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Malignant pleural mesothelioma (MPM) is a rare but highly aggressive thoracic

malignancy. ESTIMATE algorithm-derived immune scores are commonly used to quantify

the immune and stromal components in tumors. Thus, this algorithmmay help determine

the tumor microenvironment (TME)-related gene expression profile associated with

tumor immunity. This study aimed at mining public databases to determine a potential

correlation between differentially expressed genes (DEGs) and survival in patients with

MPM. We categorized patients from the Gene Expression Omnibus database according

to their immune/stromal scores into high- and low-score groups. Functional enrichment

analysis and the construction of protein–protein interaction networks showed that the

DEGs identified were primarily involved in the TME. Furthermore, we validated these

genes in an independent cohort of patients with MPM from The Cancer Genome Atlas

database. DEG analysis showed that 29 DEGs were cancer driver genes. Subsequently,

14 TME-related genes, which have been previously neglected, were shown to exhibit

significant prognostic potential in MPM. In conclusion, immune/stromal scores are novel

predictors of a poor prognosis in patients with MPM.We identified DEGs that are involved

in immunity against MPM and may contribute to patient survival. Owing to their potential

as prognostic factors for MPM, these 14 TME-related genes need to be studied in detail

in the future.

Keywords: malignant pleural mesothelioma, tumor microenvironment, ESTIMATE algorithm, immune signature,

prognosis

INTRODUCTION

Malignant pleural mesothelioma (MPM) is a highly aggressive thoracic malignancy, with three
major histological subtypes, namely, epithelioid, sarcomatoid, and biphasic mesotheliomas. MPM
is a rare cancer, occurring in 30 out of a million individuals, although its incidence has slightly
increased over the last decade (1). Chinese individuals are predominantly affected by MPM, owing
to their exposure to high levels of asbestos (2, 3). Multimodality treatment (4), including surgical
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resection, radiation therapy, chemotherapy, and
immunotherapy, is preferred forMPMbecause of the potential to
increase efficacy and prognostic value. Thus, a multidisciplinary
therapy-based model for the diagnosis and treatment of patients
with MPM is extremely important (5–7).

Immunotherapy has become increasingly important in the
management of cancers. Immune checkpoint inhibitors targeting
programmed cell death protein-1 (PD-1), its ligand (PD-L1),
and cytotoxic T-lymphocyte antigen 4 (CTLA-4) are commonly
used as first-line therapeutics against various cancers (5, 8–10).
Several clinical trials have evaluated the efficacy and safety of
immunotherapy in patients with MPM (1, 3, 11, 12). Thus,
the KEYNOTE-028 trial (1) showed potential clinical benefits
of pembrolizumab, an anti-PD-L1 monoclonal antibody, in
patients with MPM showing positive PD-L1 expression. Several
ongoing phase II trials, including the KEYNOTE-158 basket trial
(ClinicalTrials.gov Identifier: NCT02628067) and KEYNOTE-
139 study (ClinicalTrials.gov Identifier: NCT02399371), are
assessing the activity of pembrolizumab as a second-line therapy
for MPM. The potential therapeutic benefit of combination
immunotherapy (CTLA-4 and PD-L1 blockade) against MPM is
under investigation, and thus far, the data from the CheckMate-
743 (ClinicalTrials.gov Identifier: NCT02899299) and NIBIT-
MESO-1 trials seem promising (3). There are only a few ongoing
trials using a combination of immunotherapy and chemotherapy
or surgery, or both, in patients with MPM. The DREAM trial
is a multicenter, single-arm, open-label phase II study that
aims to determine the effects of durvalumab in combination
with chemotherapy for the treatment of MPM. Based on
the data presented at the 2018 American Society of Clinical
Oncology Conference, the therapeutic efficacy of this regimen
seems promising.

The tumor immune microenvironment, including
endothelial, stromal, and immune cells, plays a vital role in
tumor surveillance and antitumor effects (2, 7). Understanding
the correlation between tumor immunity and antitumor
effectors in the MPM immune microenvironment is critical
for enhancing the potential efficacy of immunotherapy (2, 7).
Increasing evidence suggests that analysis of gene expression
or copy numbers in cancer samples helps understand immune
cell infiltration into the tumor microenvironment (TME).
The ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) algorithm
(5) can be used to analyze transcription profiles in tumor
samples and their association with tumor cellularity and different
infiltration characteristics. This algorithm generates scores to
predict the levels of infiltrating stromal and immune cells and
tumor heterogeneity (5).

In this study, we used ESTIMATE algorithm-derived
immune scores of patients with MPM to generate a list
of TME-associated genes based on the Gene Expression
Omnibus (GEO) database. Subsequently, genes associated
with poor outcomes were validated in a cohort of patients
with MPM available from The Cancer Genome Atlas
(TCGA) dataset.

MATERIALS AND METHODS

Microarray Data Analysis
Gene expression profiles of 55 MPM tumor samples and paired
normal tissues (for 41 tumor samples) were obtained from
the GEO database under accession number GSE51024 (13).
Gene expression was analyzed using the Affymetrix Human
Genome U133 Plus 2.0 Array (Affymetrix, Inc., Santa Clara,
CA, USA). The raw data were processed using the Robust
Multi-Array Average method and the “Oligo” package from
BioConductor (http://www.bioconductor.org) to normalize the
data and annotate probe information.

The Cancer Genome Atlas Data Analysis
Gene expression was analyzed using the Illumina HiSeq 2000
RNA sequencing platform at the University of North Carolina
Genome Characterization Center. Level 3 data were obtained
from the TCGA Data Coordinating Center. This dataset showed
the predicted transcriptome profiles, presented as log2(x + 1)-
transformed RSEM-normalized counts. Genes were mapped to
human genome coordinates using HUGO probeMap. A method
description is available from the University of North Carolina
TCGA Genome Characterization Center. Demographic and
clinical data, such as sex, age, histological type, survival, and
outcome, were also obtained from TCGA.

Initial Data Processing and Identification of
Differentially Expressed Genes
Normalized signal intensities of the data were imported into
BRBArrayTools (v.4.5; http://linus.nci.nih.gov/BRB-ArrayTools.
html) for the initial processing and identification of differentially
expressed genes (DEGs). A false discovery rate (FDR) of 0.05
was considered significant. DEGs were selected based on a fold
change of ≥1.5 and FDR of <0.05. Immune and stromal scores
were calculated using the ESTIMATE algorithm (5). Heatmaps
were generated, and clustering analyses were performed using the
open-source web tool ClustVis (14).

Enrichment Analysis of Differentially
Expressed Genes
Functional enrichment analysis of DEGs was performed by
DAVID (The Database for Annotation, Visualization and
Integrated Discovery) to identify Gene Ontology (GO) categories
by their biological processes (BPs), molecular functions (MFs), or
cellular components (CCs). The DAVID database was also used
to perform pathway enrichment analysis with reference from
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
FDR < 0.05 was used as the cut-off.

Construction of a Protein–Protein
Interaction Network
A total of 217,249 pairs of protein–protein interactions (PPIs)
were downloaded fromReactome (v. 2014; http://www.reactome.
org) (15). These pairwise correlations were derived from the PPI
datasets from BioGrid (16), the Database of Interacting Proteins
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(17), Human Protein Reference Database (18), I2D (19), IntACT
(20), and MINT (21), as well as from gene co-expression data
derived from multiple high-throughput analyses, including yeast
two-hybrid assays, mass spectrometry pull-down experiments,
and DNAmicroarrays (22). The PPI network was constructed by
importing the above interactions into Cytoscape (v. 3.2.1; http://
www.cytoscape.org) (23).

Identification of Network-Based Functional
Modules
TheMicroarrayData Analysis tool fromReactomeFIViz was used
for network-based functional analysis (24). After using DEGs as
the input, we filtered the network modules using a cutoff of ≥2.

Pathway and Gene Ontology Enrichment
Analysis for Network-Based Functional
Modules
ReactomeFIViz was used with Cytoscape for pathway and GO
enrichment analysis (24). The sources of pathway annotations
included CellMap (http://www.pathwaycommons.org/pc/
dbSnapshot.do?snapshot_id = 8), Reactome (15), the KEGG
(25), PANTHER (26), NCI–PID (27), and BioCarta (http://www.
biocarta.com/genes/index.asp). An FDR of <0.05 was used as
the cut-off.

Overall Survival Curve
Kaplan–Meier plots were generated to illustrate the relationship
between patients’ overall survival (OS) and gene expression levels
of DEGs. The relationship was tested by log-rank test. p < 0.05
was used as the cut-off.

RESULTS

Study Design and Workflow
In this study, we identified, using a public database, TME-
related genes that might affect the development and progression
of MPM. Comparison of patients with high and low immune
or stromal scores led to the identification of 74 stromal and
immune cell-associated DEGs in the GEO database. GO and
KEGG analyses showed that all 74 genes were associated with
the TME. Analysis of the DEGs (tumor vs. normal) indicated
that 29 DEGs were cancer driver genes, and survival analysis
showed that 14 of these 29 genes were associated with a poor
prognosis in patients with MPM. The prognostic values of the
14 TME-related genes were validated in patients with MPM from
the TCGA database (Figure 1). Furthermore, a PPI network was
constructed, in which seven network modules comprising 32
genes were obtained, to better understand the interactions among
these DEGs.

Correlation Between Differentially
Expressed Genes and Immune and Stromal
Scores Using the Gene Expression
Omnibus Database
To determine a correlation between DEG profiles and immune
and/or stromal scores, we analyzed the data from a transcription

FIGURE 1 | Workflow outline of the current study.

microarray of 55 tumor tissues with paired normal tissues
(for 41 tumor samples) from the GEO cohort. With the
use of the BRBArrayTools software, 2,134 DEGs were
identified based on the stromal scores, and 334 DEGs were
identified based on the immune scores (Figures 2A–C).
A total of 74 DEGs were validated using the Venn
algorithm (Figure 2D).

Functional Enrichment Analysis
Functional enrichment clustering analysis showed a
significant number of genes at the intersection of the
immune response. The KEGG pathway annotation analysis
(Figure 2D) revealed genes associated with the intestinal
immune network for IgA, cell adhesion molecules, and
Epstein–Barr virus infection, among others. We selected the
top 10 GO terms in the BP (Figure 2E), MF (Figure 2F),
and CC (Figure 2G), among which immune response, B-
cell receptor signaling pathway, T-cell receptor signaling
pathway, and inflammatory response were the top GO
terms identified.

Significant Association of Immune and
Stromal Scores With the Survival of
Patients With Malignant Pleural
Mesothelioma
The initial pathological diagnoses for 87 patients with
MPM, for whom we obtained the gene expression profiles
and clinical information from the TCGA database,
were made between 1999 and 2013. Demographic and
clinicopathological information, including sex, age,
tumor location, history of asbestos exposure, histological
classification, differentiation grade, pathological T, N,
and M stages, and survival, was also retrieved from the

Frontiers in Oncology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 544789

http://www.cytoscape.org
http://www.cytoscape.org
http://www.pathwaycommons.org/pc/dbSnapshot.do?snapshot_id
http://www.pathwaycommons.org/pc/dbSnapshot.do?snapshot_id
http://www
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xu et al. TME Immune-Related Genes and MPM

FIGURE 2 | Comparison of the gene expression profile with immune scores and stromal scores in malignant pleural mesothelioma [Gene Expression Omnibus (GEO)

database]. Heatmaps were drawn based on the average linkage method and Pearson distance measurement method. Genes with higher expression are shown in

red, genes with lower expression are shown in green, and genes with mean expression level are shown in black. (A) Heatmap of the differentially expressed genes

(DEGs) of stromal scores of the top half (high score) vs. bottom half (low score). False discovery rate (FDR) < 0.05, fold change ≥ 1.5. (B) Heatmap of the DEGs of

immune scores of the top half (high score) vs. bottom half (low score). FDR < 0.05, fold change ≥ 1.5. (C) Venn diagrams showing the number of common DEGs in

the stromal and immune score groups. (D–G) FDR of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis was acquired

from DAVID functional annotation tool. p < 0.05.
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FIGURE 3 | Correlation of stromal scores and immune scores with the overall survival and relapse-free survival in malignant pleural mesothelioma (MPM) using the

dataset in The Cancer Genome Atlas (TCGA) database. MPM patients were divided into two groups based on their stromal scores. As shown in the Kaplan–Meier

survival curve, the low stromal score group has significantly longer overall survival (A) and relapse-free survival than the high stromal score group (B), as indicated by

the log-rank test; p-value is 0.006 and 0.022, respectively. MPM patients were divided into two groups based on their immune scores. The high-immune-score group

has significantly longer overall survival (C) and relapse-free survival (D) than the low-immune-score group; the log-rank test p = 0. 015 and p = 0.011.

database. However, we observed no correlations between the
clinicopathological characteristics and immune and/or stromal
scores (Supplementary Figure 1), except for the pathological
T stage.

Kaplan–Meier survival curves were used to evaluate the
correlation between the immune and/or stromal scores and the

prognosis of patients with MPM (Figure 3). The median OS of

patients with low stromal scores (43 cases) was higher than that

of patients with high stromal scores (43 cases) (719 vs. 414 days,
respectively; p = 0.006, by a log-rank test). Similarly, the median
relapse-free survival (RFS) of 40 cases with low stromal scores
was higher than that of 44 cases with high stromal scores (620
vs. 414 days, respectively; p = 0.022, by a log-rank test). By
contrast, the median OS of patients from the high-immune-score
group (46 cases) was higher than that of patients from the low-
immune-score group (38 cases) (620 vs. 434 days, respectively;
p = 0.015, by a log-rank test). Meanwhile, the median RFS
of patients from the high-immune-score group (55 cases) was
higher than that of patients from the low-immune-score group
(29 cases) (629 vs. 365 days, respectively; p = 0.011, by a log-
rank test).

Significant Association of Immune
Function-Related Genes With the Survival
of Patients With Malignant Pleural
Mesothelioma
Survival analysis showed the presence of 29 cancer-specific
DEGs. Of these, 14 immune-related genes were associated with
a poor OS (Figure 4) and RFS (Figure 5), while 15 genes
had no significant association with the survival of patients
with MPM (Supplementary Figure 2). The 14 immune-related
genes (Table 1) were NT5E, ETS1, C16orf54, WIPF1, FLI1,
ARHGEF6, HLA-DRA, PRKCH, C5AR1, SPATA13, RCAN3,
NAPSB, SAMHD1, and STX11; and their expression levels
are shown in Figure 6A. The relationships between the
immune/stromal scores and abnormal expression of these 14
immune-related genes are shown in Figures 6B,C.

Protein–Protein Interaction and Hub Gene
Identification
To explore the interplay among the 74 overlapping DEGs, a
PPI network, which contained 32 nodes and 42 edges, was
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FIGURE 4 | Correlation between the expression of the 14 individual differentially expressed genes (DEGs) with the overall survival [using The Cancer Genome Atlas

(TCGA) dataset]. Kaplan–Meier survival curves were generated for the selected DEGs extracted from the comparison of high (yellow line) and low (blue line) gene

expression groups. p < 0.05 in log-rank test. OS, overall survival in days.

FIGURE 5 | Correlation between the expression of 14 individual differentially expressed genes (DEGs) and the relapse-free survival (in days) in The Cancer Genome

Atlas (TCGA) dataset. Kaplan–Meier survival curves were generated for the selected DEGs extracted from the comparison of high (yellow line) and low (blue line) gene

expression groups. p < 0.05 in log-rank test. RFS, relapse-free survival in days.
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TABLE 1 | The information for the genes significant in MPM overall survival identified in TCGA.

Gene Official full name Related pathway p-value Method

NT5E 5′-nucleotidase ecto HIF-1-alpha transcription factor network 8.60E-06 Wilcoxon

ETS1 ETS proto-oncogene 1, transcription

factor

AP-1 transcription factor network;C-MYB transcription factor

network; BCR signaling pathway; HIF-1-alpha transcription factor

network; HIF-2-alpha transcription factor network; IL4-mediated

signaling events; Signaling events mediated by Hepatocyte

Growth Factor Receptor (c-Met)

0.00249 Wilcoxon

C16orf54 Chromosome 16 open reading frame 54 None reported 0.00926 Wilcoxon

WIPF1 WAS/WASL interacting protein family

member 1

Fc-epsilon receptor I signaling in mast cells 0.00079 Wilcoxon

FLI1 Fli-1 proto-oncogene, ETS transcription

factor

DNA-binding transcription activator activity, 0.00102 Wilcoxon

ARHGEF6 Rac/Cdc42 guanine nucleotide exchange

factor 6

CDC42 signaling events 1.00E-10 Wilcoxon

HLA-DRA Major histocompatibility complex, class II,

DR alpha

IL12 signaling mediated by STAT4; IL12 signaling mediated by

STAT4; CXCR4-mediated signaling events; TCR signaling in naïve

CD4+ T cells; Cytokines and Inflammatory Response

0.00315 Wilcoxon

PRKCH Protein kinase C eta Calcium Regulation in the Cardiac Cell; G Protein Signaling

Pathways; Wnt Signaling Pathway and Pluripotency

2.90E-09 Wilcoxon

C5AR1 Complement C5a receptor 1 Immune System; G alpha (i) signaling events; Class A/1

(Rhodopsin-like receptors)

0.00019 Wilcoxon

SPATA13 Spermatogenesis associated 13 Regulation of CDC42 activity; Regulation of RAC1 activity 4.80E-07 Wilcoxon

RCAN3 RCAN family member 3 None reported 6.90E-10 Wilcoxon

NAPSB Napsin B aspartic peptidase, pseudogene None reported 1.90E-07 Wilcoxon

SAMHD1 SAM and HD domain containing

deoxynucleoside triphosphate

triphosphohydrolase 1

Cytokine Signaling in Immune system; Immune System; Interferon

Signaling; Interferon alpha/beta signaling; Metabolism

0.00014 Wilcoxon

STX11 Syntaxin 11 None reported 3.10E-08 Wilcoxon

The p-value is for the differences in the expression of this gene in the GEO database. Genes in bold is also essential to in protein interaction analysis.

constructed using the Cytoscape software. In the PPI network,
HLA-DRA, CD28, ITK, PTPRC, CXCR4, SYK, and PIK3CG
were significant nodes because they had the largest numbers of
connections with other nodes. Finally, the following nine TME-
related hub genes were identified: HLA-DRA, SYK, CXCR4, ITK,
PTPRC, HLA-DPB1, PIK3CG, ETS1, and HCLS1.

Functional enrichment analysis using ReactomeFIViz showed
that the genes were involved in the C-MYB transcription
factor network, MHC class II antigen presentation (R), antigen
processing and presentation (K), cell adhesion molecule (CAM)
interactions, Fc-epsilon receptor I signaling in mast cells (N), C-
type lectin receptor signaling pathway (K), endothelin signaling
pathway (P), T-cell activation (P), and T-cell receptor signaling
pathway (K), most of which are related to immunity (Figure 7).

DISCUSSION

It has been previously shown that molecular features of tumors
can affect immune responses and the TME (5, 28). Therefore,
identifying TME-related genes that determine the prognosis of
MPM is crucial to preventing cancer progression and managing
the potential immune response. In this study, we used the
ESTIMATE algorithm (5) to screen for tumor immune-related
genes in the GEO database and validate the prognostic values
of genes in the TCGA database. To the best of our knowledge,

this is the first report to demonstrate the involvement of 14
immune-related genes in MPM.

The composition of the TME may influence cancer
development (29). Interactions between cancer stem cells
and immune cells are important in the carcinogenesis of MPM
(30). The TME may also be associated with the prognosis of
MPM and may determine the potential efficacy of anticancer
therapies (31). Immunotherapy exploits these mechanisms and
imparts antitumor effects (32). There are multiple reports on the
development of novel therapeutic strategies based on targeting
the TME (29, 33). Recently, encouraging results of a first-line
dual-immune phase III clinical trial onMPMwere released at the
2020 World Conference on Lung Cancer, which are expected to
break the 15-year deadlock without new drugs. The CheckMate-
743 phase III clinical study showed that nivolumab injection,
combined with ipilimumab, could significantly improve the
OS of patients with previously untreated, unresectable MPM.
At the shortest follow-up of 22 months, nivolumab, combined
with ipilimumab, reduced the patient’s risk of death by 26%.
The patient’s median OS was 18.1 months, compared with 14.1
months in the chemotherapy group (hazard ratio: 0.74; 96.6%
confidence interval: 0.60–0.91; p = 0.002). The 2-year survival
rate of patients in the nivolumab plus ipilimumab group was
41%, compared with 27% in the chemotherapy group (34).
This study suggested that checkpoint inhibitors might be a
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FIGURE 6 | The expression of 14 genes and their relationship with the stromal and immune scores. (A) All 14 genes showed abnormal expression on comparing the

malignant mesothelioma tissue with the normal paired lung tissue in the Gene Expression Omnibus (GEO) database. The box plot is used to show the relationship

between the abnormal expression of the 14 genes and the stromal/immune scores (B,C). **p < 0.01, ***p < 0.001, and ****p < 0.0001.

potential effective treatment for MPM. However, more clinical
trials, with OS as a primary end point, investigate the efficacy of
immunotherapy compare with the best treatment (pemetrexed
+ cisplatin± bevacizumab) for MPM is needed.

In our study, we aimed to explore whether genes related
to the tumor immune microenvironment might predict the
prognosis of patients with MPM. These genes might help
to select the potential beneficiaries of immunotherapy. Five
of the 14 immune-related genes (ETS1, FLI1, WIPF1, HLA-
DRA, and PRKCH) represented essential elements in the
PPI network. ETS1 (also known as p54 and EWSR2) is a
member of the ETS family of transcription factors, which are

involved in stem cell development, cell senescence and death,
and tumorigenesis. ETS1 functions as an oncogene and is a
crucial regulator of phenomena involved in tumorigenesis, such
as the mesenchymal phenotype in various tumors, including
head and neck squamous cell carcinoma (35), breast cancer
(36), prostate cancer (37), and glioblastoma (38). ETS1 also
functions in several immune-related pathways, including the
C-MYB transcription factor network, BCR signaling, HIF-
1α transcription factor network, HIF-2α transcription factor
network, and IL4-mediated signaling (https://pubchem.ncbi.
nlm.nih.gov/source/Pathway%20Interaction%20Database). FLI1
(also known as SIC-1 and BDPLT21) is a transcription factor
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FIGURE 7 | The protein–protein interaction (PPI) networks for the 74 differentially expressed genes (DEGs) in malignant pleural mesothelioma (MPM) patients. The

functional interaction (FI) network constructed using immune-related genes in MPM. (A) The generated seven network modules comprise 32 genes, which are shown

in different colors in different network modules. (B) A functional enrichment analysis of these modules based on pathway annotation. Genes in red are significant in

survival analysis.

containing an ETS DNA-binding domain; it is involved in gene
fusions (39). FLI1 is associated with a poor prognosis in multiple
tumors, including non-small-cell lung cancer (40), breast cancer
(41), and acute myeloid leukemia (42). WIPF1 (also known as
PRPL-2, WAS2, WASPIP, and WIP) is vital to the organization
of the actin cytoskeleton. WIPF1 is involved in Fc-epsilon
receptor I signaling, which is an important immune-related
pathway, in mast cells. HLA-DRA, an HLA class II alpha-chain
paralog, is involved in several immune-related pathways, such
as STAT4-mediated IL12 signaling, CXCR4-mediated signaling,
TCR signaling in naïve CD4+ T cells, and cytokine inflammatory
responses. PRKCH is a protein kinase C and a member of
the PKC family of proteins. PRKCH phosphorylates a wide
variety of targets and is involved in diverse signaling pathways,
including calcium regulation in cardiac cells, G-protein signaling
pathways, the Wnt signaling pathway, and pluripotency. Taken
together, these genes show prognostic potential and deserve
further exploration to determine their potential as therapeutic
targets in MPM.

The significance of this study is that we identified 14 TME-
related genes. These genes are involved in immune responses,
may predict the survival of patients with MPM, and may also
play a role as biomarkers of the sensitivity to immunotherapy.
Moreover, we validated these results in two databases. However,
because of the low incidence of mesothelioma, it is very difficult
to collect fresh clinical samples to verify our results.

Taken together, these identified genes show promise as
prognostic markers and immune effectors. To the best of our
knowledge, this is the first study to report that immune and
stromal scores can predict the prognosis of MPM. High-immune

and low-stromal scores are predictive of a good prognosis
of MPM in patients. However, most clinicopathological
characteristics, including the history of asbestos exposure,
histological classification, differentiation grade, and pathological
N stage, have no impact on the prognosis of MPM.

CONCLUSION

In summary, our findings indicate the importance of TME-
related genes that are involved in immune-related pathways
in the prognosis of MPM and serve as potential predictors to
improve the efficacy of precision immunotherapy. Based on
the ESTIMATE algorithm, immune and stromal scores were
calculated and found to be useful in determining the prognosis
of patients with MPM. The DEGs were validated in two
independent cohorts, from the GEO and TCGA databases. As the
involvement of these genes inMPMwas not confirmed in clinical
samples from China, further studies are warranted in the future
to confirm their roles in MPM.
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Supplementary Figure 1 | The relationship between the clinicopathological

characters and immune and/or stromal scores. Box plot showed that there is no

relationship between the clinicopathological characters and the immune and/or

stromal scores except pathologic T. Only pathologic T has a significant correlation

with stromal scores. Ns means not significant, ∗means significant.

Supplementary Figure 2 | Correlation between the expression of the 13

individual DEGs in the relapse free survival and overall survival (in days) in TCGA

dataset. Kaplan-Meier survival curves were generated for the selected DEGs from

the comparison of high (yellow line) and low (blue line) gene expression groups. All

the 13 individual DEGs had no impact on the clinical outcome of malignant pleural

mesothelioma patients. P < 0.05 in Log-rank test. RFS, relapse free survival in

days; OS, overall survival. Note: Two genes lake of survival data in TCGA

database.
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