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A B S T R A C T   

Objective: Fetal growth restriction (FGR) is a severe pathological complication associated with compromised fetal 
development. The early diagnosis and prediction for FGR are still unclear. Sequencing technologies present a 
huge opportunity to identify novel biomarkers. However, limitation of individual studies (e.g., long lists of 
dysregulated genes, small sample size and conflicting results) hinders the selection of the best-matched ones. 
Study design: A multi-step bioinformatics analysis was performed. We separately reanalyzed data from four public 
RNA-seq studies, followed by a combined analysis of individual results. The differentially expressed genes (DEGs) 
were identified based on DESeq2. Then, function enrichment analyses and protein-protein interaction network 
(PPI) were conducted to screen for hub genes. The results were further verified by using external microarray 
data. 
Results: A total of 65 dysregulated genes (50 down and 15 upregulated) were identified in FGR compared to 
controls. Function enrichment and PPI analysis revealed ten hub genes closely related to FGR. Validation analysis 
found four downregulated candidate biomarkers (CEACAM6, SCUBE2, DEFA4, and MPO) for FGR. 
Conclusions: The use of omics tools to explore mechanism of pregnancies disorders contributes to improvements 
in obstetric clinical practice.   

1. Introduction 

FGR, a severe pathological condition that refers to fetuses failing to 
reach their growth potential, complicates approximately 5–10% of all 
pregnancies worldwide [1,2]. Placental dysfunction, a disorder char-
acterized by insufficient vascular remodelling of the spiral arteries and 
suboptimal uterine-placental perfusion, is a major contributing factor to 
FGR [3,4]. However, the underlying pathology of FGR is still not fully 
understood. The mystery of the pathology underlying FGR also made 
early prediction and diagnosis of FGR challenging. 

One approach to finding biomarkers is to use omic methods. Gene 
expression profiling can be used to identify novel prognostic and diag-
nostic biomarkers [5]. For example, fms-like tyrosine kinase-1(sFLT1), 
an upregulated gene identified by microarray, has now been applied 
to clinical screening in developing pre-eclampsia [6]. Several diagnostic 
biomarkers have been suggested for FGR: pregnancy-associated plasma 
protein A (PAPP-A), placental growth factor (PlGF), and sFLT1 [7–9]. 
More recently, maternal serum levels of follistatin-like 3 (FSTL3) protein 

were found predictive of FGR [10]. However, none are currently clini-
cally recommended consistently worldwide. 

Recent studies using gene sequencing techniques expand our 
knowledge of the placental transcriptional landscape in pregnancy 
complications [11], including FGR. RNA sequencing (RNA-seq) 
research, based on next-generation sequencing technology, is flourish-
ing. The deposition of sequencing data in public databases, such as the 
Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO), 
facilitates global data sharing. However, results from individual 
RNA-seq studies differ, leading to different conclusions. In addition, the 
small number of biological replicates in each separate study limits the 
credibility and accuracy of the results. For these reasons, this study 
aimed to identify potential disease-specific biomarkers by combining 
data from different backgrounds to show a comprehensive tran-
scriptome picture from multiple studies. 

In this study, we utilized an established comprehensive workflow to 
identify of FGR-specific biomarker candidates with reduced impact from 
laboratory bias [12]. We separately reanalyzed data from four RNA-seq 
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studies of FGR, followed by a combined analysis of the individual results 
to reduce false-positive rate. Besides, we addressed the selection of 
suitable housekeeping genes for subsequent biomarker expression ana-
lyses. Therefore, this study will help to discover novel biomarkers that 
may provide evidence for predicting and managing FGR. 

2. Methods 

2.1. RNA-seq data collection and processing 

The available databases were searched to select projects including 
placental transcriptomic data from physiological and FGR-affected 
pregnancies. For RNA-seq profiles of studies related to fetal growth re-
striction in four datasets were downloaded from SRA database (https:// 
www.ncbi.nlm.nih.gov/sra): PRJEB30656 – a Polish study on placenta 
transcriptome of FGR pregnancies which were diagnosed considering 
both intrauterine vessels flow index and estimated fetal weight [13]; 
PRJEB37698 – a Polish study on placental sex-biased long non-coding 
RNAs signature in FGR [14]; PJNA472249 – a Canadian study on 
placental microRNA regulation in early-onset FGR [15]; PRJNA894845 
– a Chinese study on placenta transcriptome in term FGR (Xiaohui Li, 
Xin He, Yanan Hu, Zhengpeng Li, Yi Chen, 2023, unpublished data). 
Sequencing data in all studies were performed by Illumina platform. 

The raw RNA sequencing data (fastq files) were downloaded using 
the corresponding accession numbers and assessed for quality control 
using the fastqc (https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). fastp was applied to eliminate adaptors and trim reads 
with a low phread quality (cutoff < 20) [16]. Reads that passed the 
quality control metrics were mapped to the human reference genome 
(GRCh38) with HISAT2 [17]. Samtools software [18] was used to 
convert BAM to SAM format. Finally, the mapped reads of each sample 
were assembled by featurecounts [19] with ENSEMBL annotation 
(GRCh38.107) at both gene and transcript levels. 

2.2. Biomarker screening analysis 

Gene count expression matrix was examined by the DESeq2 [20]. 
When the statistical tests satisfied the following thresholds: (1) fold 
change > 2 or < 0.5; (2) p-value < 0.05, the gene was considered as a 
differentially expressed within a study. The false-negative rate of iden-
tifying differentially expressed genes (DEGs) was further reduced in 
subsequent comparisons of each individual studies, as previously 
described [12]. Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways enrichment analyses were carried 
out with the g:Profiler [21] using the DEGs. To figure out the potential 
protein interactions, protein-protein interaction (PPI) network of the 
DEGs was investigated using the STRING database (version 11.5; 
http://string-db.org/) and STRINGdb R package with default interaction 
scores threshold (cutoff = 400). The Maximal Clique Centrality (MCC) 
topological algorithm of CytoHubba program in Cytoscape software was 
used to identify the key gene modules [22]. 

2.3. Potential biomarker validation using external transcriptomic dataset 

Selected candidate DEGs for FGR were validated by comparison with 
external data in similar studies. Microarray data (ID: GSE75010) dataset 
were chosen for further analysis. Pregnancies with maternal hyperten-
sion were excluded. Gene expression levels were normalized as RMA 
when comparing between groups. 

2.4. Statistics analysis 

R (version 4.1.0, http://www.r-project.org) was used for statistical 
analysis and visualization. Differences between groups of continuous 
variables were tested using Wilcoxon test. P-values were considered 
statistically significant at p < 0.05. 

3. Results 

3.1. Biomarker screening using multiple RNA-seq studies 

To identify promising and potential novel biomarker candidates, we 
reanalyzed data from four publicly available placental RNA-seq studies 
for FGR, i.e., PRJEB30656 [13], PRJEB37698 [14], PRJNA472249 [15], 
and PRJNA894845 (Xiaohui Li, 2023, unpublished data). Within each 
study, we first identified the dysregulated genes using fairly relaxed 
filtering conditions with DESeq2, followed by a comparative analysis of 
all studies, as described in [12]. We used two different approaches to 
identify DEGs by either based on the genome (gene IDs) or the tran-
scriptome (transcript IDs). The number of DEGs varied between the in-
dividual studies: 3669, 1079, 12033, and 1388 DEGs in PRJEB30656, 
PRJEB37698, PRJNA472249 and PRJNA894845, respectively, when 
mapping on the genome; and 3459, 1181, 13984, and 1640 DEGs in 
PRJEB30656, PRJEB37698, PRJNA472249 and PRJNA894845, respec-
tively, when mapping on the transcriptome (Table 1). The directions of 
the regulation for DEGs were shown in Fig. S1. 

We next compared DEGs between all four studies to identify common 
dysregulation genes. For subsequent analyses, we only included DEGs 
observed in at least three studies (with an unadjusted P value < 0.05) 
and were consistent with the direction either upregulated or down-
regulated. We obtained a total of 223 such genes (155 downregulated 
and 68 upregulated; 175 protein-coding genes) (Fig. 1a; mmc2.xlsx) and 
206 transcripts (125 downregulated and 81 upregulated; representing 
154 unique protein-coding genes) (Fig. 1b; mmc3.xlsx). Of note, eight 
genes (four protein-coding genes) and five transcripts (two protein- 
coding genes) were identified in all four studies. The distribution of 
DEGs in the four FGR RNA-seq studies without considering the direc-
tionality of the regulation was shown in Fig. S2. 

We then compared the DEGs obtained at the gene and transcript 
levels, resulting in 65 common protein-coding genes dysregulated in at 
least three studies. Fifty genes were downregulated, and 15 were upre-
gulated in at least three studies (Fig. 2). Especially, S100A12 was 
downregulated in all four studies at gene level, while S100A12 and 
RHOQ were downregulated in all four studies at transcript level (Fig. 2). 
The study PRJNA894845 showed reduced intensities of dysregulation: 
large numbers of genes are dysregulated, however, with P values greater 
than 0.05 (shown in grey). 

3.2. Functional and pathway enrichment of candidate DEGs 

We then carried out the gene set enrichment analysis using the 
previously identified 65 overlapping candidate DEGs. Here, we identi-
fied four biological processes (BP), four cellular components (CC), and 
eight molecular functions (MF), but no KEGG pathway (Fig. 3; mmc4. 
xlsx). We observed some items were closely associated with cell signal 
communication, such as cell-cell signaling, signaling receptor binding, 
signaling receptor activator activity, receptor ligand activity, hormone 
activity and glycosaminoglycan binding. 

3.3. PPI network analysis of candidate DEGs 

According to data from the STRING database, the gene interaction 
network had 65 edges and 26 nodes (Fig. 4). To identify the significant 
contributor to this PPI network module, we utilized the CytoHubba 
program in Cytoscape to find core gene nodes. MPO, VCAN, S100A12, 
DEFA4, ADAMTS7, SCUBE2, VTN, CEACAM6, OLFM4 and STX1A were 
the top ten high-degree hub nodes selected by the topological methods. 
Additionally, functional enrichment analysis revealed that these ten 
genes were primarily involved in glycosaminoglycan binding (GO:MF: 
0005539), defense response to fungus (GO:BP:0050832) and secretory 
granule (GO:CC: 0030141) (mmc5.xlsx). 

On the basis of the DEGs identified, we next aimed to identify 
possible biomarker candidates for FGR. To further verify the mRNA 
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expression levels of the hub genes, the data of FGR fetuses were obtained 
from a public database (ID: GSE75010) (Fig. S3). Expression changes of 
CEACAM6, MPO, DEFA4 and SCUBE2 were further confirmed using this 
external transcriptomic dataset (Fig. 5). Therefore, the genes CEACAM6, 
MPO, DEFA4 and SCUBE2 may be possible pathogenic target of FGR by 
combining PPI analysis. 

3.4. Selection of housekeeping genes using public RNA-seq data 

Additional analyses useful in biomarker screening can be achieved 
using public RNA-seq data. Selecting a suitable housekeeping gene (with 
a stable expression in the context of FGR) is crucial for subsequent gene 
expression analyses (e.g., real-time quantitative PCR). We analyzed 20 
commonly used housekeeping genes at gene level comparing the four 
FGR RNA-seq studies mentioned above (Fig. S4; mmc6.xlsx). Most of the 
genes showed dysregulation (p < 0.05) in at least one of the studies. 
However, CYB561, CYC1, HBS1L, RPLP0 and TBP showed no dysregu-
lation in all four studies within the context of FGR, which we suggest as 
suitable housekeeping genes. 

4. Discussion 

Recently, the rapid development of omic tools has presented a huge 
opportunity to identify novel biomarkers for pregnancy complications. 
Various methods to screen for potential FGR biomarkers have been re-
ported. These include transcriptomics [10], proteomics [23], metab-
olomics [24] and epigenetics [25]. However, they might yield hundreds 
or thousands of identified DEGs at last, generating overly optimistic 
predictions. Most omic studies assessing FGR also displayed a common 
limitation: small sample sizes with homogeneous ethnic backgrounds. In 
the present study, we performed a multi-step bioinformatics analysis of 
multiple RNA-seq data, following the established workflow [12], to 
identify hub genes as potential biomarkers of FGR. With the help of 
transcriptome profiles of four different datasets, including larger 
numbers of FGR patients and controls from diverse populations, a total 
of 65 candidate DEGs were identified in FGR versus the control group. 
Besides, PPI network construction, module analysis of hub genes and 

validation analysis by microarray data were performed to screen sig-
nificant hub genes. 

In this study, we found four key hub genes (i.e., CEACAM6, DEFA4, 
SCUBE2 and MPO) as potential biomarkers for FGR using multiple 
sequencing studies combining PPI analysis. These four genes were 
downregulated in samples of GSE75010 which were in accordance with 
previous observations from four selected placenta RNA-seq data. CEA-
CAM6 can activate a distinct subset of regulatory CD8 + T cells on 
placental trophoblasts [26]. These CD8 + regulatory T cells help the 
mother tolerate her semi-allogeneic fetus [27]. Previous study indicated 
that maternal-fetal immune tolerance mediated by regulatory T cells 
played an essential role in the development of FGR [28]. This aberrant 
expression level of CEACAM6 may be essential in adjusting placental 
immunity. DEFA4 (Defensin alpha 4) has robust features in host defence 
which gradually increases throughout normal pregnancy [29]. It was 
suggested that the upregulation of DEFA4 [30] in cancer was involved in 
malignant transformation and correlated with cancer aggressiveness. 
Trophoblast shares the same properties with cancer cells: tissue inva-
siveness, immune evasion and stimulation of angiogenesis [31]. There-
fore, we conjecture that the placenta cell with low-expressed DEFA4 
loses its aggressive cancer-like manner and led to placenta dysfunction 
in FGR pathology. SCUBE2 is identified ubiquitously in vascular endo-
thelium and highly vascularized tissues. Cooperation between the 
SCUBE gene family (SCUBE1 and SCUBE2) regulated angiogenic cell 
behaviours and formation of functional vessels during zebrafish em-
bryonic development [32]. MPO (Myeloperoxidase), an enzyme for 
activated neutrophils, appeared to be a marker of inflammation and was 
the core hub gene related to FGR with the highest degree in the current 
PPI analysis. Previous reports on levels of MPO in FGR-related preg-
nancies were conflicting [33,34]. Higher concentration of MPO was seen 
in the maternal plasma of women with FGR [34]. However, our result 
showed that MPO was downregulated in at least three placenta RNA-seq 
studies. It seemed that placental MPO was unlikely to contribute 
considerably to the increased levels of plasma MPO and inflammatory 
activation may be confined to the maternal circulation. 

Placental vascular pathology is a mechanism of many pregnancy 
complications, which may cause placental hypoperfusion leading to FGR 

Table 1 
Differentially expressed genes (DEGs) identified in four publicly available placenta RNA-seq studies for fetal growth restriction (FGR).  

Project ID Control samples FGR samples DEGs (gene) Percentages of all genes DEGs (transcript) Percentages of all transcripts 

PRJEB30656 5 5 3669 5.9% 3459 1.4% 
PRJEB37698 6 6 1079 1.7% 1181 0.5% 
PRJNA472249 21 18 12033 19.5% 13984 5.6% 
PRJNA894845 6 6 1388 2.2% 1640 0.7% 

The numbers of control and FGR samples, as well as the numbers of dysregulated DEGs (P value < 0.05) within each study, are shown. 

Fig. 1. Distribution of differentially expressed genes (DEGs) in the four RNA-seq studies considering the directionality of the regulation. (a) analyzed at the gene 
level; (b) analyzed at the transcript level. 
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[35], and affected placentas have increased vascular lesions, especially 
fetal vascular supply lesions for FGR. In the current analysis, we detected 
a set of angiogenesis-related genes associated with FGR. ADAMTSs (A 
disintegrin and metalloproteinase with thrombospondin motifs) are a 
newly defined metalloproteinase family including 19 members involved 
in vascular biology and diseases. ADAMTS7 orchestrates functions of 
vascular smooth muscle cells and endothelial cells to facilitate neo-
intima formation [36]. Knockdown of ADAMTS7 inhibited the growth 
and invasion of HTR8/SVneo cells (a trophoblast cell line in early 
pregnancy) [37]. VCAN (Versican) and VTN (Vitronectin), which are 
component of the extracellular matrix, are involved in cell adhesion, 
proliferation, migration and angiogenesis. Versican silencing in 
trophoblast cell line induced cell death and affected cell differentiation 
[38]. Vitronectin regulated trophoblast cells migration and adhesion 
[39]. Recent studies reported that VTN interacted as a downstream 
signal to vascular endothelial growth factor receptor 2 (VEGFR2) 
phosphorylation, suggesting their roles in angiogenesis [40]. Given that 
defective placental angiogenesis is one of the characteristics of FGR 

[41], we suggest that ADAMTS7, VCAN and VTN may participate in the 
process of FGR. 

S100A12 (S100 calcium-binding protein A12) was downregulated in 
all four studies at both gene and transcript levels. S100A12 is mainly 
expressed in neutrophils, monocytes and macrophages. And, S100A12 
plays a role in several intracellular and extracellular functions, such as 
immune cell migration, differentiation and inflammation [42,43]. FGR 
has been linked with abnormal exaggerated maternal inflammatory 
response [44]. However, the fact that S100A12 expression was down-
regulated in FGR placentas may seem paradoxical. Nonetheless, future 
experiments may provide a possible explanation for this phenomenon. 

Endogenous reference genes are routinely used to normalize gene 
expression levels when confirming the DEGs using alternative methods 
(e.g., qRT-PCR). However, no housekeeping gene displays stable 
expression levels under all conditions. In our study, we reported five 
suitable housekeeper genes within the text of FGR. Our observations on 
TBP and CYC1 were comparable to previous reports as in [45]. In 
addition, we also recommend that multiple housekeeping genes be 

Fig. 2. Heatmap of common differentially expressed genes in FGR analyzed at (a) gene level and (b) transcript level. The color intensity represented log2FoldChange 
of gene expression by DESeq2. Gray indicated no significant dysregulation. 
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Fig. 3. Gene ontology analysis of 65 candidate DEGs in at least three FGR studies. Significantly affected (p-adjusted value < 0.05) biological processes (BP), cellular 
components (CC) and molecular functions (MF) were displayed. Dot size indicated the number of genes associated with the functional annotation (gene counts). Gene 
ratio showed the affected gene counts/size of the corresponding pathway. The right-side showed activated gene ontology terms (Gene ratio > 0); the left-side showed 
suppressed gene ontology terms (Gene ratio < 0). 

Fig. 4. Network graph of the 65 differentially expressed genes in at least three FGR studies according to the STRING online database. The dots indicated individual 
differentially expressed genes, and the lines between any nodes represented the interrelations of those proteins. 
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assessed for better validation of relative gene expression research. 
Some limitations of the present study should be acknowledged. First, 

the validity of our conclusions was mainly based on the established 
workflow of our combined analysis method and the reliability of the 
original RNA-seq datasets. Further experimental verification by qRT- 
PCR or western blot on placenta tissues with larger populations should 
be performed to validate the hub genes’ diagnosis ability. Second, more 
precise experiments using specific trophoblast cell lines or animal 
models are needed to explore the function of the hub genes in FGR. 
Nevertheless, we do think that the combined public data can help guide 
future marker selection for FGR. Moreover, the clinical data of the pa-
tients and newborn children (e.g., maternal age, fetal sex, fetal birth 
weight and gestation) were either incomplete or not given online. Those 
confounding variables could not be included or compared within the 
analysis. We do hope that the data requirements for public databases 
would be more stringent and complete. 

In conclusion, we carried out a cost-effective workflow for initial 
biomarker screening for FGR based on public data of multiple RNA-seq 
studies from different backgrounds. Our study identified ten hub genes 
and three candidate biomarkers that might contribute the development 
of FGR, which should be helpful for early diagnosis or detection of FGR. 
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