hand side of Eq (13) (see e.g. [9]), which can be further implemented

with a Runge-Kutta integration.

4 Convergence test for PVRS in relativistic hydrodynamics

In this section we are going to show how this new method handles the evolution of a relativistic

gas in a particular Riemann problem namely the shock tube (see e.g. [9]). This relativistic Sod

[2] shock tube problem is a standard test that any code must fulfil for its validation. It has an

exact analytical solution for both special relativistic and non-relativistic hydrodynamics and it

is used for comparisons with numerical methods.

We calculated the numerical solution using PVRS discretisation Eq (13) with an approxi-

mate HLL Riemann solver, aminmod limiter for the reconstruction ~u and a 4th order Runge-

Kutta Method of Lines (MoL-RK4) for the integration. The problem was solved in the domain

[0, 1] with N = 800 identical grid cells. We made three relativistic Sod tests with the initial dis-

continuity located at x = 0.5 and with initial states shown on Table 1. Furthermore, we com-

pared the numerical results with the exact solution [9]. Also, we have estimated the usual L1-

norm error for the following different resolutions: Δx1 = 1/200, Δx2 = 1/400, Δx3 = 1/800,

Δx4 = 1/1600, Δx5 = 3200 and Δx6 = 1/6400.

The time-step condition used in this method is different from the commonly used by many

authors (cf. [10]). A general CFL-condition applied to this numerical scheme was constructed

by us and used in the set of examples presented. The exact condition and its derivation is a sub-

ject beyond the scope of this article and will be published elsewhere. For practical purposes,

the time step interval can be chosen as a sufficiently smaller number than the corresponding

Primitive Variable Recovery Scheme for conservative equations
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CFL condition (cf. Eq (40)). For the examples presented below, we have chosen a fixed time

step for each simulation.

4.0.1 Test 1: Weak relativistic blast wave

The first test corresponds to a lowly relativistic blast wave explosion. The results can be seen

in Fig 1, where we compare the numerical solution (points) with the exact solution (lines). It is

clear that for both, smooth parts and discontinuities, the numerical solution converges quite

well to the exact one.

4.0.2 Test 2: Mildly relativistic blast wave

The second test corresponds to a mildly relativistic blast wave explosion. The results can

be seen in Fig 2, where we compare the numerical solution (points) with the exact one (lines).

The importance of this test is to see if, with a relative high difference in pressure between

both states, the numerical method is capable of solving the density function at the contact

discontinuity.

4.0.3 Test 3: Strong relativistic blast wave

Finally, the last test corresponds to a strongly relativistic blast wave explosion. In this case,

the density discontinuity is produced by a a 5 orders of magnitude difference between right

and left initial detonation pressure, creating a thin shell which numerically is harder to

resolve at low resolutions. However, with a relatively small number of cells and a weak vari-

able reconstruction, the results shown on Fig 3 are as good as the ones obtained by other

codes (cf. [10, 11]).

Table 1. Initial parameters used for the relativistic Sod [2] shock tube tests described in the article. κ stands for the polytropic index.

Test pL vL nL pR vR nL κ

1 1.0 0.0 1.0 0.1 0.0 0.125 4/3

2 13.33 0.0 10.00 0.1 0.0 1.0 4/3

3 1000 0.0 1.0 0.01 0.0 1.0 5/3

https://doi.org/10.1371/journal.pone.0195494.t001

Fig 1. Test 1. The figure shows the result of the simulation of a weak relativistic (Sod shock tube) blast wave explosion

at t = 0.35 for the particle number density n, pressure p and velocity v. The time step used for the simulation was 0.001.

https://doi.org/10.1371/journal.pone.0195494.g001
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4.1 Error estimates

We have calculated the error of each test using the traditional L1—norm value. The conver-

gence order of this test is given by log(errori/errori−1)/log(1/2), where errorj is the L1—norm

of the Δxj resolution. As we can see from Table 2, the error decreases when the resolution

increases, as expected. Also, we obtain first order convergence for all test in at least one

Fig 2. Test 2. The figure shows the result of a mildly relativistic (Sod shock tube) blast wave explosion at t = 0.35 for

particle number density n, pressure p and velocity v. The time step used for the simulation was 0.001.

https://doi.org/10.1371/journal.pone.0195494.g002

Fig 3. Test 3. The figure shows the result of a strong relativistic (Sod shock tube) blast wave explosion at t = 0.35 for

particle number density n, pressure p and velocity v. The time step used for the simulation was 0.0001.

https://doi.org/10.1371/journal.pone.0195494.g003
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resolution. Additionally, we made an experiment following [6] of a static Gaussian curve in

order to estimate the order of convergence of a smooth static profile which, for this case,

reaches a convergence value of about 2 in all the tested resolutions for a fixed time step of 0.01.

As expected, this means that the important error of the relativistic Sod shock tube test relays

on the discontinuities. This is the reason as to why we consider that taking the L1—norm is

not a clear indicator of the “real” error at the shock waves, so we propose a more relevant use-

ful visual interpretation of this estimation as follows.

In Fig 4 we show both exact (red dashed-line) and numerical (blue dashed-line) solution vs.

the fluctuation |unum − uexact|/uexact at each point (black line), for the density in Test 3 at every

resolution. We can see how the Full Width at Half Maximum (FWHM) of the fluctuation

Table 2. The L1-norm for the error in the numerical density for the minmod limiter with different numerical resolutions. The L1-norm is computed for all shock-tube

and Gaussian tests at time t = 0.35. We also show the order of convergence between different resolutions. Since the error decreases when the resolution increases, the

PVRS constructed in the article is stable and converges to the exact solution. The data of this is presented in S1 File.

Error Order of Convergence

Resolution Test 1 Test 2 Test 3 Smooth Test 1 Test 2 Test 3 Smooth

Δx1 3.83e-3 9.00e-2 1.93e-1 4.74e-4 - - - -

Δx2 2.12e-3 5.04e-2 1.60e-1 1.28e-4 0.85 0.84 0.27 1.89

Δx3 1.21e-3 2.61e-2 1.21e-1 0.34e-4 0.81 0.95 0.40 1.91

Δx4 6.68e-4 1.51e-2 8.03e-2 0.09e-4 0.85 0.79 0.59 1.92

Δx5 4.01e-4 1.02e-2 4.56e-2 0.02e-4 0.74 0.57 0.81 2.17

Δx6 2.22e-4 5.07e-3 2.62e-2 - 0.83 1.00 1.05 -

https://doi.org/10.1371/journal.pone.0195494.t002

Fig 4. Comparison between the exact (red dashed-line) and the numerical solution (blue dashed-line) of the contact

discontinuity in density for the Test 3 vs. the fluctuation |unum − uexact|/uexact (black continuous line) at each point,

for all the tested resolutions. Note that as the resolution increases, the width of the fluctuation decreases, showing the

convergence in a straightforward manner.

https://doi.org/10.1371/journal.pone.0195494.g004
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tends to zero as the resolution increases. Working with the fluctuation of the numerical solu-

tion about the exact solution is a much better way to easily see the convergence of a numerical

method, rather than the traditional L1-norm for which smoothing of the errors can be wrongly

interpreted as a positive convergence test.

5 Discussion

In this article we have developed a new numerical algorithm to solve any set of coupled differ-

ential conservative equations for which the primitive variable vector u is directly obtained.

This is a forward step in numerical methods, since it avoids any intermediate step reconstruc-

tion of the primitive variable vector from a previously obtained charge vector q at all points or

cells in space at each time. In principle, this means that numerical codes can be written in a

more direct form. Also, depending on the nature of the physical problem to solve, the compu-

tational time may be reduced with this technique.

For practical purposes, we always had in mind special relativistic hydrodynamical problems

and for this reason the specific techniques used throughout the article deal with hydrodynami-

cal shock capturing schemes. We demonstrated in the article that the Primitive Variable

Recovery Scheme (PVRS) showed good convergence for three shock-tube and one Gaussian

tests. Further explorations in other directions, such as a non-static Gaussian test [12] need to

be investigated. We will explore more details in future works.

The PVRS presented in this article can be implemented straightforward to any standard

hydrodynamical code that already uses HLL Riemann solvers given by Eq (13).

In summary, the PVRS is a numerical maneuver to circumvent the embroiling construction

of the primitive vector once the charge vector is obtained from any standard procedure used to

solve a set of coupled conservative equations in physical systems.

We are constructing a GNU Public Licensed (GPL) free software (http://www.gnu.org)

called “aztekas” (http://www.aztekas.org) that deals with relativistic hydrodynamics using this

PVRS technique.

Appendix

Traditional approach for numerically solving conservative equations

In this appendix, we deal with traditional well known methods for solving conservative equa-

tions. Our intention is to briefly introduce the less versed reader to this topics using Einstein’s

summation convention.

A system of m conservative equations in one dimension is usually written as:

@qa
@t
þ
@faðq1; . . . ; qmÞ

@x
¼ 0; ð15Þ

where the subindex a takes values from 1 to m, q≔ q(u(x, t)) is the vector of conservative char-
ges and f ≔ f(q(u(x, t))) is the corresponding flux vector along the x axis at a given time t. The

vector u corresponds to the primitive variables for which its number of entries and functional

form of q(u) depends on the particular problem to solve. From this point onwards, we are

going to use f(x, t) instead of the cumbersome notation f(q(u(x, t))), bearing in mind that both,

charges and flux vectors, depend on the primitive variables u(x, t). As it is shown in section 1,

the fluxes also have an explicit dependence on the primitive variables but are usually written in

terms of the conservative charges.
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We can rewrite Eq (15) in the quasilinear following form

@qa
@t
þ Jab

@qb
@x
¼ 0; ð16Þ

where Jab is the Jacobian matrix of f(q). From now on, we use Einstein implicit sum convention

over two repeated subindexes contained in the set {a, b, c, d}. If the Jacobian matrix satisfies

the conditions of having real eigenvalues and a set of independent eigenvectors, then we say

that the system Eq (15) is hyperbolic (see e.g. [8]).

In the linear cases (when f is a linear function of q), there exists an analytical solution for

(15), but many physical cases give rise to nonlinear conservative systems which are required to

be solved using numerical methods.

In the following subsections we briefly mention two of the main numerical methods used

to solve 1D conservative systems such as the one written in Eq (15).

Finite differences approach

The finite differences method (FDM) is one of the most useful and simple numerical methods

for solving ordinary and partial differential equations. It consists of an approximation of the

derivatives of fluxes and charges based on approximations of their values on sufficiently small

intervals of space and time. The space is divided in a grid of N centred points spaced by equal

length Δx intervals in which the equation is evaluated.

Using Taylor expansions of the involved quantities, it is possible to work out the finite dif-

ference form of Eq (15) to find the value of q in all the grid at time t + Δt≕ tn+1 based on its

value at t≕ tn:

qaðxi; tnþ1Þ ¼ qaðxi; tnÞ �
Dt

2Dx
½faðxiþ1; tnÞ � faðxi� 1; tnÞ�; ð17Þ

where xi is the i-th point on the grid. This is the Forward Time Central Space (FTCS) Euler

method [8]. In Eq (17), the derivative @fa/@x at a given time tn was written using a central

approximation value given by (fa(xi+1) − fa(xi−1))/(2Δx). For the left and right boundary

points this derivative can be written using a right or left derivative approximation given by:

(fa(x1) − fa(x0))/Δx and (fa(xN−1) − fa(xN))/Δx respectively. Unfortunately, Eq (17) leads to

numerical unstable solutions [13]. To overcome this problem, many higher order methods

have been developed and successfully implemented over time [14].

When a second-order finite differences approximation method is used, additional source

artificial viscosity terms appear in Eq (17). Those additional terms are either due to the second

derivative approximation in Taylor series or to second differences approximation of the first

derivatives (see e.g. [14]). The artificial viscosity name was given by von Neumann [13] since

it resembles the viscosity term of the Navier-Stokes equation, but has nothing to do with any

physical viscosity.

The general form of the artificial viscosity can be written as [14]:

qaðxi; tnþ1Þ ¼ qaðxi; tnÞ

�
Dt

2Dx
½faðxiþ1; tnÞ � faðxi� 1; tnÞ�

þ
Dt

2Dx
½�þa Dqþa ðxi; tnÞ � �

�

a Dq�a ðxi; tnÞ�;

ð18Þ

where ��a are the coefficients of second-order explicit artificial viscosity and
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Dq�a ðxi; tnÞ ¼ �qðxi�1; tnÞ � qðxi; tnÞ. The choice ��a ¼ 2Dx=Dt simplifies the above equation

to:

qaðxi; tnþ1Þ ¼
1

2
ðqaðxiþ1; tnÞ þ qaðxi� 1; tnÞÞ

�
Dt

2Dx
½faðxiþ1; tnÞ � faðxi� 1; tnÞ�;

ð19Þ

which is known as the Lax-Friedrich method. Other second-order-two-step methods, such as

the Lax-Wendroff method, have been developed and successfully implemented in many

numerical codes.

One such favourite two-step method was proposed by MacCormack [15]. It makes a for-
ward-prediction of q and with it, a backward-correction:

~qaðxi; tnÞ≔ qaðxi; tnÞ �
Dt
Dx
½faðxiþ1; tnÞ � faðxi; tnÞ�; ð20Þ

qaðxi; tnþ1Þ ¼
1

2

(

qaðxi; tnÞ þ ~qa xi; tnð Þ �
Dt
Dx
½~f aðxi; tnÞ � ~f aðxi� 1; tnÞ�

)

: ð21Þ

where ~f ≔ f ð~qÞ. This method has been proved to be consistent, convergent and stable which

is the requirement for any numerical method used in a computational code. Nevertheless, in

discontinuities and regions with high pressure gradients, such as regions with shock-waves,

this algorithm introduces a dispersive error called the Gibbs phenomenon, which consists on

the presence of large spurious oscillations near the finite-jump, such as the example shown in

Fig 5.

To solve this problem, it is common to apply a corrective diffusion in the regions where the

non-physical oscillations appear. The correction presented by Book [16] is

q�aðxi; tnÞ ¼ qaðxi; tnÞ þ Z½qaðxiþ1; tnÞ � 2qaðxi; tnÞ þ qaðxi� 1; tnÞ�; ð22Þ

where η is the antidiffusion coefficient at space-time points xi and tn:

Z ¼

(
Z0 � 1=4; if ðDqþa ÞðDq

�
a Þ < 0;

0; if ðDqþa ÞðDq
�
a Þ > 0:

ð23Þ

Finite volume approach

A more natural way of obtaining the discretisation form of (15) is the Finite Volume Method

(FVM) which is based on a subdivision of the spatial domain into intervals (also called control
volumes or grid cells) Ci≔ [xi−1/2, xi+1/2]. The integration of Eq (15) over Ci between times tn
and tn+1 yields:

Z tnþ1

tn

Z

Ci

@qaðx; tÞ
@t

þ
@faðx; tÞ
@x

� �

dx dt ¼ 0: ð24Þ

The integral of @t q over time and the integral of @x f over space can be solved exactly and so,
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the next integral form of the previous equation is found:

Z

Ci

ðqaðx; tnþ1Þ � qaðx; tnÞÞdx

þ

Z tnþ1

tn

ðfaðxiþ1=2; tÞ � faðxi� 1=2; tÞÞdt ¼ 0:

ð25Þ

At this point, both integrals in the previous equation cannot be integrated unless we have

the exact form of q, which is precisely the solution to the problem. In order to overcome this,

we define each integration as a new numerical vector in the following form:

½Qa�
n
i ¼

1

Dx

Z

Ci

qaðx; tnÞdx; ð26Þ

½Fa�
n
i�1=2
¼

1

Dt

Z tnþ1

tn

faðxi�1=2; tÞdt; ð27Þ

where ½Qa�
n
i is the average charge vector of q over Ci at time tn and ½Fa�

n
i�1=2

is the average flux
vector across the boundaries of Ci. From now on, the square brackets notation [ ] around any

numerical function is used to denote the corresponding (space or time) average related to that

specific numerical function.

If q(u(x, t)) is a smooth function, then the integral Eq (26) agrees with the value of q at the

midpoint of the interval to OðDx2Þ [8].

The indexes outside the square bracket do not denote the spatial and time evaluation of the

average vector, they are just labels that refer to the time and grid positions of the correspond-

ing numerical values.

Fig 5. The graph shows the numerical solution of the advection equation: @t q + @x q = 0, using exclusively the

MacCormack method. The solution shows non-physical oscillations in a finite-jump discontinuity due to the Gibbs

phenomenon. At later times, the oscillations grow breaking even more the expected solution. The graph was

constructed using the initial conditions of q = 1.0 if x< 0.5 and q = 0.125 elsewhere at a fixed time t = 0.03.

https://doi.org/10.1371/journal.pone.0195494.g005
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Substituting the definitions Eqs (26) and (27) in Eq (25) we obtain the main discretisation

for the finite volume scheme usually presented in the literature (cf. [8]):

½Qa�
nþ1

i ¼ ½Qa�
n
i �

Dt
Dx
½Fa�

n
iþ1=2
� ½Fa�

n
i� 1=2

� �
: ð28Þ

Eq (28) is a numerical recipe of how to compute the mean value ½Qa�
nþ1

i using the average

flux and charge values one time-step backwards for each grid cell Ci. This discretisation has the

same exact form as Eq (15) except for the choice of the values Eqs (26) and (27).

The advantage of this method over any finite difference scheme is that the conservative

nature of the system is preserved, even across strong discontinuities such as shock waves. This

is the reason as to why a finite volume scheme is often used when dealing with the physics of

high energy flows where discontinuities may appear.

Numerical flux

The flux f at Eq (27) depends on the value of q at every time. This is why it is impossible to inte-

grate the average flux. Somehow, we have to find a good approximation for this integral. More-

over, the flux f inside the integral is evaluated on the boundaries xi±1/2 of the grid cell which,

numerically speaking, has no sense because we can only approximate the values of the average

charges on the midpoint of the finite volume. This set of midpoints can be “safely” considered

the ones used in the finite difference mesh mentioned in the Finite differences approach

section.

One way to approximate ½Fa�
n
i�1=2

is to assume that it can be obtained as a function of the

cell average values of q on either side of the interface xi±1/2, i.e., ½Qa�
n
i�1

and ½Qa�
n
i :

½Fa�
n
i�1=2
¼ F að½Qa�

n
i�1
; ½Qa�

n
i Þ: ð29Þ

The previous result is expected since in a hyperbolic problem the information of how q change

on every cell propagates at a finite characteristic speed (see e.g. [3, 14]). The function F a can

be thought as a numerical flux function for which its functional form will depend on the prob-

lem or the particular numerical scheme used to solve it.

Substitution of Eq (29) into Eq (28) yields:

½Qa�
nþ1

i ¼ ½Qa�
n
i �

Dt
Dx
½F að½Qa�

n
iþ1
; ½Qa�

n
i Þ � F að½Qa�

n
i� 1
; ½Qa�

n
i Þ�: ð30Þ

The numerical flux function is then determined by the evolution of the solution in each inter-

face. A good first guess for the function F a is to relate it to the corresponding average flux

function of a local (for each cell) Riemann problem [9] with two constant states on each side of

the boundary.

In order to obtain an accurate numerical flux function, is important to study the behaviour

of the solution based on the form and properties of the governing equation at these particular

initial conditions.

Riemann problem

Let us now consider a single conservative equation (i.e. Eq (15) with a = 1 only) in which the

flux is written as f ðqÞ ¼ ~uq where ~u is a constant value:

@q
@t
þ ~u

@q
@x
¼ 0: ð31Þ
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This is the advection equation in which ~u corresponds to the propagation velocity of q. Note

that, since f 0ðqÞ ¼ ~u, Eq (31) is also its own quasilinear version.

The function qðx; tÞ ¼ ~qðx � ~utÞ satisfies Eq (31) for any function ~q. However, it is more

useful for us to describe the problem observing the behaviour of the solution q along character-
istic curves in the t − x plane. To do so, we perform the time derivative of q(X(t), t) and equate

the result to zero, i.e.:

d
dt
qðXðtÞ; tÞ ¼

@q
@t
þ X0ðtÞ

@q
@x
¼ 0: ð32Þ

Direct comparison of the above equation with Eq (31), means that that the solution q(X(t), t) is

constant all along the ray XðtÞ ¼ x0 þ ~ut, where x0 is some initial value. In the most general

case, the set of all rays X(t) are called the characteristics of the equation.

If we consider the particular case in which the initial conditions of the problem consists on

two constant states

qðx; 0Þ ¼

( ql; if x < 0;

qr; if x > 0;
ð33Þ

where ql and qr are the left and right states respectively, the characteristics X(t) of (31) are then

rays with slope ~u in the t − x plane. With this, the solution can be written as

qðx; tÞ ¼

( ql; if x � ~ut < 0 or x=t < ~u;

qr; if x � ~ut > 0 or x=t > ~u:
ð34Þ

Let us consider now a system of m conservative equations (i.e. a = 1, 2, . . .,m in Eq (15)),

where fa = Aabqb, i.e.:

@qa
@t
þ Aab

@qb
@x
¼ 0; ð35Þ

where Aab is a constant m ×mmatrix and so, the system of conservative equations is linear. If

Aab is diagonalisable such that:

Aab ¼ RacLcdR� 1
db ; ð36Þ

where Rac is the matrix of eigenvectors, with rpa the p-th eigenvector, R� 1
db its inverse and

Lcd ¼ diagðl1
; . . . ; l

m
Þ, for λp the p-th eigenvalue. If we define the characteristic variables wa as

waðx; tÞ≔ R� 1
ab qbðx; tÞ; ð37Þ

it is then possible to rewrite Eq (35) as the following system of m advective equations:

@wa

@t
þ Lab

@wb

@x
¼ 0: ð38Þ

In the case of the Riemann problem, the solution for the p-th advective equation is

wpðx; tÞ ¼ ~wpðx � l
pt; 0Þ, and the solution qa(x, t) is obtained using the definition of wa:

qaðx; tÞ ¼ Rab ~wbðx; tÞ: ð39Þ

In this way one can think that qa is a superposition of m waves moving with characteristic
velocities λ1, λ2, . . . and λm, respectively [14].
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Another way to see this is by comparing Eq (35) with the time derivative of q(X(t), t) in

(32). From this, it follows that the characteristics are curves for which their corresponding

slopes are exactly the eigenvalues of the matrix Aab.
In order to obtain a real contribution of one of these waves to the evolution of a contiguous

grid cell, the size of the control volume must be larger than the distance travelled by the wave,

moving at its characteristic velocity, at a certain fixed time Δt, i.e.,

l
Dt
Dx

< 1: ð40Þ

The quantity λΔt/Δx is know as the Courant number and the fulfilment of Eq (40) is called Cou-
rant-Friedrich-Levy (CFL) condition. This is a convergence requirement for several numerical

methods that solve conservative equations.

The Riemann problem discussed in this subsection, is used to accurately estimate the value

of the numerical fluxes at the boundaries of two contiguous grid cells as will be seen in the fol-

lowing section.

Godunov scheme

Godunov in 1959 [17] proposed a numerical scheme for solving conservative equations and

this method can be used in terms of the Riemann problem as follows. Consider the single Eq

(31). The algorithm proposed by Godunov has the following recipe:

1. Compute the average values of the charges q at the time t = tn using Eq (26) for a = 1 only:

½Q�ni ¼
1

Dx

Z

Ci

qðx; tnÞdx: ð41Þ

2. Reconstruct from ½Q�ni a polynomial function ~qðx; tnÞ for every value of x. The simplest case

for this is to take a constant function:

~qðx; tnÞ≔ ½Q�
n
i for x 2 Ci: ð42Þ

In practice [18], the value ½Q�ni is consider to be q evaluated at the midpoint of the grid cell.

3. Evolve the hyperbolic equation in an exact or approximate way by a time Δt to obtain

~qðx; tnþ1Þ.

4. Take the average of ~qðx; tnþ1Þ over Ci to obtain ½Q�nþ1

i .

5. Go back to the first item on the list and iterate until a final time is reached.

As we discuss above, it is impossible to compute exactly the average flux ½F�ni�1=2
because we

do not know the value of q at all times. However, if we consider a Riemann problem in the

interface xi±1/2 between the grid cells Ci and Ci±1 and apply step 3 of Godunov’s algorithm, we

get that ~qðxi�1=2; tÞ is constant along the curves that satisfies (x − xi±1/2)/t = const.

In summary, if we denote by q#ð½Q�ni ; ½Q�
n
i�1
Þ the solution to the Riemann problem at xi±1/2,

the computation of the average fluxes reduces on computing an integral over a constant func-

tion [8]. In this way, the Godunov’s algorithm can be expressed in terms of average fluxes

using the following recipe:

1. Solve the Riemann problem in the interfaces xi±1/2 of the Ci grid cell in order to obtain

q#ð½Q�ni ; ½Q�
n
i�1
Þ.
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2. Define Fð½Q�ni ; ½Q�
n
i�1
Þ ¼ f ðq#ð½Q�ni ; ½Q�

n
i�1
ÞÞ.

3. Apply discretisation Eq (30).

The problem with applying Godunov’s scheme on non-linear systems and considering

wave propagation of characteristic waves on all interfaces, is that the characteristic velocities

are not constant at all times and also they change values at different grid cells. For the case of a

quasilinear system such as the one of Eq (16), an approximation has to be made. Many meth-

ods for obtaining an approximate Riemann solution have been developed and successfully

implemented in classical and relativistic magnetohydrodynamic codes (see e.g. [11, 19]).

HLL Riemann solver

One of the most popular approximate Riemann solvers is the called HLL solver [20]. This God-

unov’s base method considers a Riemann problem with constant states qL and qR on each side

of the interface in a space-time grid cell [xL, xR] × [0, T] as shown on Fig 6.

Instead of following the solution of all the characteristic variables along their own charac-

teristic velocities, the idea of the HLL approximation consists on considering the larger eigen-

values λR and λL moving across the interface to the right and left respectively. The region

delimited by these characteristic rays is denoted by the state qHLL.
Note that, since we are working with a system of m conservative equations, 2m characteris-

tic rays will emerge from each interface. The values λL and λR are to be chosen taking into

account all 2m characteristic velocities.

The approximate solution to the Riemann problem derived by this scheme has the follow-

ing form (see e.g. [8] or [21]):

qaðx; tÞ ¼
qLa; if x=t � lL;

qaHLL if lL < x=t < lR;

qRa ; if x=t � lR;

8
><

>:
ð43Þ

where

qHLLa ¼
lRqRa � lLqLa þ f

L
a � f

R
a

lR � lL
; ð44Þ

Fig 6. Space-time grid cell [xL, xR] × [0, T]. The figure shows the evolution of the 1D conservative equation solution

along rays with slope λL and λR, together with the intermediate state qHLL generated by the HLL solver.

https://doi.org/10.1371/journal.pone.0195494.g006
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where fR,L≔ f(qR,L). One can work out the approximate solution to the flux through the inter-

face by integrating the hyperbolic equation over the space-time domain outlined in Fig 6 and

using the Rankine-Hugoniot jump condition at each characteristic ray (λR,L). The final result

is that [21]:

f HLLa ¼
lRf La � lLf Ra þ lRlLðqRa � q

L
aÞ

lR � lL
: ð45Þ

Notice that fHLL 6¼ f(qHLL). The flux Eq (45) can be used along with the Godunov scheme to

solve the local Riemann problem of to contiguous grid cells.

Let us now consider the boundary xi−1/2 between two control volumes Ci and Ci−1 and sup-

pose that a constant reconstruction ~q from the average values of q has been made. With this,

let ~qaLðxi� 1=2; tnÞ≔ ½Qa�
n
i� 1

and ~qaRðxi� 1=2; tnÞ≔ ½Qa�
n
i to be the reconstruction points that lay at

the interface xi−1/2. Note that these values are going to be different if a polynomial reconstruc-

tion is made. With this, we can write the numerical flux at xi−1/2 used in the Godunov scheme

in the following form:

½FHLLa �
n
i� 1=2
¼

f La ðxi� 1=2; tnÞ; if 0 � lL;

f HLLa ðxi� 1=2; tnÞ if lL < 0 < lR;

f Ra ðxi� 1=2; tnÞ; if 0 � lL:

8
><

>:
ð46Þ

The flux through xi+1/2 is obtained in an analogous way. So, by substituting these numerical

fluxes in the discretisation Eq (30), we finally get the numerical solution for the hyperbolic Eq

(15) in the finite volume scheme using Godunov’s algorithm with a high resolution [22]

approximate Riemann HLL solver:

½Qa�
nþ1

i ¼ ½Qa�
n
i �

Dt
Dx

�
½FHLLa �

n
iþ1=2
� ½FHLLa �

n
i� 1=2

�
: ð47Þ

A simple way of computing ½Qa�
n
i is by considering that this average value match the magni-

tude of q evaluated at the midpoint of the grid cell xi. If q(x, t) is smooth, the error introduced

by this approximation is of order OðDx2Þ [8]. In other words:

qaðxi; tnþ1Þ ¼ qaðxi; tnÞ �
Dt
Dx

�
½FHLLa �

n
iþ1=2
� ½FHLLa �

n
i� 1=2

�
: ð48Þ

Many other HLL-type Riemann solvers have been developed (cf. [21]) and successfully

implemented (cf. [19]) but they are beyond the scope of the present article.

Limiters

At first approximation, the reconstruction of q over the grid cell was made considering a con-

stant value ½Q�ni which is taken as the midpoint value of q of the corresponding control volume

Ci. A better way of improving the precision of the above procedure is by considering a piece-

wise polynomial approximation for this variable.

In the linear case, the reconstruction of q over Ci is given by

~qðx; tnÞ ¼ qðxi; tnÞ þ sn
i ðx � xiÞ; ð49Þ

where sn
i is the slope of the linear reconstruction. To use the limiters together with a HLL-type

Riemann solver, all we need to consider are those points of ~q in each contiguous grid cells,

evaluated at the interfaces xi±1/2. In this respect, it is not important to do a complete recon-

struction of q. The knowledge of q at the boundaries is sufficient for this approximation, and
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so the values required to effectively evolve the solution of the hyperbolic equation over the grid

cell Ci are:

~qLðxi� 1=2; tnÞ ¼ qðxi� 1; tnÞ þ
1

2
sn
i� 1

Dx; ð50Þ

~qRðxi� 1=2; tnÞ ¼ qðxi; tnÞ �
1

2
sn
i Dx; ð51Þ

~qLðxiþ1=2; tnÞ ¼ qðxi; tnÞ þ
1

2
sn
i Dx; ð52Þ

~qRðxiþ1=2; tnÞ ¼ qðxiþ1; tnÞ �
1

2
sn
iþ1

Dx: ð53Þ

Each pair Eqs (50 and 51) and Eqs (52 and 53), constitute a Riemann problem to be solved at

the interface xi−1/2 and xi+1/2, respectively. The polynomial reconstruction are useful to accu-

rate capture discontinuities such as shock-waves. Eqs (50)–(53) are also valid for each compo-

nent of the vector q when a coupled system of conservative equations is required.

The usual way of computing σ is by considering some useful function based on finite deriv-

atives of q over Ci. The most used but dissipative reconstruction (also called limiter [8]) is the

minmod limiter (MM) introduced in [23]:

sn
i ¼ minmodðmi� 1=2;miþ1=2Þ; ð54Þ

where the function mi±1/2 is the average slope (or the finite derivative) of q centred at xi±1/2:

miþ1=2 ¼
qðxiþ1; tnÞ � qðxi; tnÞ

xiþ1 � xi
; ð55Þ

mi� 1=2 ¼
qðxi; tnÞ � qðxi� 1; tnÞ

xi � xi� 1

: ð56Þ

The minmod function of two values a and b stands for:

minmodða;bÞ≔

0; if ab � 0;

a; if jaj < jbj;

b; if jbj < jaj:

8
><

>:
ð57Þ

This limiter has been successfully implemented in the case of relativistic hydrodynamics

(cf. [11, 18]).

The monotonic centred limiter MC, proposed by van Leer [24], has less dissipation than

minmod near discontinuities, but has been proved to create spurious oscillations in the strong

shock cases [11]. Nevertheless, it produces relatively well damped solutions that capture not

too strong shock waves. The slope σ is written as in Eq (54) but the MC function has the

Primitive Variable Recovery Scheme for conservative equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0195494 April 16, 2018 18 / 21

https://doi.org/10.1371/journal.pone.0195494


following form:

MCða; bÞ≔

0; if ab � 0;

2a; if jaj < jbj and 2jaj < jcj;

2b; if jbj < jaj and 2jbj < jcj;

c; if jcj < 2jaj and jcj < 2jbj;

8
>>>><

>>>>:

ð58Þ

where c≔ (a + b)/2.

Another piecewise linear reconstruction is the superbee limiter, also proposed by Roe in

1986 [23]. This one has a better shock-wave capture than the previous scheme as shown in Fig

7, where comparisons of the superbee limiter with the previous ones and with the piecewise

constant reconstruction (godunov) is made. For this slope, the function is slightly more com-

plicated than the previous ones and is given by:

s ¼ maxmod s
nð1Þ
i ; s

nð2Þ
i

� �
; ð59Þ

where

s
nð1Þ
i ¼ minmod ðmiþ1=2; 2mi� 1=2Þ; ð60Þ

s
nð2Þ
i ¼ minmod ð2miþ1=2;mi� 1=2Þ; ð61Þ

Fig 7. Comparison between the piecewise linear reconstructions (minmod, MC and superbee) with the piecewise

constant one (godunov). As the complexity of the algorithm grows the shock capture is better, as it is shown in the

figure by the superbee simulation. The graph shows the quantity q corresponding to the pressure as a function of the

position at a fixed time t = 0.35 for a particular Riemann problem in a relativistic Sod shock tube that evolves from the

initial value t = 0 in such a way that, at this time, p = 1.69 for x<0.77 and p = 0.1 for x� 0.77.

https://doi.org/10.1371/journal.pone.0195494.g007
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and

maxmodða;bÞ≔

0; if ab � 0;

a; if jbj < jaj;

b; if jaj < jbj:

8
><

>:
ð62Þ

Colella in 1984 [25] developed a piecewise parabolic reconstruction (PPM), that have been

successfully used by many authors in both relativistic [11] and non-relativistic hydrodynamics

(cf. [26]) but for the purposes of this paper, it will not be considered.

Supporting information

S1 File. Numerical vs. exact data. In the file “S1_File.tar.gz”, we attached the relevant data of

the comparison between numerical simulations and exact solutions used to obtain the L1—

norm.
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9. Lora-Clavijo FD, Cruz-Pérez JP, F S, González JA. Exact solution of the 1D Riemann Problem in New-

tonian and Relativistic Hydrodynamics. Revista Mexicana de Fı́sica. 2013 January-June; 59:28–50.

10. Del Zanna L, Bucciantini N. An efficient shock-capturing central-type scheme for multidimensional rela-

tivistic flows. I. Hydrodynamics. Astronomy and Astrophysics. 2002 Aug; 390:1177–1186. https://doi.

org/10.1051/0004-6361:20020776

11. Lora-Clavijo FD, Cruz-Osorio A, Guzmán FS. CAFE: A New Relativistic MHD Code. ApJS. 2015 Jun;

218:24. https://doi.org/10.1088/0067-0049/218/2/24

12. Radice D, Rezzolla L. THC: a new high-order finite-difference high-resolution shock-capturing code for

special-relativistic hydrodynamics. å. 2012; 547:A26. Available from: https://doi.org/10.1051/0004-

6361/201219735.

13. von Neumann J, Richtmyer RD. A Method for the Numerical Calculation of Hyd rodynamic Shocks.

Journal of Applied Physics. 1950 Mar; 21:232–237. https://doi.org/10.1063/1.1699639

14. Laney CB. Computational Gasdynamics. Cambridge University Press; 1998. Available from: https://

books.google.com.mx/books?id=r-bYw-JjKGAC.

15. MacCormack RW, Paullay AJ. Computational efficienciy achieved by time splitting of finite differences

operators. American Institute of Aeronautics and Astronautics AIAA. 1972;.

16. Book DL, Boris JP, Hain K. Flux-Corrected Transport. II—Generalizations of the method. Journal of

Computational Physicis. 1975; 18:248–283. https://doi.org/10.1016/0021-9991(75)90002-9

17. Godunov SK. A Difference Scheme for Numerical Solution of Discontinuos Solution of Hydrodynamic

Equation. vol. 47. Mat. Sb. (N.S.); 1959.

18. Rezzolla Lea. Relativistic Hydrodynamics. Oxford University Press; 2013.

19. Miyoshi T, Kusano K. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynaics.

Journal of Computational Physics. 2005 Apr; 208:315–344. https://doi.org/10.1016/j.jcp.2005.02.017

20. Harten A, Lax PD, Leer B. On Upstream Differencing and Godunov-Type Conservation Laws. SIAM

Review. 1983 04;25. Available from: http://gen.lib.rus.ec/scimag/index.php?s=10.2307/2030019.

21. Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer; 2009.
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