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We report results of low-temperature heat-capacity, magnetocaloric-effect, and neutron-
diffraction measurements of TmVO4, an insulator that undergoes a continuous fer-
roquadrupolar phase transition associated with local partially filled 4f orbitals of the
thulium (Tm3+) ions. The ferroquadrupolar transition, a realization of Ising nematicity,
can be tuned to a quantum critical point by using a magnetic field oriented along the
c axis of the tetragonal crystal lattice, which acts as an effective transverse field for
the Ising-nematic order. In small magnetic fields, the thermal phase transition can be
well described by using a semiclassical mean-field treatment of the transverse-field Ising
model. However, in higher magnetic fields, closer to the field-tuned quantum phase
transition, subtle deviations from this semiclassical behavior are observed, which are
consistent with expectations of quantum fluctuations. Although the phase transition
is driven by the local 4f degrees of freedom, the crystal lattice still plays a crucial
role, both in terms of mediating the interactions between the local quadrupoles and in
determining the critical scaling exponents, even though the phase transition itself can be
described via mean field. In particular, bilinear coupling of the nematic order parameter
to acoustic phonons changes the spatial and temporal fluctuations of the former in
a fundamental way, resulting in different critical behavior of the nematic transverse-
field Ising model, as compared to the usual case of the magnetic transverse-field Ising
model. Our results establish TmVO4 as a model material and electronic nematicity as a
paradigmatic example for quantum criticality in insulators.
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Several experimental and theoretical studies indicate a possible close association between
nematic quantum criticality, non-Fermi-liquid behavior, and the occurrence of supercon-
ductivity (see, for example, refs. 1–7 and references therein). This is, however, a compli-
cated problem to study, in large part because it is not clear how well the current materials
of interest map onto the effective models that are studied theoretically. For instance, iron-
based superconductors, which display an unambiguous nematic phase, usually display a
closely related antiferromagnetic state as well (8). Furthermore, chemical substitution is
often used as the nonthermal control parameter that tunes candidate materials across the
putative nematic quantum critical point (QCP). This can be problematic since chemical
composition is not a continuous variable, induces quenched disorder, and can affect
multiple terms in the effective Hamiltonian in poorly understood and poorly controlled
ways. All of these factors motivate development of simpler model systems, for which key
terms in the underlying Hamiltonian are well-understood and well-controlled and for
which a nematic quantum phase transition (QPT) can be driven in a continuous fashion
in situ without the need for chemical substitution. Here, we consider the simplest case of
a nematic QCP in an insulator, for which: 1) the nematic degrees of freedom are provided
by local atomic orbitals, 2) the electron-hole excitations are gapped, and 3) the QCP can
be traversed by application of a magnetic field.

Ferroquadrupolar (FQ) order of local 4f orbitals, in which each 4f orbital sponta-
neously acquires an electric quadrupole moment with the same orientation below a critical
temperature TQ , is a specific realization of electronic nematic order (9, 10). Bilinear
coupling between the local quadrupole moments and static and dynamic lattice distortions
with the same symmetry provides an effective interaction between the local quadrupoles.
Under certain conditions, this interaction can then drive a cooperative phase transition
to an FQ-ordered state. The FQ ordering is necessarily accompanied by a structural
distortion at the same critical temperature TQ—this is the essence of the cooperative
Jahn–Teller effect (11, 12). For the case corresponding to a tetragonal-to-orthorhombic
phase transition, the FQ/nematic order parameter has an Ising character, and there are
no cubic invariants in the free energy, so the phase transition can be continuous. In the
absence of disorder, one anticipates mean-field behavior for the thermal phase transition
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since the upper critical dimension (d+
c ) for the Ising-nematic

model with strain-mediated long-range interactions is two
(13, 14). Under certain conditions, met for TmVO4, a formal
mapping to the Transverse Field Ising Model (TFIM) can be
made, in which a magnetic field applied along the crystalline
c axis acts as an effective transverse field for the local quadrupoles,
effectively suppressing the quadrupole order (9). What makes
this system fundamentally different from the usual magnetic
realization of the TFIM [as in, e.g., LiHoF4 (15, 16)] is
the aforementioned bilinear coupling between the FQ order
parameter and lattice deformations with the same symmetry.
This coupling not only renders the thermal phase-transition mean
field (by changing d+

c from four to two, as noted above), but, as
we will show, also determines the critical behavior associated with
the field-tuned QCP (14).

The title material, TmVO4, is an insulator. It undergoes a con-
tinuous FQ phase transition at 2.2K, with all the action driven
by the local partially filled 4f orbital of the Tm ion. Magnetic
interactions are weaker than the quadrupole–quadrupole interac-
tions, and no magnetic order is observed. Material analogs that
lack the partially filled 4f orbital, such as YVO4, do not undergo
a similar phase transition, demonstrating that the crystal lattice is
perfectly stable in the absence of the Jahn–Teller effect driven by
local quadrupolar moments (SI Appendix). At high temperatures,
the material has tetragonal symmetry, with the Tm ions occupying
a unique crystallographic site with D2d symmetry (Fig. 1, Inset).
The ground state of the Tm ion in the presence of the crystal elec-
tric field (CEF) is a non-Kramers orbital doublet that transforms
as the E irreducible representation of the D2d symmetry. It is this
degeneracy that drives the FQ phase transition. The first excited
CEF state is 54 cm−1 (6.7meV) above the ground-state doublet
(17), so at low temperatures, the system can be described in

Fig. 1. Temperature dependence of the heat capacity of TmVO4 in zero
magnetic field, illustrating the mean-field character of the phase transition.
Data (blue points) are shown after subtraction of the phonon thermal con-
tribution and are normalized to the gas constant R. The gray line shows the
mean-field model, for which the only free parameter is the value of TQ. The
red line includes phenomenological parameters to account for broadening
of the phase transition at TQ (modeled here by a small strain of the same
symmetry as the order parameter) and the contribution to the heat capacity
above TQ (modeled by a small temperature-independent stress), as described
in SI Appendix. Upper Inset shows an image of the sample on which these zero-
field data were measured. To minimize demagnetizing effects, needle-shaped
samples were used for measurements close to the field-tuned QCP. Lower
Inset illustrates the zircon-type crystal structure in the tetragonal phase, with
Tm ions represented by purple spheres and VO4 molecular clusters by green
coordination polyhedra. MF, mean field.

terms of a pseudospin to a very good approximation. Below TQ ,
the material develops spontaneous εxy strain, corresponding to a
nematic order parameter that transforms as the B2g irreducible
representation of the point group of the tetragonal crystal lattice.
Thus, the principal axes of the resulting orthorhombic state are
rotated by 45◦ with respect to those of the high-temperature
tetragonal structure.

This material was extensively studied in the 1970s and 1980s, in
part because of the “ideal” mapping to simple pseudospin models
of the cooperative Jahn–Teller effect. A series of beautiful mea-
surements established that the zero-field thermal phase transition
of TmVO4 is indeed mean-field-like, including measurements of
heat capacity (which shows the canonical mean-field “step” seen
in Fig. 1) (18), optical absorption (19), Raman spectroscopy (20),
ultrasound (21, 22), X-ray diffraction (23), Mössbauer spec-
troscopy (24), inelastic neutron scattering (25), electron paramag-
netic resonance (26), and NMR (27, 28). Indeed, the material was
seen as a model system for mean-field thermal phase transitions
(12). Similarly, the shape of the phase boundary in theH –T plane
appeared to conform to mean-field expectations in the tempera-
ture range considered, based on a simple semiclassical solution of
the TFIM. In this approach, the quantum dynamics associated
with the noncommuting pseudospin operators in the TFIM are
neglected, such that the external transverse field and the intrinsic
Weiss longitudinal field experienced by the local quadrupoles are
simply added in quadrature (29). However, when the material was
first investigated, notions of both QPTs and electronic nematic
order had yet to be considered in detail in the context of condensed
matter. As a result, the physical properties of the system were
not followed to low temperatures, proximate to what we would
now understand to be a putative FQ QCP. Recent theoretical
studies of electronic nematic order, inspired by materials such as
the Fe-based superconductors, have underscored the importance
of the bilinear coupling of order-parameter fluctuations to lattice
deformations with the same symmetry (14, 30, 31). Indeed, as we
will show, this coupling profoundly affects the resulting critical
behavior that characterizes the continuous mean-field QPT.

In this article, we report results of measurements of TmVO4

that probe the field dependence of the order parameter at low
temperatures and the shape of the phase boundary approaching
the field-tuned QCP. Far from the QCP, the material is well-
described by the semiclassical treatment of the TFIM discussed
above, in which dynamics associated with the noncommuting
operators is neglected. Closer to the QCP, however, subtle devi-
ations are evident, which we argue arise as a consequence of the
quantum fluctuations. We discuss expectations for the associated
mean-field QCP. In particular, because the dimensionality d is
greater than d+

c for both the classical phase transitions and QPTs,
we can obtain TQ as a function of (H − Hc) by computing the
Gaussian-fluctuations corrections to the free energy, which are
well-controlled in this case. Bilinear coupling of the FQ order
parameter to phonon modes with the same symmetry necessarily
changes these exponents relative to the case of the magnetic TFIM.
Our experimental observations and associated theoretical treat-
ment elevate TmVO4 to the status of a model material system, not
only to reveal mean-field behavior at the thermal phase transition
in zero field (the primary result from the 1970s), but now also to
elucidate the effects of quantum critical fluctuations proximate to
the mean-field continuous FQ QPT.

Results

Far from the QCP. The cooperative Jahn–Teller effect in
TmVO4 results in a pseudoproper ferroelastic phase transition.
Bilinear coupling between the FQ order parameter and the εxy
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orthorhombic lattice distortion ensures that the temperature and
field dependence of the lattice distortion, measured here via elastic
neutron scattering, is the same as that of the local quadrupole
moments. The orthorhombicity, defined as δ = |a − b| /
((a + b) /2), was determined from the splitting of the (880)T
Bragg peak, where the subscript T denotes (hkl) labeling
according to the high-temperature tetragonal unit cell, whereas
a and b are the lattice parameters in the low-temperature
orthorhombic phase. Measurements were performed at a
temperature T = 0.60K≈ 0.27TQ as a function of magnetic
field H , with the field oriented along the crystalline c axis.
Demagnetization effects were modeled by using a finite elements
simulation, discussed in greater detail in SI Appendix.

As shown in Fig. 2A, increasing H results in a continuous
suppression of the order parameter for the ferroelastic distortion,
with the two Bragg peaks, associated with the two orthorhombic
domains, eventually merging into a single peak. Peaks for each
value of the magnetic field were fitted by using a standard neutron
time-of-flight functional form (32, 33), in order to identify the
positions xM ,1 and xM ,2 of their maxima, from which the rela-
tive distortion was deduced as 2 |xM ,1 − xM ,2| / |xM ,1 + xM ,2|

A

B

Fig. 2. Field dependence of the lattice parameters a and b in the orthorhom-
bic phase (A) and the orthorhombicity parameter δ at T = 0.60 K (B). HSC

c,0.6 is
the critical field derived from the semiclassical fit described in Eq. 1. The color
scale in A corresponds to detector intensities integrated over the transverse
scattering direction. Superimposed are the data points indicating the posi-
tions of the peak maxima (black dots). Differences in the intensity of the two
peaks are due to differences in the domain population. The orthorhombicity
parameter closely follows the semiclassical mean-field solution for the order
parameter of the TFIM (red line in B). a.u., arbitrary units.

(SI Appendix). Its dependence on the magnetic field H , plotted in
Fig. 2B, closely follows what is expected from semiclassical mean-
field treatments of the TFIM, where the transverse (magnetic) and
longitudinal (B2g strain) fields add in quadrature (29):

δ(T = 0.6K,H ) = δ0(0.6K) ·

√√√√1−
(

H

H SC
c,0.6

)2

, [1]

where δ0(0.6K) is the orthorhombic distortion in the absence
of magnetic field, and H SC

c,0.6 is the critical field at T = 0.6K,
derived from this semiclassical fit.

Eq. 1 fits the data very well up to H /H SC
c,0.6 ≈ 0.92, with

no systematic deviations between the data and the semiclassical
mean-field solution discernible within experimental error. For
fields above this value, the peak-fitting is not constrained enough
to give reliable values due to the instrumental resolution. The
semiclassical mean-field fit yields δ0(0.6K) = 5.78(4) · 10−3,
in agreement with previous estimates for the zero-temperature
orthorhombicity based on the same semiclassical model (23).

A further test of the extent to which TmVO4 follows semiclas-
sical mean-field expectations as a function of field is provided by
the shape of the phase boundary, which is best determined by ther-
modynamic probes. Heat-capacity measurements were performed
in a Helium-3 (He-3) refrigerator down to 0.35K.

The temperature and field dependence of the heat capacity
(data points in Fig. 3A) closely agree with the semiclassical mean-
field solution of the TFIM (29, 34). In particular, they exhibit
three main features as the magnetic field is increased: 1) The
step marking the phase transition moves to lower temperatures
and is suppressed in magnitude; 2) the data fall onto the same
curve below the transition temperature TQ(H ); and 3) the high-
temperature tail of a Schottky anomaly is clearly visible above the
transition temperature due to splitting of the ground-state doublet
induced by the magnetic field.

Rounding of the mean-field step in the heat capacity is evident
in Figs. 1 and 3A. This effect is attributed to small, unintentional
strain of the same symmetry as the order parameter and, for
measurements made in magnetic fields, demagnetization effects.
In zero field, the upward curvature of the heat capacity for
temperatures above TQ can be accounted for by a small residual
stress, which could arise, for example, from freezing of the grease
used to hold the sample to the calorimeter platform or possibly
even from crystal growth defects. While both sources of strain
are likely inhomogeneous, the data can be very well described
by treating both by a single uniform parameter (solid red line in
Fig. 1). These subtle effects are, of course, still present when the
measurements are made in an applied field, but are swamped by
the much larger field-induced effects associated with inhomoge-
neous demagnetization and field-induced splitting above TQ .

Demagnetizing effects were modeled by using finite element
simulations (SI Appendix). This resulted in a very good description
of the data through TQ for all fields (solid lines in Fig. 3A).* It is
worth noting that only the solid (zero field) blue line is an actual
fit of the corresponding data, with two free parameters, TQ,0,
the zero-field transition temperature, and ε, the homogeneous
longitudinal field responsible for the rounding of the transition.
All other solid lines at finite fields were computed numerically
without any free parameters using: 1) the values obtained forTQ,0

*The constant stress underlying the phenomenological fit of the high-temperature tail of
heat capacity, as shown in Fig. 1, is independent of magnetic field. Since we focus here on
the effects of magnetic field on the heat capacity, we do not include this high-temperature
contribution in our modelling.
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A

B

Fig. 3. (A) Temperature dependence of the heat capacity of TmVO4 under
various values of externally applied magnetic field H, in units of the gas
constant R. Symbols: experimental data. Full line at zero field: mean-field fit
using the semiclassical TFIM. All other solid lines: mean-field computations
of the semiclassical solution of the TFIM, combined with the distributions of
magnetic fields inside the sample, as computed by using COMSOL (see Far
from the QCP). (B) Temperature–magnetic-field phase diagram, as obtained
from the first derivative of the heat capacity (color map). The black line is the
theoretical phase boundary according to the semiclassical mean-field solution
of the TFIM. TQ,0 is the transition temperature in the absence of magnetic
field; HSC

c,0 is the critical transverse magnetic field at T = 0, as extracted from
fitting the heat-capacity data with the semiclassical expression for the phase
boundary. a.u., arbitrary units.

and ε from the fit of the zero-field data; and 2) the magnetic-field
distributions computed in COMSOL.

For magnetic fields up to∼0.9Hc(T = 0), the critical temper-
ature can be readily extracted from the first temperature derivative
of the heat-capacity data, dCp/dT , which is plotted as a color
map on the T–H plane in Fig. 3B. The same figure also displays
the semiclassical mean-field phase boundary (black line), which is
described by the following functional form (29):

TQ (H )

TQ,0
=

H /H SC
c,0

atanh
(
H /H SC

c,0

) , [2]

where TQ,0 is the zero-field transition temperature, H SC
c,0 is

the zero-temperature critical field, and atanh is the inverse tanh
function. This equation fits the phase boundary obtained from
heat-capacity data very well for fields up to ∼0.8H SC

c,0 .

Close to the QCP. The small magnitude of the heat-capacity
anomaly for higher fields, combined with the steep shape of the
mean-field phase boundary, renders heat-capacity measurements
less helpful for determiningTQ closer to the QCP. For this reason,
we instead use the Magnetocaloric Effect (MCE).

MCE measurements were made by using the same calorime-
ter as the heat-capacity measurements in the He-3 fridge and
also by using a different calorimeter in a separate dilution re-
frigerator. Representative data, along with a description of the
physical principle of the MCE, can be found in SI Appendix.
Under quasiadiabatic conditions, to compensate for the release
of entropy associated with the quadrupolar degrees of freedom
at the FQ transition, the temperature of the sample changes. For
each MCE trace, Hc(T ) was thus identified as the magnetic-field
value at which the second derivative of the field-induced temper-
ature change of the sample d2ΔT

dH 2 is maximum.
The values of Hc(T ) extracted via MCE measurements are

plotted in Fig. 4 as green dots with horizontal error bars, along
with the transition temperatures TQ(H ) extracted from the heat-
capacity data, plotted as blue dots with vertical error bars. The
combination of all these data into a single dataset was then fitted
on various ranges of magnetic field, using the expression for the
phase boundary in the semiclassical description of the TFIM,
Eq. 2. The best fit was obtained when fitting over the range
0≤ H ≤ 4 kOe, with an adjusted R2 of 0.9998 (SI Appendix,
section S7). The corresponding curve is plotted as a red solid line
in Fig. 4. While in the field range between 0 and 4 kOe, the curve
goes through all the data points, it overshoots the data for fields
larger than 4 kOe, when the QCP is approached.

It is worth noting that this result is not an artifact of data
obtained from two different types of measurements, as the heat-
capacity data point located at H = 4.5 kOe is in agreement with
the MCE data. Moreover, both measurements were performed

Fig. 4. Experimentally determined phase boundary TQ(H) extracted from
measurements of heat capacity (blue data points with vertical error bars) and
magneto-caloric effect (green data points with horizontal error bars). The red
line shows the fit of the phase boundary using the semiclassical solution of the
TFIM, including data points at or below 4 kOe only (see Close to the QCP). Inset
shows a picture of the sample, made of a collection of needles to minimize
demagnetization effects, on the heat-capacity platform.
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in a single run using the same setup. Lastly, these results were
reproduced on the sample of Fig. 1.

Since the data deviate from the semiclassical mean-field solu-
tion of the TFIM, we used a self-consistent Gaussian-fluctuation
approach to calculate the expected shape of the phase bound-
ary. This method includes the leading order contribution of the
quantum fluctuations to TQ(H ), which should be sufficient
since the system is above the upper critical dimension (35). Our
model predicts a power-law behavior close to the QCP (below
and SI Appendix)—i.e., TQ ∼

(
H PL

c,0 − Hc(T )
)ψ , where H PL

c,0
denotes the estimated critical field at zero temperature, as deter-
mined from the power-law fit. Fitting the data of Fig. 4 with this
expression yields H PL

c,0 = 5,008(4)Oe and ψ = 0.21(2), with a
best-fit range 4.5 kOe≤ H ≤ 5.0 kOe and an adjusted R2 of
0.97. The resulting best-fit curve is shown as a red solid line on
top of the data (black dots) in the log–log plot of Fig. 5.

We note that the neutron-scattering data shown in Fig. 2 are
only able to resolve the orthorhombicity over a regime of field
and temperature that predominantly lies outside (and barely over-
laps with) the proposed quantum critical regime, where power-
law behavior of the critical temperature is observed. This is a
consequence of the very steep phase diagram. Nevertheless, if
the orthorhombicity could be resolved closer to Hc , this, too,
must deviate from the semiclassical model in order to match the
observed phase diagram.

Discussion

Power-law behavior of the phase boundary TQ ∼
(
H PL

c,0 −
Hc(T )

)ψ is a characteristic feature of quantum criticality (35).
The associated quantum fluctuations, presumably promoted by
the applied magnetic field acting as a transverse nematic field
(9), suppress the critical temperature below what would be
anticipated based solely on the semiclassical solution described
above. Significantly, bilinear coupling of the Ising-nematic
order parameter to dynamic εxy shear deformations makes this
fundamentally different from the magnetic TFIM case, as widely

Fig. 5. Log–log plot of the phase boundary TQ(H). The experimental data
(black dots with error bars) were fitted by a power law, TQ ∼

(
HPL

c,0 − Hc(T)
)ψ .

The best fit, plotted as a red solid line, yields ψ = 0.21(2) and HPL
c,0 =

5,008(4) Oe. The latter value is used as reference for the horizontal axis of
the figure.

studied, for instance, in LiHoF4 (15, 16). Indeed, as we show
below, the QCP is characterized by different scaling exponents.

It is well-established that the thermal phase transition for Ising-
nematic order is mean-field-like due to the long-range nematic
interaction generated by the coupling to acoustic phonons (13,
14, 36). Because the correlation length only diverges along specific
in-plane directions in momentum space (at 45◦ with respect to
the principal axes of the nematic distortion), the upper critical
dimension of the problem is reduced from four (for the simple
Ising model) to two. Equivalently, the effective dimensionality d
of the system increases from three to five due to this coupling—
i.e., the material behaves like an Ising system in d = 5. Proximate
to the QCP, the effective dimensionality increases yet again to
d + z (35), where z is the dynamical critical exponent that
characterizes temporal fluctuations of the order parameter near the
QCP. In other words, since the thermal phase transition for Ising-
nematic order in a compressible lattice is mean-field-like, the QCP
should also be.

Since mean-field behavior is observed across the entire phase
diagram, and the Ginzburg criterion is never violated, a one-loop
self-consistent approximation is sufficient to describe how the
transition temperature is suppressed to zero by Gaussian quantum
fluctuations in an insulator (35). For strong nemato-elastic cou-
pling, appropriate for this system, in which the nematic order only
exists because of coupling to the lattice, this calculation results in
an exponent that is consistent with the standard scaling relation
ψ = z/(z + d − 2) (35) with d = 5 (SI Appendix). However,
since the phase boundary is measured over a range of temperatures
and magnetic fields, different exponents can be manifested in
different temperature/magnetic-field regimes, corresponding to
different values of z , while still belonging to the same mean-
field description. To understand why z changes as the QCP is
approached, we note that in an insulator, the critical dynamics of
a generic bosonic mode is expected to be propagating, resulting
in z = 1. However, a quantum elastic transition (i.e., arising from
the softening of a shear mode) has an exponent z = 2 (31, 37).
This follows from the fact that the dispersion relation ω(q) for the
soft acoustic phonons (with wave vector along [100] and [010])
at the critical field is only linear for high q values, crossing over
to quadratic behavior approaching q = 0 due to the vanishing
of the sound velocity (38, 39). Consequently, as temperature is
decreased and the nematic QCP is approached, a cross-over is
anticipated from a regime in which temporal fluctuations are char-
acterized by z = 1 to one characterized by z = 2. The associated
exponent describing the phase boundary in these two regimes is
then expected to change from ψ = 1/4 (d = 5, z = 1) at higher
temperatures to ψ = 2/5 (d = 5, z = 2) at lower temperatures.
The cross-over scale is set not only by the nemato-elastic coupling,
which also affects the cross-over from d = 3 to d = 5, but also by
the ratio between the velocities of propagation of sound and of the
nematic mode (i.e., collective excitations of the nematic degrees of
freedom; SI Appendix). As a result, the cross-over scale from d = 3
to d = 5, associated with spatial fluctuations, does not need to
coincide with the cross-over scale from z = 1 to z = 2 associated
with temporal fluctuations.

The observed exponent ψ = 0.21± 0.02 is remarkably close
to 1/4, the value anticipated for d = 5 and z = 1. Under the
assumption that this apparent power-law behavior originates from
critical scaling, we deduce that for the temperature range over
which the measurements were performed, z = 1. This would
be consistent with a small ratio between the velocity of the
bare nematic mode (i.e., unrenormalized by interaction with the
lattice) and the bare sound velocity—i.e., the purely electronic
nematic fluctuations propagate slower than sound does. The fact
that the local 4f quadrupoles are essentially only coupled via
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the lattice supports this assessment. Presumably, extending our
measurements to progressively lower temperatures would reveal
a cross-over to a regime in which the z = 2 exponent is eventually
observed. Of course, our observation of a deviation from the
semiclassical model is itself not necessarily direct proof that the
effect is driven by quantum criticality, but the observation of
power-law behavior with an exponent that is consistent with such
a scenario is clearly highly suggestive. Additional measurements
probing the behavior of various other thermodynamic quantities
to lower temperatures in order to test this hypothesis would be
highly welcome.

The proposed interpretation of our result in terms of critical
scaling near the field-tuned QCP demonstrates the significance of
nemato-elastic coupling in Ising-nematic systems. For the simpler
case of the magnetic TFIM, the anticipated exponent describing
the phase boundary close to the QCP, obtained from the same self-
consistent calculation, is ψ = 1/2 (d = 3, z = 1). In that case,
the Ising-magnetic order parameter couples only quadratically to
longitudinal strain, which is predicted to result in a first-order
transition (40, 41). In the Ising-nematic case, however, the effects
of a compressible lattice are fundamentally different: Here, the
bilinear coupling of the nematic order parameter to shear strain
means that the nematic mode inherits some key properties of the
critical elasticity of the lattice (31), such as a strong anisotropy
of the correlation length, although the phase transition itself
remains continuous (13, 14). Our observation of the associated
power law proximate to the QCP underscores a key point that
applies to metallic nematic systems just as much as for insulators:
Sufficiently close to the QCP (where “sufficiently close” could
depend on microscopic details for different material systems),
coupling to the lattice fundamentally affects the fluctuating order
and cannot be neglected (14, 31, 42). More broadly, our results
establish the Ising-nematic QPT in insulators such as TmVO4 as a
paradigmatic framework to elucidate quantum criticality, which is
complementary to, but qualitatively different from, the standard
example of an Ising ferromagnet subjected to a transverse magnetic
field (43).

Materials and Methods

For heat-capacity and magneto-caloric effect, single crystals of TmVO4 were grown
in a flux of Pb2V2O7 using 4 mol% of Tm2O3, following the methods described
in refs. 44 snd 45. Samples were characterized by using heat-capacity mea-
surements and show high quality with a sharp transition at 2.15 (5) K under
zero magnetic field (SI Appendix). For neutron-scattering measurements, which
require bigger single crystals, the samples were grown by using the floating-zone
method, as reported in ref. 46. The crystal structure was verified on a flux-grown
sample, by collecting single crystal X-ray diffraction data at Beamline 12.2.1
at the Advanced Light Source, Lawrence Berkeley National Laboratory, which
confirmed that the tetragonal I41/amd symmetry observed at room temperature
(47) persists down to at least 100 K (SI Appendix). A Crystallographic Information
File (CIF) has been deposited in the Cambridge Crystallographic Data Center
(CCDC) (accession code 2117139) (48).

Heat-capacity and MCE measurements were performed in vacuum by using
the same setup, with magnetic field parallel to the c axis of the sample, and

without cycling temperature between one type of measurement and the other.
Heat-capacity measurements were carried out under constant magnetic field,
from 4 K down to base temperature (0.1 K for the dilution refrigerator, 0.35 K for
the He-3 cryostat). For MCE measurements, bath temperature was constant, and
magnetic field was swept at a constant rate from 0 to 10 kOe (SI Appendix).

Elastic neutron-scattering experiments were carried out in a dilution refrig-
erator at the CORELLI beamline of the Spallation Neutron Source at Oak Ridge
National Laboratory. The sample was aligned in the (HK0) scattering plane, with
the magnetic field applied vertically along the c axis. Data were fitted by using a
convolution of a pseudo-Voigt function with the Ikeda–Carpenter function, which
is common for time-of-flight neutron-scattering experiments (32) (SI Appendix).

Modeling of the sample measured under magnetic field was made by using
the AC/DC module of the COMSOL software (49).

Data Availability. Figure data have been deposited in text format in the
Stanford Digital Repository (https://purl.stanford.edu/yh091zv1831) (50). The
crystallographic information file (CIF) reported in the SI Appendix of this pa-
per has been deposited in the Inorganic Crystal Structure Database (ICSD),
https://icsd.fiz-karlsruhe.de/search (CCDC deposition number 2117139). These
data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/,
or by emailing data request@ccdc.cam.ac.uk (48).
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