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Abstract: This study presents a neuroengineering-based machine learning tool developed to predict
students’ performance under different learning modalities. Neuroengineering tools are used to
predict the learning performance obtained through two different modalities: text and video. Elec-
troencephalographic signals were recorded in the two groups during learning tasks, and performance
was evaluated with tests. The results show the video group obtained a better performance than the
text group. A correlation analysis was implemented to find the most relevant features to predict
students’ performance, and to design the machine learning tool. This analysis showed a negative
correlation between students’ performance and the (theta/alpha) ratio, and delta power, which
are indicative of mental fatigue and drowsiness, respectively. These results indicate that users in
a non-fatigued and well-rested state performed better during learning tasks. The designed tool
obtained 85% precision at predicting learning performance, as well as correctly identifying the video
group as the most efficient modality.

Keywords: EEG; cognitive performance; education; neuroengineering; machine learning

1. Introduction

University-level education is in constant evolution, making use of technological
advancements to continue to provide high-quality pedagogical instruction to students.
An important aspect of modern education is the contribution of information technologies,
as different technological resources can be implemented to provide education under a
variety of teaching modalities [1].

New learning modalities using modern technologies, such as dynamic lectures using
live feedback from the students through wireless devices and social media educational
platforms for student–teacher interaction, have shown increased acceptance rates in stu-
dents when compared to more traditional teaching modalities [2]. Due to the increasing
pace of technological innovation in education, teachers and students alike need to evaluate,
adapt and adopt these new technologies and associated teaching modalities at a similarly
increasing pace [3].

An extreme example of this need for adaptation of different teaching styles is the
recent COVID-19 pandemic, where a vast number of professors and students around
the world were forced to teach and learn under the online learning modality, many for
the very first time [4]. This sudden change in education forced professors to change
their conventional teaching approaches to face this challenge, with a steep adaptation
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learning process [4]. Different teaching modalities may have a different impact on students’
learning outcomes due to differences in perceived learning. This difference in perceived
learning could be associated with personal learning preferences, as each student considers a
particular learning style as the most effective [5]. Due to the need for fast adaptation to new
learning modalities and differences in preferred learning styles in students, it is imperative
that educators and researchers work together to develop tools and methodologies that
provide a quantitative education evaluation under different learning approaches. The use
of these tools could provide students with a variety of efficiently evaluated and validated
learning approaches.

A promising technique to implement quantitative evaluation for learning modalities
is electroencephalography (EEG), which is a non-invasive electrophysiological monitoring
method that records the electrical activity from the brain at high temporal resolution across
the scalp. The measured signals can be analyzed in the time domain, as in the case of
event-related potentials (ERP) [6], as well as in the frequency domain, as the spectral
content of frequency bands [7]. More recent EEG analysis methods involve the use of
functional connectivity [8] and source separation [9] algorithms. Signal source separation
methods for EEG signal analysis, such as the Moore–Penrose pseudoinversion proposed
in [9], allow solving the inverse problem of neural recordings and spatially identifying
different sources in the brain, responsible for specific neural activations.

In time domain analysis, the P300 wave, which arises under the presentation of
an unexpected stimulus, has been used to determine the depth of cognitive processing
in the brain [6]. Regarding spectral analysis, five EEG frequency bands are the most
studied and well known. Each band has been associated with specific neurophysiological
correlates. The delta (δ: 1–4 Hz) band is usually presented during periods of deep sleep,
unconsciousness, anesthesia and lack of oxygen. Some reports have also associated this
frequency band with different levels of cognitive load during mental tasks [7]. The theta
(θ: 4–7 Hz) band primarily occurs in the parietal and temporal regions of the brain. Such
waves are produced during moments of emotional pressure, interruptions of consciousness
or deep physical relaxation [10]. The alpha (α: 8–12 Hz) band is usually observed at parietal
and occipital regions of the brain when in conscious, quiet or rest states and its power
decreases during active thinking. Reports in the literature have also associated changes in
this frequency band with the generation of creative processes in the brain [11]. Beta band
(β: 13–30 Hz) activity occurs predominantly in the frontal region during active thinking,
sensory stimulation and alertness states [12]. Gamma band (γ: 30–50 Hz) activity has been
linked to cognition and perceptual activity [13].

Analysis of EEG signals provides encouraging tools to evaluate and predict person-
alized cognitive traits in students, which can be used to gain a quantitative insight on
learning outcomes. By analyzing high- and low-frequency EEG bands, information on the
ongoing cognitive processes on students during learning can be obtained. High-frequency
bands are useful at identifying alertness, active thinking, attention and multi-sensory
processing states [13], while low-frequency bands can reflect relaxation, drowsiness and
mental fatigue states [7]. The study of neural activity in the educational context is very
recent, and it has sometimes been referred to as educational neurotechnologies [14]. This
field of research is promising in understanding the neural traces of learning, as well
as improving and enhancing learning for educational purposes. Due to this, educators
and researchers are increasingly seeking for real-time measurements of neural activity in
classroom environments [14].

Across the literature, there have been reports of analysis of EEG signals to predict
intelligence and giftedness in children [15]. A study conducted by [15] focused on the use
of EEG spectral features to detect gifted children in mathematics. In this study, students
were defined as gifted if their scores on tests were higher than the group’s average. Epochs
of the recording were labeled by the EEG equipment used in three mental states: workload,
attention and relaxation. Mean, median, standard deviation, minimum and maximum
values of these mental states were used as features for machine learning models, while
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the output was the classification of giftedness based on the mentioned criteria. The best
machine learning model showed 76 % accuracy at correctly classifying giftedness.

In [16], a simultaneous EEG recording of twelve students was measured in the class-
room over an eleven-class semester. EEG synchronization metrics were computed between
the students and the teacher as well as enjoyment metrics. The results of the study showed
that EEG metrics were correlated with students’ performance and enjoyability of the class.
The results of the aforementioned studies suggest that cognitive performance classification
and prediction can be obtained from analysis of EEG measurements.

As far as the authors know, few studies have presented pilot studies or methodological
proposals to assess educational results at university-level education using EEG technologies
to monitor cognitive performance on students in the classroom [17,18]. In [17], EEG
signals of university students were measured during the solving process part of a ten-
session computational thinking (CT) course. Students were divided into two groups,
based on their curriculum and experience in CT: CT for the experienced and NCT for the
inexperienced. The cognitive load of the students was estimated from the EEG signals,
and the results showed, on average, lower cognitive load for the CT than the NCT group.
In such study, the proposed analysis allowed identifying the increase in cognitive load as a
higher challenge for the inexperienced NCT group than the CT group.

A recent study demonstrated the use of a neurofeedback tool called the attention
monitoring and alarm method (AMAM), which continuously monitored the attention of
students during e-learning sessions by analyzing their neural activity [18]. In such study,
students using EEG headsets were provided feedback on their attention levels to help them
regain focus in their learning sessions. The results of the study showed increased sustained
attention and learning performance on the group using the AMAM, when compared to a
control group not using it.

The use of highly portable (few channels, wireless) EEG devices has allowed re-
searchers to explore different scenarios under the neuroengineering approach, in real-world
settings. Examples of such equipment are the four-channel Muse [19], the three-channel
Thinkmindset [20] and a reported low-cost, one-channel, Arduino-based brain–computer
interface for brain state visualization [21]. A review on the use of portable EEG technologies
in the educational context was presented in [22]. This review revealed that the use of EEG
technology in education is a rather recent field; it is not more than one decade since the
first related reports appeared. The review also stated that few studies (approximately 20)
had been reported in this area of research. Therefore, the use of neurotechnologies for
education is still an open research field which needs further development. This review
notes that most of the education studies in neurotechnology make use of EEG equipment
labeling algorithms such as the NeuroSky and the Emotiv systems which identify epochs of
the recordings as cognitive load, high/low engagement, attention and meditation periods.

Although these metrics are useful when assessing learning outcomes, not all EEG
equipment is provided with such labeling algorithms. Furthermore, the identification of
emotional and other mental states such as frustration, mental fatigue, stress and anxiety is
also useful to evaluate in the design of new teaching or learning approaches [23]. While
not all commercial EEG instruments provide a reliable mental state classification, reports
found in the literature show how these metrics can be calculated. Workload can be inferred
from the mental fatigue measurement, where a high cognitive workload results in a higher
mental fatigue state [24]. Mental fatigue can be described as a state where performance
and attention decrease during cognitive tasks [10]. EEG processing methods oriented to
mental fatigue detection were described in [10]. It can be observed in EEG by analyzing
the theta/alpha ratio as well as the P300 wave [6,10].

A recent study on attentional markers of EEG in educational settings showed an
increase in theta and decrease in beta bands for a prolonged attention period in the class-
room [25]. These two markers can be combined into the beta/theta ratio to monitor
real-time changes in cognitive processing capacity [26].
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Neurofeedback tools for enhanced learning have also been reported across the litera-
ture. In [27], a neurofeedback protocol was implemented in musical training for children in
order to increase the (θ/α) ratio at will. The results of the study showed increased musical
creativity and overall skills in groups that received neurofeedback stimulation, compared
to groups without feedback. A preliminary EEG feedback protocol was proposed in [28] to
improve learning rates in distance education. The authors described the proposed protocols
to monitor users’ mood based on α power calculation; however, no further analysis or
results were reported.

An EEG tool that provides feedback to students about their attention level during a
self-study task was implemented in [29]. An attention index provided by the used EEG
equipment was provided as feedback to the students, and auditory feedback was given
whenever the attention index decreased to a specific threshold. The experiments were
implemented in an experimental group which received feedback, and a control group
which did not receive feedback. The results showed a longer duration of attentive periods
in the experimental group.

Based on all the aforementioned studies, it is clear that the use of neurotechnologies
in education is a valid candidate to monitor and identify cognitive components during
learning processes. However, most of the reported work in the field focuses on attention
monitoring and feedback, and there is a gap in terms of predicting the performance of
students, as well as using the neural activity of students to evaluate the characteristics of
different teaching modalities. In this study, we propose the use of EEG measurements as
a biomarker of cognitive traits to provide evaluation of different teaching and learning
modalities, using machine learning models. The proposed model can be used to predict
users’ performance on learning tasks, and to identify personalized optimal learning condi-
tions. This prediction tool will also provide diverse applications in the educational field
such as evaluation of different learning modalities. A neurofeedback protocol could also be
implemented based on the results of the prediction model in order to give users a cognitive
enhancement during learning experiences.

This paper is organized as follows: The methods implemented for the development of
the machine learning tool are presented in Section 2. This section includes the experimental
protocols, signal acquisition, pre-processing and analysis, feature extraction, model imple-
mentation and evaluation. A detailed description of the results obtained from this study
and their discussion are presented in Sections 3 and 4, respectively. Finally, the conclusions
are presented in Section 5.

2. Materials and Methods

Volunteers were eligible for this study if they met the following selection criteria: par-
ticipants had correct or corrected-to-normal vision (glasses), were enrolled in a university-
level engineering course (the fifth to the eight semester) and were under no medication
at the time of the experiment. Experiments took place in the library of the Tecnologico
de Monterrey in a semi-closed cubicle area, at a time between 10:00 a.m. and 16:00 p.m.,
depending on the personal schedule of the volunteers. The methods and a preliminary
study on the data collected from this study were presented in [30].

A total of 20 healthy volunteers participated in this study: 10 (5 male, 5 female)
in the text group and 10 (7 male, 3 female) in the video group. Average ages were:
(µT = 22.3± 1.63) for the text group and (µV = 22.7± 2.26) for the video group. Data from
one participant in the text group were discarded due to problems in the measurements.
Before starting the experiments, a consent form was handed to each participant with a
detailed description about the experimental procedures of the tasks to perform. Volunteers
were asked to sign the consent form if they were willing to continue with the experiments.
Volunteers also agreed to be recorded in pictures or video by signing this form. EEG
signals were acquired for all subjects during three different stages of each experimental
trial: 30 s of eyes closed (EC), 30 s of eyes open (EO) tasks and during performance of the
learning tasks. Learning tasks consisted of a 150-s presentation of either the text or the
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video material depending on the experimental group each participant belonged to. Both
groups performed three consecutive learning trials, with resting periods of two minutes
between recordings. The content itself of the learning trials was the same across groups,
with the exception that the text group learning task consisted in reading a plain text,
while the video group learning task consisted in an audiovisual presentation of the same
information. Volunteers in the text and video groups were asked to read and watch silently
to avoid unwanted artifacts in the EEG signals due to movement from the tongue and
facial muscles. However, to ensure all volunteers acquired the knowledge presented in the
learning trials, they were asked to answer standardized tests with questions about the given
topic after each recording. The topic presented during learning trials is that of controller
area network (CAN) bus, a type of communication protocol employed within vehicles for
efficient vehicle-related data transfer. This specific topic is part of the subject "Automotive
Electronics" of the mechatronics engineering program at Tecnologico de Monterrey.

The information presented to the students in a specific group was the same during the
three learning trials (LT), i.e., three repetitions of the same text or the same video. However,
the evaluations for each LT were different for each repetition. The evaluation consisted of
tests with an increasing number of questions related to the presented information during
learning trials. These evaluations consisted in three, five and nine questions, respectively,
for the first, second and third repetitions. The difficulty of the questions also increased
from the first to the third repetition.

A visual representation of the proposed experimental setup is presented in Figure 1.
Information presentation and evaluation protocols for all learning tasks were designed in
Spanish, as it was the native language of all participants. Original texts, videos and tests
and those translated to English used during learning tasks and evaluation are presented in
the Supplementary Material.

2.1. Signal Acquisition and Analysis

For this study, EEG signals were acquired wirelessly using the OpenBCI system.
The Ultracortex Mark IV headset was used for EEG acquisition, which makes use of highly
portable and mobile dry electrodes. This headset includes a combination of eight EEG
sensors distributed across the scalp, as well as accelerometers measuring three-dimensional
acceleration. The electrodes’ placement follows the international 10–20 reference system,
including two frontal, two central, two parietal and two occipital electrodes, respectively:
FP2, FP1, C4, C3, P8, P7, O2 and O1. The OpenBCI headset used is shown in Figure 1.

These signals were recorded and wirelessly transmitted to a computer through the data
acquisition, processing and design tool OpenVibe. All data were acquired at a sampling
frequency of 256 Hz and filtered with a 0.1–100 Hz, 4th-order Butterworth bandpass filter.
All EEG signals were cleaned using the artifact subspace reconstruction (ASR) algorithm
using a parameter, κ = 15, to reduce large artifacts. ASR is an effective and efficient signal
cleaning method that reconstructs artifacts as large as κ times the standard deviation of
a clean portion of the signal. This value of κ was selected as values between 10 and 100
are suggested to effectively remove muscle and eye movement-related activity, while not
being as aggressive in removing important EEG-related activity [31]. EEG signals were
used to calculate power in five frequency bands: delta (1–4 Hz), theta (4–7 Hz), alpha
(8–12 Hz), beta (13–29 Hz) and gamma (30–50 Hz). Power was calculated in one-second
windows using the fast Fourier transform for all EC tasks, EO tasks and LTs in all channels
and frequency bands. Power values were normalized to EO tasks for all users, following
Equation (1)

PN(t)ch, f b =
PLT(t)ch, f b − EOch, f b

EOch, f b
, (1)

where EOch, f b represents the average power at specific channels (ch) and frequency bands
( f b) during EO tasks, and PLT(t)ch, f b represents the power values across time at the same
channel and frequency band during an LT before normalization. This procedure allowed
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obtaining a second-to-second normalized power estimate of the EEG signals in the five men-
tioned frequency bands. By averaging the signals obtained by implementing Equation (1),
average normalized power values for all channels and frequency bands were used as
features in a linear regression model (5 frequency bands × 8 channels = 40 features).

EEG

Data Processing 

Feature Extraction

Model Identification

Data acquisition

OpenBCI Headset

Interface

Text group (𝑛𝑇 = 10)

Video group (𝑛𝑉 = 10)

30s   30 s              2.5 min                      N min 

Learning TaskEOEC Evaluation

*3 repetitions

Figure 1. Proposed methodology for implementation of a cognitive performance predictive tool.
EEG recordings were measured for text and video groups during baseline (EC, EO), learning tasks
and evaluation for three repetitions. EEG data were transferred to a PC via OpenVibe and analyzed
using Matlab to build the predictive models.

Power ratios were also calculated for all possible combinations of the analyzed fre-
quency bands. Equation (2) shows the calculation for the power ratios.

PR(t)ch,(A/B) =
PLT(t)ch,A

PLT(t)ch,B
, (2)

where PLT(t)ch,(A) and PLT(t)ch,(B) represent the power across time (before normalization)
during an LT at channel (ch) and frequency bands A and B, respectively. Then, average
power ratios were used as features for the linear regression model (20 ratios × 8 channels
= 160 features). All the ratios, obtained using Equation (2), were calculated for the three
repetitions. All frequency bands and power ratios considered in this study are represented
in Table 1.
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Table 1. Frequency band and power ratio features considered for correlation analysis.

δ θ α β γ

δ/θ θ/δ α/δ β/δ γ/δ
δ/α θ/α α/θ β/θ γ/θ
δ/β θ/β α/β β/α γ/α
δ/γ θ/γ α/γ β/γ γ/β

A total of 200 features were obtained as variables for the multivariate linear regression
model (MLR): 40 (normalized EEG power) + 160 (EEG power ratios). Figure 2 shows a
representation of the obtained EEG signals after performing the pre-processing methods.
Representative EEG signals of participants Pt1 and Pv4 from the text and video groups,
respectively, are presented, during the first five seconds of the EC task, EO task and LT of
the first repetition. Average normalized α/θ ratios across the scalp, corresponding to each
five-second EEG recording, are also presented in Figure 2, as well as the topographical
distribution of the available electrodes in the used EEG system.

Text

Video

Eyes Closed                                  Eyes Open                                     Learning Task         

I

I

5 s----------       -----------

V

FP1 FP2

C3 C4
P3 P4

O1 O2

FP1 FP2
C3 C4

P3 P4
O1 O2

Eyes Closed Eyes Open Learning Task 

Figure 2. Representative EEG recordings during the first five seconds of eyes open, eyes closed and learning tasks for text
(top) and video (bottom) groups, measured at electrodes: FP1, FP2, C3, C4, P7, P8, O1 and O2. The spatial distribution of
EEG electrodes is shown in the top left inset. Topographic plots show the average α/θ ratios (normalized between −1.5 and
1.5), computed from each five-second EEG recording for all electrodes. The presented EEG signals correspond to those of
participants Pt1 and Pv4 for the text and video groups, respectively, during the first LT repetition.

2.2. Statistical Analysis

In order to observe differences between the two evaluated learning modalities, a statis-
tical analysis was implemented as follows. Two-sample t-tests (p < 0.05) were performed
to observe statistically significant EEG power differences between text and video groups
across different learning stages. Statistical tests were performed at all repetitions. All
channels, frequency bands and power ratios were considered for this analysis. A total of
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600 statistical tests were performed between all subjects of both groups: (8 channels × 5
frequency bands × 3 repetitions) + (8 channels × 20 ratios × 3 repetitions). In this analysis,
p-values indicate the probability that observed changes in the means of both groups are
chance-related. Therefore, significance suggests that the observed changes are related to
the experimental differences of each group (learning modality).

A pair-wise Pearson correlation analysis was implemented in order to find the most
relevant features that show a correlation with users’ scores on the test. All scores from the
three repetitions of both text and video groups were included in each correlation test and
treated as unlabeled data. Each test contained data from all subjects and all repetitions
on both text and video groups. A total of 200 correlation coefficients and p-values were
calculated between pairs of 60 scores and 60 values of the analyzed feature, testing the
hypothesis of no correlation between variables. In these tests, p-values represent the
probability that the observed correlation is obtained by chance. Therefore, small p-values
suggest that the correlations between the evaluated variables are significant. This analysis
was used to implement a dimension reduction on the MLR model; thus, only the most
correlated features (correlations which presented p-values < 0.05) were selected to be used
in the MLR model.

2.3. Model Evaluation

From the correlation tests, the significant features were included in the MLR models.
A feature matrix was built using the average (during LT) of all the significant features
for all participants and repetitions. Features in this matrix were sorted according to their
p-value obtained in the correlation tests. All MLR models were evaluated using a 70:30
data ratio for training and testing sets, respectively.

The MLR model was trained using 42 samples from the selected features. Each model
was trained and evaluated in an iterative process with an increasing number of features,
from 1 to K, where K is the maximum number of features for that specific model. Then, each
model was used to predict the students’ scores in the test, using the remaining 18 samples
for a 10-fold cross-validation. At every iteration, the parameters of the MLR models were
calculated using the normal equation method. At every iteration, different random data
were selected for both training and testing sets, and models were built and evaluated.
Following these criteria, data from participants in the training set were not included in
the test set. The predicted values were compared to the real scores, and accuracy was
calculated as presented in Equation (3):

Acck = 100− (|PSk − RSk|), (3)

where Acck is the average accuracy of an MLR model using k features across 10 cross-
validation tests, and |PSk − RSk| represents the average absolute difference across cross-
validation tests between the predicted (PS) and real scores (RS) at that specific model.
Accuracy was evaluated for MLR models using different numbers of features to find the
most reliable model. Signal analysis, feature extraction, selection and model evaluation
were implemented by custom codes in Matlab 2020a version 9.8.0.1396136 (The MathWorks
Inc, Natick, Massachusetts, USA).

A flowchart representing the complete methodological process implemented in this
study is presented in Figure 3.
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Consent
and group
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EEG data 
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Signal
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assessment
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or Video)
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evaluation)

Experimental 
Setup Ready on
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Customization
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Experimental 
Setup
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Feature
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Signal and 
Statistical
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Comparison with
student’s

performance 
(tests)

Model
Selection

Performance 
prediction

between groups

Figure 3. Flowchart of the experimental protocol implemented in this study. Participants were
invited to the study and, after providing consent, performed the learning tasks. After EEG signals
were measured and analyzed, relevant features were used to build and evaluate models.

3. Results
3.1. Learning Performance

Table 2 shows the average scores and exam times (ET) across subjects obtained for
both groups. Scores and times are shown for all three repetitions. The percentage of
improvement for each repetition is also presented in this table for scores and exam times.
The score and time improvement metrics are defined as presented in Equations (4) and (5),
respectively:

SIr = SVr − STr, (4)

TIr = (1− TVr

TTr
) ∗ 100, (5)

where SIr and TIr represent the score and time improvement, respectively. Here, a positive
improvement means there was a higher performance in the video group than in the text
group at repetition r, while a negative improvement stands for the opposite case.

Table 2 shows that the video group had a better performance and improvement after
each repetition in both the ET and scores, except in the scores during the first repetition,
where both groups obtained an equal performance. These performance differences are also
observed in Figure 4. Both groups started with the same average score test in repetition
one, 83.33 (out of 100), and showed a slight increase (15%) in time improvement, 34.5 s
for the video group and 40.8 s for the text group. In repetition two, the video group had a
better performance in both the score (80) and time (48 s), while the text group’s average
score was 76, with a time of 62.3 s. The video group obtained, on average, a 5% higher
score than the text group, and a 22% time improvement. In repetition three, there is a
higher difference between the results of both groups, where the video group obtained an
average score of 94.7 and a time of 78.5 s, while the text group had a score of 76.67 and
a time of 103.6 s. In this last repetition, the video group obtained improvements of 19%
and 24% in the scores and ET, respectively. These results indicate that the video group
obtained a better performance overall when compared to the text group. Furthermore,
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the improvement consistently increased as repetitions went on. This means performance
differences between groups were more notorious at more difficult trials.

Table 2. Average scores, exam times and improvements for all learning trials.

R1 Score R1 ET (s) R2 Score R2 ET (s) R3 Score R3 ET (s)

Video 83.33 34.5 80 48.60 94.77 78.5
Reading 83.33 40.8 76 62.30 76.66 103.6

Improvement 0% 15% 5% 22% 19% 24%

1 2 3

Repetition

0

20

40

60

80

100

120

S
c
o
re

Text

Video

1 2 3

Repetition

0

50

100

150

E
x
a
m

 t
im

e
 (

s
)

Text

Video

Figure 4. Average scores (top) and exam times (bottom) for text and video learning trials for all three
repetitions. Black lines represent standard deviation.

3.2. Statistical Analysis

Figure 5 shows the channels which passed the significance tests, found at each fre-
quency band, for all repetitions. Figure 6 shows the channels which passed the significance
tests, found at each power ratio, for all repetitions. In these colormaps, a positive value
indicates a higher power (or power ratio) in specific channels and frequency bands in the
video group than the text group. Negative values indicate a lower power (or power ratio)
in the video group than the text group at specific channels and frequency bands.
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Figure 5. Channels and frequency bands which showed statistically significant (p < 0.05) higher
power during video compared to text (V > T), lower power during video compared to text (V < T)
and no significant changes between groups (V = T). Three colormaps represent the three LT repeti-
tions: 1 (top), 2 (middle) and 3 (bottom).
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Figure 6. Channels and power ratios which showed a statistically significant (p < 0.05) higher power
difference during video compared to text (V > T), lower power difference during video compared to
text (V < T) and no significant changes between groups (V = T). Three colormaps represent the three
LT repetitions: 1 (top), 2 (middle) and 3 (bottom).
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During repetition 1, the video group showed lower power in beta and gamma in
parietal and occipital electrodes, as well as higher power in the theta band (O2). Dur-
ing repetition 2, the video group obtained, in general, higher power in frontal electrodes,
in δ, θ, α and β bands, while the group obtained lower occipital power in the θ and β bands.
During the third repetition, the video group showed, in general, lower power values at
occipital electrodes in δ and θ bands and centro-parietal electrodes in β and γ. There was
also higher frontal (FP2) power in the alpha band in the video group than in the text group.

In the colormaps presented in Figure 6, positive values in upper rows mean that the
video group showed a higher proportion of high-frequency bands over lower-frequency
bands when compared to the text group.

Positive values in lower rows mean that the video group showed a higher proportion
of lower-frequency bands over high-frequency bands when compared to the text group,
and vice versa. When colormaps show negative values, this indicates that the text group
showed higher values in specific power ratios and channels than the video group.

During repetition 1, the video group showed a higher activity of lower-frequency
bands over high-frequency bands, while the text group showed a higher activity in higher-
frequency bands over lower-frequency bands. This can be observed in Figure 6 as positive
values in lower rows, as well as negative values in upper rows of the colormaps. A similar
behavior was observed in repetition 2 for a smaller amount of channels, and considerably
less significant changes were found at the third repetition. In general, these changes were
observed in parietal and occipital electrodes, as well as a few central and frontal electrodes,
in repetitions 1 and 2, respectively. Significant differences were found mostly in the (θ/α),
(γ/β), (γ/θ), (γ/δ) and (γ/α) power ratios.

Table 3 shows the number of statistically significant channels found using the de-
scribed statistical analysis, per frequency band and power ratio. An increasing trend of
significant changes was observed on frequency bands: 6 for δ, 14 for θ and α, 19 for β and
20 for γ. It can be observed that a higher amount of significant changes were found in
features related to an increased activity of higher-frequency components. Differences be-
tween the evaluated learning modalities were reflected as few changes in lower-frequency
components, and a higher amount of changes in higher-frequency components, mainly in
occipital and parietal regions.

Table 3. Number of statistically significant channel (Ch) differences between text and video groups
across all repetitions, for all EEG frequency bands and power ratios (features).

Feature Ch Feature Ch Feature Ch Feature Ch Feature Ch

δ 3 θ 6 α 2 β 7 γ 3
δ/θ 0 θ/δ 0 α/δ 1 β/δ 1 γ/δ 4
δ/α 1 θ/α 2 α/θ 2 β/θ 3 γ/θ 4
δ/β 1 θ/β 3 α/β 3 β/α 3 γ/α 4
δ/γ 3 θ/γ 4 α/γ 4 β/γ 5 γ/β 5

Total 6 Total 14 Total 14 Total 19 Total 20

3.3. Correlation Analysis

The results of the implemented correlation analysis show only six features as signifi-
cant. These features were considered as the most relevant and were selected as features for
a dimensionally reduced MLR model. The selected features, as well as their p-values and
correlation coefficients, are presented in Table 4. The selected features were: C3 (α/θ), C3
(θ/α), FP1 (δ), C3 (γ/α), P8 (α/γ) and P8 (γ/α). Figure 7 shows the negative correlation be-
tween the (θ/α) ratio observed at C3 and students’ scores, and Figure 8 shows the negative
correlation between δ power found at electrode FP1 and students’ scores.
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Table 4. Selected most relevant features for the MLR model

Feature C3 (α/θ) C3 (θ/α) FP1 (δ) C3 (γ/α) P8 (α/γ) P8 (γ/α)

p-value 0.01058 0.02139 0.03426 0.03909 0.04456 0.04994
r coefficient 0.33608 −0.30423 −0.28094 −0.27408 0.26712 −0.26092
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Figure 7. Correlation between C3 (θ/α) ratio and test scores for all participants from both video and
text groups, at all LT repetitions.
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Figure 8. Correlation between normalized FP1 (δ) power and test scores for all participants from
both video and text groups, at all LT repetitions.
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3.4. Model Evaluation

An MLR model was designed and evaluated to predict students’ scores based on the
selected most relevant features presented in Table 4. The selected features were sorted
according to the obtained p-value in the correlation tests. Therefore, the first feature
was that which obtained the lowest p-value, etc. Features C3 (θ/α) and P8 (γ/α) were
considered as redundant because their inverse were already selected as relevant and thus
removed from the following procedure. The model was trained and evaluated using an
increasing number of features k = 1 . . . K, where K = 4 is the maximum number of features.
Figure 9 shows the average accuracy across 10 cross-validation iterations of the MLR model
at predicting students’ scores, for MLR models using k = 1 . . . K features. A consistent
average accuracy of 85% was observed for MLR models using different numbers of features.
The highest accuracy was found for the model using two features, at 85.76% accuracy.

This model was used to predict the scores of 30 different random subsamples of the
same size as in the cross-validation tests. The predicted scores were labeled according to
the real groups (text or video) they belonged to. Then, the labeled predicted values were
compared to the real values in both groups. Figure 10 shows the average real and predicted
scores for all the evaluated data samples in this analysis, in their respective groups.
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%
)

standard deviation

mean accuracy

Figure 9. Average accuracy between real and predicted scores for MLR models using 1 to 4 features
of EEG data.

A considerably small difference between the real and predicted scores was observed
in both groups. In the real data, the average scores of text and video were 81.23% and
86.36%, respectively, while the average predicted scores were 81.15% and 86.32% for the
text and video groups, respectively. In both cases, the video group obtained, on average,
higher scores than the text group. With this analysis, it was observed that the designed
machine learning tool, based on EEG-related features, correctly predicted higher student
scores in the video group than in the text group during learning trials.
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Figure 10. Average real and predicted scores for text and video groups across cross-validations. Black
lines represent standard deviation.

3.5. Factor Analysis: Group and Difficulty

A more detailed statistical analysis was performed on the data to explore the effects of
different factors, such as the learning modality (group) and the repetitions (difficulty), on
the learning performance and selected features.

For this analysis, the non-parametric Friedman variance test was applied, organizing
the data by columns (group) and rows (difficulty) with 10 replicates (participants) in each
block (p < 0.05). The null hypothesis of this test is that average performance values (ET
and score) and selected features between groups and difficulties do not change significantly.
If the test detects significant changes to a specific factor, then the null hypothesis is rejected.
Eight tests were performed: one for ET, one for score and one for each of the features
presented in Table 4. The results of these statistical tests are presented in Table 5.

The results of this analysis show that the group factor had a significant effect on the
scores, ETs and features C3 (α/θ), C3 (θ/α) and FP1 (δ). The difficulty factor also had
a significant effect on the same features; however, it did not have a significant effect on
scores and ETs. The remaining features, C3 (γ/α), P8 (α/γ) and P8 (γ/α), were not affected
significantly by any of the analyzed factors. An interesting observation is that by changing
the conditions of the learning task, the performance of the participants, as well as their
neural activity, changed significantly. This implies that although the contents were the
same for both modalities, the modality of their presentation takes an important role in
defining the learning outcome. This difference in learning modality significantly changed
not only the learning performance but also the brain activity of the participants.

Table 5. Results of the Friedman tests (p-values) for different groups and difficulties.

Factor Score ET C3 (α/θ) C3 (θ/α) FP1 (δ) C3 (γ/α) P8 (α/γ) P8 (γ/α)

Group 0.0162 0.0490 0.0289 0.0323 0.0024 0.6622 0.4577 0.4065
Difficulty 0.2073 0.2229 0.0081 0.0079 0.0016 0.8202 0.2474 0.2284

Boxplots showing the average distributions of the scores, ETs and feature C3 (α/θ) in
the text and video groups, as well as during different difficulty levels, can be observed in
Figure 11.

In Figure 11, lower ETs and C3 (α/θ) and higher scores were observed, on average,
for the video group compared to the text group. A notorious trend was observed for the
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difficulty factor. On average, a decrease in C3 (α/θ) values, as well as an increase in ETs
and scores, was observed across difficulties. The increase in ETs and the decrease in C3
(α/θ) suggest a relation between the development of mental fatigue across the different
repetitions of the learning tasks. An interesting increase in scores was observed after the
third repetition, which can be explained by those in the video group, as shown in Figure 4.
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Figure 11. Boxplots showing the distribution of (a) ETs, (b) scores and (c) C3 (α/θ) across multiple
factors: group (text and video), difficulty (repetitions) and both.

4. Discussion

Regarding the performance analysis, the results indicate that multi-sensory (video)
conditions resulted in higher performance benefits for the students when compared to the
performance of the students performing unisensory (text) tasks. The key difference between
unisensory and multi-sensory training exists during encoding, whereby a larger set of
processing structures are activated in the multi-sensory paradigms [32]. Multi-sensory
exposure enables stimuli to be encoded into multi-sensory representations and, thus, will
later activate a larger network of brain areas, facilitating learning [32]. The evaluation
shown in Table 2 suggests that audio-visual stimulation when studying contributed to a
more successful learning experience than text reading.
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The statistical analysis allowed obtaining further insight on the spectral differences
between EEG signals during both learning modalities. In general, the video group showed
a decreased higher-frequency EEG activity when compared to the text group. This is
observed as negative values in Figures 5 and 6 mainly in β and γ bands. This is also
represented in Table 3. The decrease in beta and gamma activity can be result of the phe-
nomena previously observed in the context of (1) motor learning and reduced preparatory
or attentional demands, and (2) memory encoding, respectively [13]. Another factor that
can be a cause of the decrease in high-frequency EEG activity of the subjects in video groups
is that multi-sensory enhancement can take on several forms in EEG activity, including:
increase in firing rate, resetting the phase of ongoing oscillatory activity and decreasing
response latencies. Furthermore, each of these mechanisms could have the effect of en-
hancing plasticity [32]. Apart from the decreased activity level of high-frequency waves,
the synaptic plasticity fostered by gamma oscillations would help in selecting the most
relevant processes and lead to the creation of a sparse and faster neural route, resulting
in a sharpened representation of the learned stimulus [13]. This is another factor that can
be taken into account to suggest that students in the video group had a better learning
experience, and this resulted in a better performance during the evaluation phase.

We suggest that the decreased levels of β and γ activity in the video group when
compared to the text group are a reflection of an optimized use of resources of the neural
circuitry. In the text group, students needed a more increased focus and attention level
than students in the video group in order to successfully encode and retain the presented
information, causing an increase in high-frequency brain activity. This difference in learning
techniques was, in turn, reflected as increased β and γ activities for students in the text
group. Moreover, most changes were found in the occipito-parietal region. This most likely
represents the differences in visual stimulation in the occipital region between the two
types of evaluated learning tasks [10].

In [13], the authors reported that γ power decreases as a skill is acquired by a subject. It
was also mentioned in their conclusions that an apparent α power increment was observed
during this same process. This might imply that in the initial learning stages where users
need to focus more on the tasks at hand, there are high γ power and low α power—in other
words, a low (α/γ) ratio. Otherwise, during the late stages of learning, where users do not
need to focus as much to perform the tasks, there are low γ power and high α power, or a
high (α/γ) ratio. This reasoning suggests that subjects showing high (α/γ) values are in a
more efficient cognitive state than subjects showing lower (α/γ) values, which, in our case,
reflects into higher performance scores during learning tasks.

The correlation analysis revealed the most relevant features when predicting perfor-
mance on learning trials were C3 (α/θ), FP1 (δ), C3 (γ/α) and P8 (α/γ). It is interesting
to mention that the (θ/α) ratio has been previously associated with the degree of mental
fatigue in subjects [10]. As observed in Figure 7, higher values were observed when users
performed poorly. This behavior is consistent with reports of how mental fatigue affects
task, as well as cognitive, performance [10]. Furthermore, Figure 8 shows the negative
correlation found between delta power (which is associated with sleepiness) and students’
scores. Based on these figures, it can be inferred that students in a mentally fatigued and
drowsy state were more prone to obtain lower scores on the tests. On the other hand, users
that obtained higher scores on the evaluation showed a low (θ/α) and delta power, which
are indicative of a non-fatigued and well-rested state. Another interesting finding was
the positive correlation between the (α/γ) ratio and students’ scores, observed in Table 4.
Given the positive correlation, it is logical to think that higher (α/γ) values were observed
for students with higher scores. Furthermore, in Figure 6, it is shown that in all repetitions,
the (α/γ) ratio is significantly higher in the video group than in the text group which,
as observed in Figure 4, obtained, on average, higher scores as well.

It seems that the used features in the MLR model allowed predicting students’ scores
and correctly identifying which study technique would give better performance results,
based exclusively on EEG-related features. The use of other physiological signals such as
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skin temperature, electrodermal activity and heart rate can further increase the features in
the model in order to increase its accuracy. These types of features have been used to build
models that help predict mental fatigue and drowsiness in subjects [33]. Another worthy
addition to the system is the use of a P300-inducing protocol to observe amplitude and
latency changes due to cognitive impairment [6,10], which could be helpful to evaluate
burnout effects induced by specific teaching strategies. The presented results are promising,
as the presented implementation could be used by students desiring to improve their self-
study skills [29]. It is also a potential tool of interest for educators, in order to evaluate the
cognitive performance of different learning and teaching techniques.

Interestingly, in Figure 11, lower C3 (α/θ) values are observed for the video group
compared to the text group. By taking a closer look at the average C3 (α/θ) values across
groups and difficulties, it can be observed that they are relatively similar, except for trial 2
of the video group, which shows the lowest average. Although this effect is not significant,
as observed in Table 5, this could be interpreted as a slight increase in workload in the
video group, probably due to the stimulation presented in the learning trials. However,
even in this state, volunteers obtained a better learning performance. The use of this type of
methodology is therefore useful to identify advantages and disadvantages in different types
of learning modalities and could be used by educators to evaluate teaching approaches in
a quantitative manner. The ideal design of a teaching approach would be that which does
not induce a high-mental fatigue state in students while, at the same time, helping them
obtain a higher learning performance.

Limitations

One limitation of this study that needs to be addressed is the small sample size. Only
ten volunteers were recruited for each group, and this could question the reliability of the
results. Due to the sample size, it could be argued that the differences observed between
groups could be strongly affected by the individual state of the users rather than the
condition. However, by feeding the proposed model with information from both groups,
the resultant model provided a more general representation and could predict the cognitive
performance of students at different conditions efficiently. Nonetheless, and as mentioned
previously, the sample size is one of the limitations in the study and will be addressed in
future research.

Although the observed patterns in the data and the obtained results allow proposing
a logical connection of thoughts about changes in mental states and cognitive performance
during learning tasks, a larger sample size could provide more insight on the results. The
authors’ interest is to extend the present study in future work to a bigger sample size to
obtain more statistical confidence. The enlargement of the database will also allow the
authors to develop and test more complex algorithms such as deep neural networks [34],
which have been applied in systems that provide a reliable classification of mental states
using EEG signals as input. Such algorithms need a considerable amount of data to
effectively model the desired phenomena, which is yet another motivation for increasing
the sample size.

5. Conclusions

The present study described protocols that demonstrate how neuroengineering tools,
along with machine learning techniques, can be used to design models that predict users’
performance during learning tasks. The results presented in this study suggest that perfor-
mance differences in learning techniques might be reflected by differences in EEG spectral
components. In this study, reduced activity of high-frequency components during an
interactive, video-watching learning modality was observed, probably as a reflection of an
optimized use of cognitive resources. In a traditional text-reading learning scenario, there
was an increased activity of high-frequency components, related to active thinking and
information processing, suggesting an increased effort in these types of learning modality.
However, in this latter case, the involved cognitive processes were not as effective in encod-
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ing and retaining information, resulting in lower performance scores than those obtained
by the video group.

It was also observed that users showing features indicative of a non-fatigued and
well-rested state obtained a higher performance than users showing mental fatigue or
sleepiness brain patterns. The proposed model, which was implemented as an offline
method, was effective at predicting students’ scores during learning trials based on four
EEG-related features, with 85% accuracy.

The presented model is a simple, yet effective method at predicting students’ cognitive
performance in the classroom, by monitoring and interpreting their EEG signals. Future
research will be oriented to developing an online version of the designed machine learning
tool, which can be used to provide real-time monitoring and neurofeedback under different
learning paradigms. These tools might be helpful to students, teachers and educators in
evaluating the cognitive responses to various traditional and more innovative learning
and teaching modalities. Such a system can also compare the effectiveness of different
teaching modalities (and mental states of students) before, during and after lockdown due
to Covid-19, such as face-to-face lectures and teamwork activities [35], distance-learning
(synchronous, live-streaming classes; asynchronous, pre-recorded classes) [36], massive
online open courses (MOOCs) [37], flipped classrooms [38] and hybrid modalities [39],
among others.

Supplementary Materials: The following are available at https://www.mdpi.com/2076-3425/11/6
/698/s1, Electronic files used during learning and evaluation tasks for both video and text groups
are provided in the Supplementary Material in the original format (Spanish). A translation to English
of all files is also included. The information presented during LT for the text group is presented in LT
Text Spanish.pdf and LT Text English.pdf. The information presented for the video group is in LT
Video Spanish.pdf and LT Video English.pdf. The three questionnaires applied for both groups at the
evaluation stage are in Evaluation Spanish.pdf and Evaluation English.pdf.
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