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ABSTRACT

Autogenous interactions between mRNAs and the
proteins they encode are implicated in cellular
feedback-loop regulation, but their extent and mech-
anistic foundation are unclear. It was recently hy-
pothesized that such interactions may be common,
reflecting the role of intrinsic nucleobase–amino
acid affinities in shaping the genetic code’s struc-
ture. Here we analyze a comprehensive set of CLIP-
seq experiments involving multiple protocols and re-
port on widespread autogenous interactions across
different organisms. Specifically, 230 of 341 (67%)
studied RNA-binding proteins (RBPs) interact with
their own mRNAs, with a heavy enrichment among
high-confidence hits and a preference for coding
sequence binding. We account for different con-
founding variables, including physical (overexpres-
sion and proximity during translation), methodolog-
ical (difference in CLIP protocols, peak callers and
cell types) and statistical (treatment of null back-
grounds). In particular, we demonstrate a high statis-
tical significance of autogenous interactions by sam-
pling null distributions of fixed-margin interaction
matrices. Furthermore, we study the dependence of
autogenous binding on the presence of RNA-binding
motifs and structured domains in RBPs. Finally, we
show that intrinsic nucleobase–amino acid affinities
favor co-aligned binding between mRNA coding re-
gions and the proteins they encode. Our results sug-
gest a central role for autogenous interactions in RBP
regulation and support the possibility of a fundamen-
tal connection between coding and binding.

INTRODUCTION

RNA binding proteins (RBPs) are a large and diverse
class of proteins which regulate different critical processes
in the cell including pre-mRNA splicing, RNA editing,
polyadenylation, translation, etc. (1–4). In doing so, RBPs
facilitate a rapid adjustment of protein synthesis to meet
cellular requirements in changing environments (5). Large-
scale experiments involving UV-based cross-linking, mass
spectrometry and sequencing have demonstrated that there
exist >1500 RBPs in humans, representing ∼8% of the an-
notated proteome (2,6–7). Moreover, >20 000 RBP candi-
dates have been identified in different species to date (8).
Finally, as a reflection of their central regulatory roles,
RBPs have been implicated in numerous diseases including
neurodegenerative and autoimmune disorders and various
types of cancer (9–12).

Importantly, several RBPs have been shown to engage
in direct autoregulatory feedback loops and control their
own levels by interacting with the mRNAs that encode them
(13–15). For example, splicing factors, including SR pro-
teins and heterogeneous nuclear RNPs (hnRNPs), medi-
ate unproductive alternative splicing and trigger nonsense-
mediated decay of their own mRNAs in response to over-
expression (16,17). Other negative feedback loops facili-
tated by autogenous binding involve direct inhibition of
translation, as in SRSF1 (18) or many bacterial ribosomal
proteins (19), export and rapid degradation of autogenous
mRNA, as in NXF1 (20), and ligand-based mechanisms, as
in thymidylate synthase, dihydrofolate reductase and other
enzymes (21,22). Importantly, physical interaction between
RBPs and their own mRNAs depends on localization, con-
centration and binding affinity of the two partners as well
as other factors including cell size and abundance of com-
peting molecules. Autogenous interactions are also used to
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establish positive feedback loops and binary on/off genetic
switches that regulate cell fate decisions (13) such as in the
case of a master regulator of female somatic tissue devel-
opment, Sxl (23), as well as Orb proteins in Drosophila
(24) or Musashi hnRNP-type RBPs in Xenopus (25). Fi-
nally, depending on localization, human antigen R, a gene
regulator with roles in replicative senescence and cancer,
interacts with the 3′-untranslated region (3′ UTR) of its
own mRNA to establish both negative (26) and positive
feedback (27) loops. Overall, a direct interaction between
an RBP and its mRNA is arguably the most elementary
and the most powerful driver of autoregulatory behavior
and could play a major role in controlling protein home-
ostasis (13–15,22,28–29). Despite the above sporadic exam-
ples, however, it is not clear how widespread autogenous
mRNA–RBP interactions are (13–15). Equally critically, it
is not known how RBPs recognize their own mRNAs in
most cases, i.e. which microscopic mechanisms guide auto-
genous recognition.

In this context, it has recently been proposed that pro-
teins in general interact with the coding sequence (CDS)
of their own mRNAs in a co-aligned fashion, especially
if both partners are unstructured (30–37). This proposal,
termed ‘the mRNA–protein complementarity hypothesis’,
is a generalization of the stereochemical hypothesis of the
origin of the genetic code, the idea that codon assignments
reflect the intrinsic nucleobase–amino acid binding prefer-
ences (35,38,39). Namely, if codons bind preferentially to
the amino acids they encode, as proposed by the stereo-
chemical hypothesis, an mRNA CDS should also bind to
the protein encoded by it 30–37). While other influences
have also likely shaped the code (35,40,41), it has been
shown that the nucleobase density profiles of mRNA CDS
regions closely match their own proteins’ nucleobase affin-
ity profiles, supporting the complementarity hypothesis 30–
37). For example, the mRNA CDS pyrimidine (PYR) den-
sity profiles match their own proteins’ PYR-mimetic affinity
profiles with an average Pearson R of –0.74 in human (note
that binding propensity in this context is reflected in nega-
tive R values due to the standard way of how nucleobase–
amino acid affinities are expressed (30,36). Finally, as a gen-
eral mechanism for autogenous mRNA–protein recogni-
tion, the complementarity hypothesis could provide a foun-
dation for understanding autoregulatory processes such as
those outlined above.

Recent developments in detecting RNA–protein interac-
tions at a cell-wide level have now set the stage for an in-
depth analysis of both the extent of autogenous binding
in RBPs and its mechanistic foundation. Specifically, UV-
based cross-linking in combination with immunoprecipita-
tion and high-throughput sequencing (CLIP-seq or CLIP)
has become a standard experimental procedure to identify
the RNAs with which a given RBP interacts and locate its
binding sites transcriptome-wide (42). There currently ex-
ist dozens of different adaptations of the CLIP protocol,
with high-throughput sequencing CLIP (HITS-CLIP) (43),
individual nucleotide resolution CLIP (iCLIP) (44), pho-
toactivatable ribonucleoside-enhanced CLIP (PAR-CLIP)
(45) and enhanced CLIP (eCLIP) (46) being among the
most widely used approaches. Here we use a comprehensive

set of CLIP data involving multiple, widely used protocols
and peak callers in a range of organisms, as captured by
the POSTAR3 database (47), to systematically analyze in-
stances of autogenous binding detected by CLIP. Our find-
ings point to an unexpectedly widespread, highly significant
enrichment of autogenous mRNA–protein interactions in
all organisms studied, with a pronounced preference for
CDS binding.

MATERIALS AND METHODS

CLIP-seq data acquisition

The mapped, peak-called and annotated CLIP dataset used
herein was obtained from POSTAR3 (47), which is an up-
dated human-curated version of CLIPdb (48), POSTAR
(49) and POSTAR2 (50) databases and covers 1499 pub-
lished CLIP datasets for seven species (human, mouse, ze-
brafish, fly, worm, Arabidopsis and yeast). Throughout the
manuscript, different CLIP method/peak-caller combina-
tions are labeled using the following abbreviations for peak
callers: Pir, Piranha (51); PAR, PARalyzer (52); CLI, Clip-
per (46,53–54); CIMS, CIMS (55); and Pure, PureCLIP
(56).

Curation of CLIP-seq data

In order to avoid biases that could originate from the over-
expression of the protein or mRNA of interest, all data from
iCLIP (44), HITS-CLIP (43), PAR-CLIP (45) and eCLIP
(46) were filtered to exclude experiments involving over-
expression or induction. Overexpression information was
obtained through a manual review of the complete set of
all original publications behind the 1499 CLIP datasets in-
cluded in the present study. The manual review was carried
out via two independent replicate workflows, one by the Lu
lab and the second by the Zagrovic lab, the results of which
were subsequently compared and harmonized. The final,
curated set of overexpression information is provided in the
Supplementary data (Dataset S1). All figures and results
presented herein are based on the data from CLIP exper-
iments that were performed at endogenous concentrations
of the RBPs studied, unless explicitly stated otherwise. In
particular, as the PAR-CLIP experiments by and large in-
volve overexpression, the corresponding data were analyzed
separately.

Calculation of binding site peak densities

In order to quantitatively compare binding propensities of
RBPs for different transcripts or transcript regions (introns,
5′ UTR, CDS or 3′ UTR), binding site peak density was
evaluated as the ratio of the number of nucleotides corre-
sponding to the binding site peaks and the total length of a
given region (ntpeak/nttotal), whereby binding site peaks were
defined by a given peak caller at default settings, as applied
and described in POSTAR3 (47,49,50). In order to mini-
mize biases involving relative concentration differences be-
tween transcript regions, i.e. between introns and exons or
between unique regions of different transcript variants, all
calculations were restricted to the dominant spliced tran-
script per gene, as explained below.
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Transcript data acquisition and selection

Most analyses were performed on the primary transcript
level, without differentiating between transcript variants
(Figures 1, 2C, D and 3A–H). This is in agreement with
the fact that in standard CLIP pipelines, fragmented RNA
reads are mapped to reference genomes prior to peak call-
ing whereby peaks do not convey information about tran-
script identities. For quantitative comparisons of binding in
different transcript regions, however, a single selected tran-
script per gene was used, as given by ‘Matched Annota-
tion from NCBI and EMBL-EBI’ (MANE), an NCBI high-
confidence collection of single transcripts per human gene
(57). MANE v0.93, downloaded from the NCBIs ftp server,
includes genomic locations for 17 774 genes, which were
used to infer genomic contexts of peak coordinates. Fur-
ther justification for using MANE sequences when assess-
ing binding site peak densities is given in the Supplemen-
tary data. Additionally, for eight genes that correspond to
human RBPs with available CLIP data, but are not cov-
ered by MANE, the data were obtained from ENSEM-
BLE Biomart (https://m.ensembl.org/biomart/martview/),
applying a filter for Swiss-Prot peptide sequences, selecting
the transcript with the highest support level (TSL1) and, if
ambiguous, taking the longest transcript. The RBPs/genes
with no TSL1 transcript available (TNRC6C) or no cor-
responding Swiss-Prot peptide sequence found (RBFOX2,
CELF2, ILF3 and NUDT16L1) were excluded from
this particular analysis. The transcripts of this extended
MANE Select set are referred to as ‘MANE transcripts’
throughout.

Definition of mRNA–protein interactions detected by CLIP

By default, an interaction between a primary transcript and
a protein was defined by the presence of at least one reported
cross-link peak between the two, as evaluated by the respec-
tive peak caller at default settings. This definition was also
made more stringent by sorting all mRNA–RBP pairs ac-
cording to the score of cross-link peaks or by their number
normalized by length, i.e. peak density (Figure 3), and sys-
tematically including only a given fraction of the topmost
interactions. Details related to peak calling are described in
the POSTAR2 database (50). Note that in the present con-
text, mRNAs and proteins are defined by their genetic iden-
tity, i.e. if protein A binds any region of any transcript vari-
ant of gene B, it is considered to bind ‘mRNA B’.

Correction for RNA overexpression

Using relative transcript concentration values (transcripts
per million; TPM), as provided by the Human Protein At-
las (58), it was observed that the probability of different
mRNAs to bind to RBPs depends on their cellular con-
centration and follows a well-defined, saturating functional
relationship, as illustrated in Supplementary Figure S6A
and B. As described below, the background probabilities of
autogenous interactions in the symmetric framework were
estimated by using the numbers of binding partners each
RBP and mRNA has. Importantly, the information needed

on the number of binding partners of mRNAs at overex-
pressed concentrations is lacking. Here, we infer this num-
ber at overexpressed concentrations by scaling up the ob-
served (endogenous) number of binding partners using a
linear scaling factor. The factor is calculated as the ratio
of the average number of partners of a given mRNA at
a particular endogenous concentration and that at over-
expressed concentrations, as captured by the asymptotic
value in the binding probability/TPM graphs. This is vi-
sualized for an RNA at an endogenous concentration of
TPM 10 in Supplementary Figure S6A and B. The deci-
sion for a multiplicative, as opposed to an additive, correc-
tion was based on the heteroscedastic nature of the graph,
with higher deviations at high concentrations. The scaling-
up was performed via an iterative process of modifying the
raw interaction matrix in all rows of the respective mR-
NAs by changing randomly chosen 0 values to 1 values un-
til the respective asymptotic binding probability was met.
Both the modification of the raw matrices and the shuf-
fling of the created matrices were applied 1000 times per
dataset.

RNA–protein binding energy prediction

The binding energy for a given alignment of mRNA–
protein sequences (see Figure 6C) was calculated as the
sum of the individual binding energies between amino acids
and the respective aligned trinucleotides, whereby the latter
were calculated as the sum of the binding energies between
the amino acid and the three nucleobases in question. The
underlying individual nucleobase–amino acid binding en-
ergies were previously derived from high-resolution struc-
tures of RNA–protein complexes using a statistical poten-
tial, knowledge-based formalism (31). To indicate this fact,
the binding energies are denoted as Estat. Furthermore, a
given protein sequence was aligned from the N- to the C-
terminus with the respective mRNA sequence in the 5′ to
3′ direction, if not indicated otherwise, and shifted one nu-
cleotide at a time over the full mRNA sequence, thereby
systematically examining all relative affinities for different
alignments between the two biopolymers.

Comparison of estimated mRNA–protein interaction ener-
gies in different species

For the calculation of binding energies involving autoge-
nously binding RBPs in different species (Figure 6F), all
available CLIP data were merged, regardless of the CLIP
methodology used, and filtered to exclude experiments in-
volving overexpression or induction of the RBP of inter-
est. The reference proteomes (59) and CDS regions of the
species in question were downloaded from EMBL-EBI and
filtered for conflict-free coding relationships by in silico
translation. The autogenous CDS–protein binding ener-
gies were then calculated for all RBPs, which were detected
by CLIP to bind autogenous mRNAs as described above,
and compared against alignments with the CDS regions of
the non-bound mRNAs within the same species. For equal
representation of different RBPs within the joint back-
ground distribution, 1000 alignment positions with non-
bound mRNAs were sampled at random for each RBP.

https://m.ensembl.org/biomart/martview/
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Estimation of background probabilities of autogenous inter-
actions

Background probabilities of autogenous interactions were
estimated by considering the numbers of binding partners
of either RBPs only (protein-centric framework) or both
RBPs and their own mRNAs (symmetric framework), nor-
malized by the total number of possible partners. In the
protein-centric framework, the background probability of a
given autogenous interaction was estimated as the number
of identified mRNA targets of the RBP in question, counted
as the number of the respective unique genes, divided by the
total number of possible cellular mRNA targets, taken as
20 000 as an approximation of the total number of human
genes (60), assuming equal binding probability for different
mRNAs. In the symmetric framework, the data from each
CLIP method/peak-caller combination were converted to a
binary interaction matrix involving all mRNAs and all pro-
teins analyzed by the method in question. The background
probability of a certain mRNA–protein pair to bind was
estimated by taking into account their individual binding
frequencies and evaluating the average number of interac-
tions between them in randomized interaction matrices with
retained row and column totals. Here, the Curveball algo-
rithm (61) was used to generate 1000 uniformly randomized
matrices for each given interaction matrix, which theoret-
ically estimates individual binding probabilities with 95%
confidence intervals of ±0.0315 (at P = 0.5), according to
the Clopper–Pearson exact interval.

Estimation of pooled background probabilities of autogenous
interactions

Once the N individual probabilities (for N autogenous
pairs) were estimated as described above, the exact prob-
ability of k observed autogenously binding mRNA–protein
pairs out of N + 1 possible outcomes (0. . .N) was calcu-
lated according to the Poisson binomial distribution (62)
as the sum over all possible binary combinations (2N) with
outcome k, each multiplied by the product of all N individ-
ual probabilities of the combined outcome. In cases with
N >20, the distribution of the relative probabilities of all
N + 1 possible outcomes (k) was instead estimated by simu-
lating the N individual probabilities via 106 randomization
trials, thereby enabling evaluation of significance for any ob-
served k.

Hypothesis testing

The following hypothesis tests were used for the calculation
of P-values, whereby one-sided variants were applied in the
case of hypotheses of a directional nature. The Student’s t-
test was applied in all cases of independent, normally dis-
tributed data (one-sided, Supplementary Figure S10B, D;
two-sided, Figure 5C). For independent, non-normally dis-
tributed data, the Mann–Whitney U-test was applied (two-
sided: Figure 6E, F; Supplementary Figures S9E and S11A,
B). For dependent non-normally distributed (paired) data,
the Wilcoxon signed-rank test was applied (one-sided, Fig-
ure 4D; Supplementary Figure S8E; two-sided, Supplemen-
tary Figure S12B). Additionally, exact and approximated

randomization trials were used in select cases (one-sided,
Figures 2A–C, 3C, G, H and 5B; Supplementary Figures
S5B, S6C and S8D; two-sided, Figure 1C; Supplementary
Figures S1 and S8A, B), whereby the results of one-sided
simulations were reported as percentile ranks instead of P-
values. Normality was evaluated using SciPy’s normal test,
where applicable (63).

RESULTS

CLIP experiments detect widespread autogenous mRNA–
protein interactions

We first present an overview of the total number of auto-
genous mRNA–protein interactions as detected by CLIP
and grouped by species (Figure 1A), CLIP method/peak-
caller combination (Figure 1B) or gene function (Figure
1C). Remarkably, the frequency of autogenous interactions
among the studied RBPs is extremely high and fairly con-
sistent across different species, ranging from 137/216 (63%)
in human to 45/64 (70%) in yeast and to 37/44 (84%) in
mouse, with a combined frequency of 230/341 (67%) over
all species studied (Figure 1A). These relative frequencies
remain largely unchanged if one focuses on CLIP exper-
iments performed with RBPs present at endogenous lev-
els only, with a combined frequency of autogenous inter-
actions of 186/292 (64%) in that case (Figure 1A). To avoid
potential artifacts due to unnaturally high concentrations
of the two partners caused by overexpression, we manu-
ally filtered the 1499 datasets used in POSTAR3: all anal-
yses starting with Figure 2 onwards include CLIP experi-
ments involving endogenous expression only (see Supple-
mentary Dataset S1), if not stated otherwise. Notably, the
fraction of autogenously binding RBPs with at least one
binding peak in introns of their own reference MANE
transcripts is 56/103 (54%, Figure 1A), suggesting that
autogenous binding often takes place at the pre-mRNA
stage.

In general, different CLIP method/peak-caller combina-
tions differ in sensitivity (some have significantly more, and
some significantly fewer peaks), but are generally qualita-
tively consistent in assigning peaks to locations. We have
analyzed the overlap in peaks obtained by different ap-
proaches using the Jaccard index (the ratio of the inter-
section and the union of the two sets of peaks) as com-
pared with the overlap expected at random. Reassuringly,
different compared method/peak-caller combinations ex-
hibit Jaccard indices that are anywhere between 1.2 and 44
times greater than expected at random (Supplementary Fig-
ure S1). Having said this, the agreement between methods
is still far from perfect, due primarily to the methodological
differences (e.g. in cross-linking, RNA–protein complex pu-
rification or adapter ligation/circularization) and intrinsic
imprecision. Thus, for all subsequent analyses, CLIP data
were analyzed separately for each of the four most com-
monly used CLIP methods (iCLIP (44), HITS-CLIP (43),
PAR-CLIP (45) and eCLIP (46)). The methods were addi-
tionally partitioned according to the peak callers used, as
this choice also greatly affects the nature of the detected in-
teractions. For internal consistency, we restrict some of our
analyses to eCLIP data as the largest collection of CLIP re-
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Figure 1. Widespread autogenous mRNA–protein binding detected by CLIP. (A) The number of unique RBPs that interact with their own mRNAs
(dark-blue/dark-orange bars) as compared with the total number of RBPs analyzed in different species (totals also given on top of bars). Color code:
dark-orange/light-orange bars, all experiments; dark-blue/light-blue bars, endogenous expression only. (B) Incidences of autogenous binding as detected
by different CLIP method/peak-caller combinations: the area of the circles is proportional to the number of RBPs included (inner circles, autogenous
binders; outer circles, all RBPs). (C) GO analysis of eCLIP RBPs (N = 150) with red areas indicating the fold enrichment in select GO categories against
the human proteome as the background, with the corresponding FDR (false discovery rate) values given on the left. Dark-blue bars (auto-binding) and
light-blue bars (non auto-binding) indicate the number of RBPs that fall in the respective GO categories, with the percentage indicating the proportion of
autogenous binders and the P-values capturing the difference from the base value of 47% as evaluated by randomization trials. See also Supplementary
Table S1 and Supplementary Figure S2.

sults obtained within the same framework. In Figure 1B, we
visualize the incidence of autogenous interactions in human
as detected by different CLIP method/peak-caller combi-
nations. Depending on a particular combination analyzed,
between 39% (HITS-CLIP/CIMS) and 95% (iCLIP/Pir) of
the RBPs studied have been detected to bind their own mR-
NAs (Figure 1B). An equivalent method-resolved overview
after filtering out overexpressed RBPs is given in Supple-
mentary Table S1, while an RBP-resolved table is given in
Supplementary Dataset S2. Furthermore, while in iCLIP
and PAR-CLIP autogenous interactions are seen for ∼75%
or more of RBPs regardless of the peak caller used, in
HITS-CLIP the frequency of the observed autogenous in-
teractions changes from 39% to 64% if instead of CIMS one
uses Pir. Clearly, the variance in the frequency of autoge-
nous interactions detected by different approaches is partly
due to the distinct sets of RBPs studied, but also reflects
the intrinsic differences between approaches, as further dis-
cussed below.

In order to analyze a potential connection between auto-
genous binding and biological function, we have performed
a Gene Ontology (GO) analysis for a set of 150 RBPs stud-
ied by eCLIP/CLI in HepG2 and K562 human cell lines.
Based on the GO enrichment analysis (64) of these RBPs
and using the human genome as the background, we have
first selected the 11 most meaningful non-redundant, highly
enriched GO categories (Figure 1C, red bars), capturing the
general functions of RBPs in the eCLIP set. We have then
asked whether autogenous binders in the set exhibit any
functional preferences as compared with the full set: the an-
swer is by and large negative. Specifically, the 70 autogenous
binders do not significantly deviate from the background of
all 150 RBPs studied by eCLIP for 10 out of 11 analyzed GO
categories (two-sided P-values >0.1 as obtained using tri-
als of randomized same-sized groups without replacement,
Figure 1C). The only GO category with a significant enrich-
ment (two-sided P-value = 0.02), which in turn corresponds

to the highest frequency of autogenous binding (87.5%), is
‘negative regulation of mRNA catabolic processes’, a set of
functions related to promoting mRNA stability. Also, there
is no significant connection between autogenous binding
and RBP localization in the eCLIP set (Supplementary Fig-
ure S2).

Own mRNAs are enriched among high-confidence binders of
RBPs

For each autogenously interacting RBP, we have ranked all
of its interacting mRNAs according to either peak densi-
ties or the highest CLIP peak scores. Our results show that
the respective own mRNAs feature heavily among the top-
ranked targets. For example, hnRNPA1’s mRNA outper-
forms 99.7% of other mRNAs that bind hnRNPA1 (per-
centile rank of 99.7), as detected by iCLIP/Pir, in terms of
peak density (Figure 2A; inset) or 99.4% (percentile rank of
99.4) in terms of the highest peak score (not shown). Such
extreme values are also seen for other RBPs in iCLIP/Pir,
where the median percentile rank of own mRNAs is 96.7
according to peak densities (Figure 2A, B) or 96.1 accord-
ing to peak scores (Figure 2C). In fact, >50% of own mR-
NAs detected in iCLIP/Pir belong to their respective RBPs’
top 4% of targets in both the peak density and the highest
peak score. Similar results are consistently seen for different
CLIP methods, with the autogenous interactions being sig-
nificantly enriched among high-confidence targets, in terms
of both peak density (Figure 2B) and the highest peak score
(Figure 2C). Finally, we have analyzed all RBPs that were
studied by multiple CLIP methods and could show that au-
togenous binding is captured with high consistency. For ex-
ample, in 42 of 44 (= 95.5%) cases in which two different
CLIP methods were applied to study the same RBP, at least
one of the two gave support for autogenous binding (Figure
2D).
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Figure 2. High-confidence detection of autogenous binding. (A) Inset: distribution of peak densities on MANE transcripts bound by hnRNPA1 with
hnRNPA1’s own mRNA (percentile rank of 99.7) indicated with an asterisk. Main: histogram of percentile ranks (%R) of peak densities of own mRNAs
for all 17 autogenously binding RBPs in iCLIP/Pir. (B) Overview of autogenous mRNA percentile ranks of peak densities for different method/peak-caller
combinations. (C) Overview of autogenous mRNA percentile ranks of peak scores for different method/peak-caller combinations. (D) Interaction support
index (ISI), defined as the number of method/peak-caller combinations supporting a given mRNA–protein interaction, for all RBPs that were studied by
at least two methods. Autogenous mRNAs (yellow) are evaluated for interaction with their own protein in all pairwise method combinations and compared
with the average over all mRNAs (blue); in only 2 of 44 combinations (4.5%) was no support for the autogenous interaction found.

Autogenous interactions are significantly enriched over ran-
domized backgrounds

The studied RBPs and their own mRNAs exhibit a wide
range in the number of binding partners, as illustrated
in Figure 3 for iCLIP/Pir (see Supplementary Figures S3
and S4 for all other methods). Specifically, the number
of interacting mRNA partners among the RBPs studied
by iCLIP/Pir ranges between 49 for EZH2 and 8794 for
U2AF2 (Figure 3A), while the number of interacting part-
ners for each of their own mRNAs, from among the 25
RBPs studied, ranges between 5 for IMP3 and 20 for hn-
RNPH1 (Figure 3B). Clearly, if a given RBP interacts with
many mRNAs and, simultaneously, its own mRNA inter-
acts with many RBPs, a detected interaction between the
two would not be highly significant. Hence, a proper assess-
ment of background probabilities of autogenous interac-
tions needs to account for the number of partners of each in-
dividual molecule in relation to the total number of possible
partners. In the spirit of the classical protein-centric view of
RNA–protein interactions in which specificity is attributed
to protein RNA-binding motifs (RBMs), we have first es-
timated the expected background frequency of autogenous
binding from the numbers of mRNAs bound by individual
RBPs, normalized by the total number of mRNAs (protein-
centric framework, Figure 3C). The results are striking:
while on average only 5 out of 25 iCLIP/Pir RBPs are ex-
pected to bind their own mRNAs, the observed number is

19 (Figure 3C). Similarly, in all eight method/peak-caller
combinations studied, the number of the observed autoge-
nous binders is ∼3 or more times higher than the number
expected at random, resulting in P-values of the order of
≤10–7 (Figure 3C).

We next examined whether the pronounced statistical sig-
nificance of autogenous interactions in the protein-centric
framework is retained for more stringent definitions of
mRNA–RBP interactions. Specifically, we have ranked
the mRNA–RBP interactions in each method/peak-caller
combination according to their full MANE transcript peak
densities and then included in our workflow different frac-
tions of interactions with the highest densities only, ranging
from the upper 90% (i.e. percentile rank of 10) to the upper
10% (percentile rank of 90) in steps of 10%. This has allowed
us to assess the enrichment of autogenous interactions for
targets detected with successively higher confidence. Re-
markably, in every method/peak-caller combination stud-
ied, there is a pronounced increase in the enrichment of
autogenous interactions with increasing stringency (Figure
3D). For example, at the 90th percentile peak density cut-
off, autogenous interactions are enriched >30-fold over the
background in HITS-CLIP/Pir, HITS-CLIP/CIMS and
iCLIP/Pir (Figure 3D), which is 5-10 times more as com-
pared with no stringency filtering. Similar results are ob-
tained if data are filtered according to the highest peak
scores as well (data not shown).
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Figure 3. Significant enrichment of autogenous interactions. (A) Histogram of the number of binding targets (mRNAs) for the 25 RBPs studied by
iCLIP/Pir. (B) Histogram of the number of bound RBPs for each of the 25 autogenous mRNAs of the RBPs studied by iCLIP/Pir. (C) Comparison
between the observed (yellow dots) and the expected number (blue bars) of autogenously binding RBPs as calculated within the protein-centric framework
(see the Materials and Methods for details). The P-values given were extrapolated from standard deviations derived from randomization trials (indicated
as error bars). (D) The ratio of the observed and expected number of autogenously interacting pairs (colored symbols), where the expected number is
calculated within the protein-centric framework as an enrichment over the background (black symbols) consisting of an assumed set of 20 000 human
genes. Additionally, data were filtered with an increasing stringency from 0 to 90 percentiles, i.e. including only a given fraction of top targets as evalu-
ated according to peak density. (E) Shuffling of binary RNA–protein interaction matrices without altering row and column totals as implemented in the
Curveball algorithm (61). (F) Convergence of autogenous binding probabilities of five selected genes as a function of the number of fully randomized
matrices. (G) Probability distribution of the expected number of autogenously binding RBPs in iCLIP/Pir generated by randomization using Curveball
matrix shuffling-derived independent probabilities for each autogenous pair (symmetric framework). The observed number is indicated with a yellow ar-
row. (H) Comparison between the number of observed autogenous interactions (yellow dots) and the distribution of the expected numbers as obtained
by randomization within the symmetric framework for different method/peak-caller combinations, with the RBP number and the percentile ranks of the
autogenous values indicated above. (I) Same as (D), but with the expected number of binders calculated instead within the symmetric framework via matrix
shuffling. The background represents all (autogenous + non-autogenous) interactions. See also Supplementary Figures S3, S4, S5, S6 and S8C, D.
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The above protein-centric analysis is indicated by the
very nature of the CLIP data, which provide transcriptome-
wide information on all or most of the mRNA interac-
tors from the perspective of a given RBP and only incom-
plete information on the RBP interactors from the perspec-
tive of a given mRNA. However, the assumption that all
mRNAs have an equal chance of being bound is clearly
an oversimplification as different mRNA features, includ-
ing size, composition, compactness or concentration, af-
fect this chance. Thus, it may be informative to also in-
clude the number of RBPs bound by individual mRNAs in
the evaluation of background probabilities of autogenous
interactions (symmetric framework). We have carried this
out by randomizing binary mRNA–RBP interaction matri-
ces using Curveball (61), a Markov chain Monte Carlo al-
gorithm for sampling fixed-margin, binary interaction ma-
trices for each method/peak-caller combination separately,
as shown in Figure 3E. It was found that sufficient con-
vergence is reached by generating 1000 randomized ma-
trices, giving stable frequencies of occurrence for individ-
ual mRNA–protein pairs as illustrated in Figure 3F for
several representative examples studied by iCLIP/Pir. The
background probabilities of individual autogenous inter-
actions were then used in 106 randomization trials to de-
rive background probability distributions for observing a
given total number of autogenous binding events for each
method/peak-caller combination separately, as shown in
Figure 3G for iCLIP/Pir. Importantly, the number of ob-
served autogenous interactions in iCLIP/Pir is >2 standard
deviations (SDs) higher than the expected value obtained in
this way, corresponding to a percentile rank of 98.8 as deter-
mined by randomization. In Figure 3H, we summarize the
results of the equivalent analysis for all method/peak-caller
combinations studied: in all cases, the total number of ob-
served autogenous interactions is significantly greater than
what is expected at random, with percentile ranks exceed-
ing 90 in seven out of eight cases. To account for differences
in gene expression patterns between different cell lines, the
same analysis was repeated for each method/peak-caller–
cell line combination with ≥10 RBPs studied, with similar
results (Supplementary Figure S5).

We have also studied the statistical significance of autoge-
nous interactions for more stringent definitions of mRNA–
RBP interactions in the symmetric framework as well (Fig-
ure 3I). Again, there is a strong increase in the enrichment
of autogenous interactions with increasing stringency: for
example, at the 90th percentile peak density cut-off, auto-
genous interactions are enriched >3.5-fold in eCLIP/CLI,
HITS-CLIP/CIMS and PAR-CLIP/Pir (Figure 3I), with
similar results seen if one filters according to the highest
peak scores (data not shown). Finally, by controlling for
overexpression, we could also show that autogenous inter-
actions are significantly enriched even in the case of PAR-
CLIP experiments, with percentile ranks >94 regardless of
the peak caller used (Supplementary Figure S6).

Autogenous interactions occur preferentially in the mRNA
CDS

We next analyzed the location of CLIP peaks in detected
instances of autogenous binding, with a focus on interac-

tions in CDS regions relative to other genomic contexts (5’
or 3’ UTRs). Here, genomic contexts were defined in ac-
cordance with the genomic locations of MANE transcripts
(see the Materials and Methods and the extended discus-
sion in Supplementary data for details). To ensure that the
mRNA binding is accurately represented, we have analyzed
only those method/peak-caller combinations which include
≥10 autogenously binding proteins. In absolute terms, 67–
93% of RBPs bind their autogenous targets with at least
one cross-link peak in the CDS (Figure 4A). Moreover, as
the probability of binding in the CDS strongly depends on
the overall cross-linking probability of a given transcript, it
should be evaluated in relation to other regions of the same
transcript. Remarkably, for most method/peak-caller com-
binations, interactions of an mRNA with its own RBP ex-
hibit higher relative peak densities in the CDS as compared
with UTRs than do its interactions with non-autogenous
RBPs. We illustrate this for YTH domain-containing pro-
tein (YTHDC1), a known m6A reader and regulator of
3′ UTR length and polyadenylation (65). Specifically, in
Figure 4B we show the distribution of autogenous and
non-autogenous iCLIP peaks along YTHDC1’s mRNA,
whereby peaks from non-autogenous RBPs are stacked in
a manner that attributes equal areas per RBP. Clearly, the
YTHDC1 protein exhibits both a higher number (top strip)
and a higher length-normalized density of peaks (bottom
strip) in the CDS relative to the UTRs of the YTHDC1
mRNA as compared with other non-autogenous protein
partners with which this mRNA interacts. In Supplemen-
tary Figure S7, we present the same analysis for all instances
of autogenous binding that have been detected by at least
two different method/peak-caller combinations. In Figure
4C, we quantify the length-normalized ratios of peaks in
the three genomic contexts (5′ UTR, CDS and 3′ UTR) for
the interaction of YTHDC1 mRNA with the autogenous
RBP, next to the peak density ratios on the same mRNAs
bound by other, non-autogenous RBPs. Remarkably, while
it is known that YTHDC1 usually binds mRNAs mostly
in the 3′ UTR, it shows a completely different binding be-
havior towards its own transcript, with only 13.5% relative
binding in the 3′ UTR, favoring the CDS instead (65.1%).
In contrast, other RBPs bind the same YTHDC1 transcript
only 25.4% in the CDS. The same preference for CDS over
UTR binding in the case of autogenous interactions holds
for all methods, with varying levels of statistical significance
(Figure 4D, red bars). The largest difference is observed
in PAR-CLIP/Pir, with P = 0.002 (one-sided, Wilcoxon
signed-rank). Interestingly, in eCLIP (Figure 4D), which
shows the smallest difference between autogenous and non-
autogenous interactions, RBPs still bind their own mRNAs
to 49.4% in the CDS (normalized by length), signifying an
enrichment of CDS binding as compared with the default
expectation (33.3%). Clearly, in eCLIP, both autogenous
and non-autogenous interactions are enriched in CDS bind-
ing.

Translational proximity does not explain autogenous binding

mRNAs and the proteins they encode reside close to each
other during translation at the ribosome. If translational
proximity were the main cause of autogenous binding, in-
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Figure 4. Preferential occurrence of autogenous interactions in CDS regions. (A) Fraction of CDS-binding proteins among autogenously binding RBPs
in different method/peak-caller combinations. (B) Actual (top) and length-normalized (bottom) distribution of YTHDC1’s cross-link peaks in its own
mRNA (a) as compared with peaks in the same mRNA when binding to other RBPs (n; stacked). (C) Length-normalized probability of finding cross-link
peaks in YTHDC1 mRNA in the three genomic contexts for the YTHDC1 protein it encodes (left) and all other RBPs with which it interacts (average
values, right). (D) The average length-normalized probability of finding cross-link peaks in different genomic contexts over each method/peak-caller
combination’s autogenously binding RBPs. The P-value refers to the one-sided paired t-test for the comparison of CDS values (red bars), indicating
enriched CDS binding in autogenous mRNA–RBP combinations. Error bars refer to the standard error of the mean. The color scheme is the same as in
(B). See also Supplementary Figures S3, S4, S5, S6 and S8E.

hibition of translation should lead to a marked decrease in
the frequency of such binding. In two cases in our dataset
(DDX3X (66) and UPF1 (67)), CLIP experiments were
performed with prior application of translation-inhibiting
drugs (arsenite or puromycin). Importantly, binding of
these two proteins to their respective own mRNAs is not af-
fected by the application of translation inhibitors, as quan-
tified on either an absolute (peak density) or a relative
scale (percentile rank) (Figure 5A). For example, DDX3X
mRNA ranks in the top 2–4% according to peak density
of all DDX3X targets in both arsenite translation-inhibited
and control conditions. Similarly, the ranking of UPF1
mRNA in puromycin translation-inhibited conditions ac-
cording to peak density (51.4%) does not deviate signifi-
cantly from its average ranking under control conditions
(63.3%).

Furthermore, we have also analyzed the RBP binding
in intronic (pre-mRNA) regions, which cannot be affected
by translational proximity as mRNAs are subject to splic-
ing before being exported to the cytosol. In Figure 5B, for
different method/peak-caller combinations, we show each
RBP’s intron peak density with its own (pre-)mRNA, given
as a z-score relative to the distribution of peak densities
with other mRNA targets bound with similar peak densi-
ties in UTRs (±10%) or relative to the 20 closest mRNAs
instead. At random, these z-scores are expected to be 0,
while under the hypothesis that own transcript’s UTRs are

bound due to translational proximity and the RBP and its
mRNA otherwise do not interact, reduced binding in in-
trons would be expected (negative z-scores). However, in-
creased normalized intron peak densities are observed in all
cases, which cannot be explained by a mechanism in which
autogenous binding is due to translational proximity only
(Figure 5B).

Autogenous binding and RNA-binding motifs/domains

To investigate the extent to which autogenous binding can
be explained by an increased presence of known RBP-
binding motifs in the respective own mRNAs, we have ana-
lyzed all available RNAcompete (68) binding motifs from
the ATtRACT database (69), covering motifs for 26 out
of the 150 eCLIP RBPs. In general, we observe an in-
creased motif coverage in mRNAs bound by RBPs, relative
to the transcriptome background (Figure 5C). Importantly,
RBPs’ own mRNAs are on average enriched in RNA-
compete motifs (2.0-fold for autogenously-binding, yel-
low line; 1.5-fold for non autogenously-binding, red line),
but without a statistically significant difference between
autogenously-binding and non autogenously-binding mR-
NAs (P = 0.25, two-sided t-test). This suggests that auto-
genous binding cannot be fully explained by motif cover-
age and leaves room for additional, so far uncharacterized
mechanisms. Alternatlively, the selection of these sequence
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Figure 5. Analysis of translational proximity and motif coverage. (A) Au-
togenous binding in DDX3X and UPF1 in the presence of translation-
inhibiting drugs (arsenite or puromycin) as compared with controls on ei-
ther an absolute (peak density, yellow dots) or a relative scale (percentile
rank). (B) Intron-binding analysis for different peak caller–method combi-
nations, where each RBP’s intron peak density with its own (pre-)mRNA
is given as a z-score (gray dots) relative to mRNAs bound with similar
peak densities in UTRs (±10%) or relative to the 20 closest mRNAs in-
stead. The average z-score is expected to be 0 for the mean of the refer-
ences (black lines) or, under the hypothesis that the UTRs of own mRNAs
were bound due to translational proximity, negative for own mRNA’s in-
trons (red lines). According to the one-sided P-value, the null hypothesis
(not lower) cannot be rejected. (C) Contribution of RBMs (RNAcompete)
to binding in eCLIP. Nucleotide sequences of bound RNAs (black dots)
show an increased motif coverage relative to the transcriptome. There is
no significant difference between autogenously-binding (yellow line) and
non autogenously-binding (red line) mRNAs (P = 0.25, two-sided t-test).
Error bars indicate ±SD.

motifs may simply not adequately reflect the binding pro-
files of RBPs in the cellular environment.

We have furthermore examined a possible connection be-
tween the presence of RNA-binding domains (RBDs) in
RBPs and autogenous binding. First, we have identified
common PFAM (70) RBDs that are present in ≥10 stud-
ied RBPs: these include RRM 1, KH 1, Helicase C and
DEAD domains in eCLIP, and RRM 1 in both iCLIP and
HITS-CLIP (Supplementary Datasets S3 and S4). Interest-
ingly, the frequency of autogenous binding among RBPs
containing at least one of these RBDs is not significantly
different from the overall frequency among all RBPs (Sup-
plementary Figure S8A). Moreover, the same pattern is
seen if one analyzes all RBDs together, except in the case
of eCLIP (Supplementary Figure S8B). Importantly, both
proteins with and without RBDs show increased speci-
ficity toward own mRNAs, i.e. an ∼3- to 5-fold enrich-
ment of autogenous binding, as compared with what is ex-
pected at random in the protein-centric framework (Supple-
mentary Figure S8C). Similarly, both groups are also en-
riched in autogenous binding as compared with the sym-
metric, Curveball-based background, especially the RBD-
containing group (percentile ranks >99 for PAR-CLIP and
eCLIP) (Supplementary Figure S8D). While the latter sug-
gests that transcripts could have evolutionarily acquired
RBD-specific motif sequences in favor of autogenous feed-
back circuits, the null hypothesis would predict an increased
occurrence of such acquisitions within UTRs, due to the
high informational burden in CDS regions. It is striking that
one not only detects an enrichment of autogenous bind-
ing within CDS regions for RBD-possessing RBPs, but that
this CDS preference is actually more significant for the said
group (Supplementary Figure S8E). We see this as an incen-
tive to further explore the possibility of RBDs binding their
own CDS regions in future work.

Autogenous binding and mRNA–protein complementarity
hypothesis

The widespread detection of autogenous binding with a
preference for the mRNA CDS (Figure 4) can be rational-
ized within the context of the complementarity hypothesis
(30–32) using a simple model of binding between unstruc-
tured mRNAs and RBPs in which the two polymers bind
in a co-aligned fashion following the intrinsic nucleobase–
amino acid binding preferences. Indeed, eCLIP RBPs ex-
hibit a high potential for binding precisely in the CDS re-
gions of their own mRNAs. This is illustrated in Figure 6A,
where the PYR-mimetic affinity profile of protein WDR43,
as captured by Woese’s polar requirement scale (38), is over-
laid with the PYR-density profile of its own mRNA CDS
and the two exhibit close matching (R = –0.83). To sys-
tematically probe the matching at different mRNA sites, the
protein profile was shifted one nucleotide at a time over all
possible alignment positions from the 5′ to the 3′ terminus.
Significantly, WDR43’s CDS exhibits a stronger matching,
as captured by Pearson R, than any other region in the same
mRNA. A similar situation is seen for the great majority of
the 149 RBPs in the eCLIP set, with an average Pearson’s R
of –0.67 and a median rank for the CDS alignment over all
possible alignments of 2 (Figure 6B; red histogram). Mean-



9994 Nucleic Acids Research, 2022, Vol. 50, No. 17

A B C

D E F

Figure 6. Complementarity between RBPs and own mRNA CDS regions. (A) Overlay of the WDR43 protein’s PYR-mimetic affinity (PYR*-affinity (38))
profile with the PYR-density profile of its own mRNA CDS region (R = –0.83), shown as moving averages obtained using a window size of 63 nucleotides.
(B) Histogram of Pearson R values (red) for the comparison of protein PYR-affinity profiles and the autogenous mRNA CDS PYR-density profiles for
all of eCLIPs RBPs (N = 149). The histogram of the corresponding R-values for all other possible profile alignments of the same 149 RBPs is shown in
blue, while the distribution of Pearson Rs of profile correlations of the same 149 RBPs against randomized mRNA sequences is shown with a black solid
line. Vertical dashed lines refer to means of histograms. P*, relative probability, re-scaled for different bin sizes. (C) Illustration of sequence alignment
between a peptide and its own mRNA in a 1 amino acid:3 nt ratio. The resulting statistical binding free-energy proxy (‘Estat’) is calculated as the sum
of individual knowledge-based nucleobase–amino acid interaction energies (31). (D) Distribution of binding energies between protein WDR43 and its
MANE transcript as estimated by the linearly additive model at all possible alignment positions. Of 3383 alignment positions, the CDS region (red arrow)
results in the most negative energy, followed by positions close to the CDS, shifted by 1–2 nt (blue and green crosses). As compared with alignments
with randomized mRNAs, that in the CDS exhibits a z-score of –10.8 (P = 2 × 10–27). (E) Overview of autogenous mRNA–protein alignments, where
the resulting energies are represented as z-scores relative to alignments of the same peptides against randomized transcriptomic sequences (dark gray).
Blue, z-scores of CDS/protein alignments of eCLIP RBPs that do not bind their own CDS (N = 112); yellow, z-scores of CDS/protein alignments of
eCLIP RBPs that do bind their own CDS (N = 37); gray, genome-wide z-scores of CDS/protein alignments. Inset: visualization of the difference between
CDS binders and non-CDS binders with the two-sided P-value annotated (U-test); data are represented as the mean ±SEM. (F) Distributions of Estat of
autogenously binding RBPs and their own mRNAs (red), shown as the z-score obtained by comparing with the distribution of alignment energies of the
same RBP sequences against the respective non-bound mRNAs (blue) in different species. See the Materials and Methods for further details. Sample size
(N) refers to the number of RBPs studied. See also Supplementary Figures S9 and S11.

while, aligning the same RBP profiles with own mRNA pro-
files at positions that do not perfectly co-align with the CDS
(>2 nt shifted) results in significantly weaker binding po-
tential, with an average R close to 0 (Figure 6B; blue his-
togram). Finally, the same lack of profile matching is seen in
the background set comprising random mRNA sequences
derived using transcriptomic trinucleotide frequencies (Fig-
ure 6B; black distribution).

The relative interaction affinity between unstructured
mRNAs and proteins can be estimated as the sum of in-
dividual affinities of all the nucleobases and amino acids
involved after aligning the two polymers with each other
(Figure 6C). We use for this purpose the knowledge-based
nucleobase–amino acid affinity scales, which were derived
from high-resolution structures of RNA–protein complexes
using a statistical potential formalism (31). It should be
noted that these affinities may differ from the analogous
preferences in the unstructured context. Remarkably, how-
ever, out of 1476 possible alignment positions for WDR43,
the one with its mRNA CDS, whereby all amino acids align
with their respective codons, results in by far the most neg-

ative interaction energy Estat, standing nearly 10 SDs away
from the mean value obtained for randomized sequences (z-
score –10.8, P = 2 × 10–27) (Figure 6D). Moreover, even a
1–2 nt shift away from the alignment dictated by the cod-
ing relationship results in a significant drop in the predicted
binding strength (Figure 6D). A similar situation holds for
the autogenous mRNA–protein alignments of the majority
of the 149 eCLIP RBP annotated human genes (Figure 6E).
Importantly, the above model allows one to differentiate the
autogenously binding RBPs from those which do not bind
their mRNAs in eCLIP. Namely, the average predicted CDS
binding energy for the former set, expressed as a z-score in
relation to randomized sequences of the same length, is sig-
nificantly lower than that for the latter set (Figure 6E, P-
value = 0.0002, two-sided U-test). Similar results are also
obtained using a scale of amino acid affinities for pyrim-
idine mimetic dimethylpyridine, as derived independently
by Mathew and Luthey-Schulten (71) (Supplementary
Figure S9).

It is highly unlikely that an mRNA and the RBP it en-
codes interact over their entire lengths, even if fully un-
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folded, as posited by the above linearly additive model. We
have analyzed how long co-aligned fragments of mRNA
and proteins need to be for our model to successfully differ-
entiate between autogenous and non-autogenous binding
based on Estat alignment energies. Even at fragment lengths
as short as a few amino acids/codons, our model predicts a
strong preference for autogenous interactions as compared
with randomized backgrounds, especially for RBPs that are
known to bind their own mRNAs from CLIP experiments
(Supplementary Figure S10). Moreover, we could previ-
ously show that the relationship between sequence features
of autogenous mRNA–protein pairs is also preserved on a
bulk compositional level, without any assumptions about
the specific orientation or mode of interaction (30,31,36).
This fact is demonstrated on the present set (Supplemen-
tary Figure S11A) by using the N to C with 3′ to 5′ (reverse)
as well as shuffled alignments. In both cases, the coding re-
lationship at the sequence level is lost, but the relationship
on the level of the bulk average composition remains un-
changed. Remarkably, for both of these approaches, the in-
teraction energies predicted by our model are significantly
lower in the autogenous case as compared with the ran-
domized background in which the same proteins are aligned
against random triplets at transcriptomic frequencies (P
<0.01; U-test). In other words, regardless of orientation,
proteins and their own mRNAs exhibit signatures of mu-
tual affinity, albeit the 5′ to 3′ with N to C alignment still
produces by far the most significant results.

While the complementarity hypothesis does not ex-
clude the possibility of interactions in a structured context
(30,36,72), the close matching between mRNA nucleobase
density profiles and the respective nucleobase affinity pro-
files in own proteins suggests that such interactions may
be particularly relevant in the unstructured state. To study
whether the presence of structured PFAM domains (70) af-
fects the likelihood of putative co-aligned autogenous bind-
ing, we have identified sequence fragments corresponding to
annotated PFAM domains for all RBPs that interact with
own mRNAs and mapped these sites to the equivalent CDS
positions in own mRNAs. We have then compared the bind-
ing site peak densities in these PFAM-mapped CDS regions
and the rest of the CDS (no PFAM) (Supplementary Fig-
ure S12). If one pools and analyzes all the data together,
there is no significant difference between peak densities in
PFAM and non-PFAM regions (P-value = 0.37). On the
other hand, it remains unclear to what extent binding site
peaks within PFAM CDS regions are caused by interactions
with the very same PFAM domains. We have also repeated
the analysis of predicted binding energies (Figure 6E) under
the assumption that only disordered regions of the RBPs
bind directly to their respective CDS regions (Supplemen-
tary Figure S11B). Indeed, the binding energies calculated
for these disordered regions alone are also significantly low
and allow one to unambiguously differentiate between au-
togenous and non-autogenous alignments. Lastly, in cases
where autogenous binding has been confirmed by CLIP, we
have compared the predicted affinities of RBPs for their
own mRNAs against the affinities of the same RBPs for
the unbound mRNAs in the respective genomes for which
the CLIP data were available (yeast, Caenorhabditis elegans,
Drosophila, mouse and human, Figure 6F). The predicted

binding affinities of RBPs for their own mRNAs are signifi-
cantly lower, with the P-values <0.05 across the phylogeny.

DISCUSSION

A key element of the relationship between mRNAs and the
proteins they encode is information transfer. Our present
findings suggest that for many RBPs direct interaction may
be the second fundamental element of this relationship.
From transcription to splicing, from translation to storage
and decay, autogenous binding provides a foundation for es-
tablishing powerful, functionally relevant positive and neg-
ative feedback loops. While several cases of such regulation
are already known (13), our findings place it at the heart
of RBP biology. Indeed, the present results suggest that au-
togenous feedback loops might be more widespread than
previously thought and could represent one of the most el-
ementary regulatory mechanisms in the cell. In this sense,
we see a systematic characterization of functional implica-
tions of autogenous binding in specific RBPs as an impor-
tant area for future study. Furthermore, widespread auto-
genous interactions with a preference for CDS binding sup-
port the possibility of a direct connection between coding
and binding, as proposed by the stereochemical hypothesis
of the origin of the genetic code (35,38,39) and its general-
ization to complete polymers, the complementarity hypoth-
esis (30–37). In line with this, our quantitative model based
on complementary interactions predicts widespread auto-
genous binding in CDS regions and also differentiates be-
tween the experimentally observed autogenous binders and
non-binders (Figure 6A–E). It should, however, be empha-
sized that the present findings are consistent with the com-
plementarity hypothesis, but do not prove it. Rather, we see
them as a critical foundation for probing the full limits of
the hypothesis: had it turned out that most RBPs do not
bind their own mRNAs, this would have represented a sig-
nificant step towards falsifying it. Finally, while the CLIP-
seq dataset analyzed herein allows us to make statements
about known RBPs only, we expect that similar autogenous
interactions may be seen for other proteins as well (36).

CLIP-seq is a powerful tool to study RNA–protein inter-
actions in a transcriptome-wide manner, but one has to be
aware that different CLIP protocols differ in many impor-
tant aspects including the choice of cell lines, overexpres-
sion, purification steps and digestion time or antibody qual-
ity. Importantly, these methodological factors could over-
shadow the intrinsic properties of RBPs that contribute to
mRNA binding such as concentration, structural accessibil-
ity, UV reactivity or background frequency and specificity
of its recognition motifs (42). For this reason, we took mea-
sures to emphasize internal consistency in our analysis de-
sign, e.g. by ranking/evaluating bound mRNAs from the
perspective of the same RBP (Figures 2 and 3), by com-
paring binding peak densities for the same RBP on the
same mRNA in different genomic regions (Figure 4) and
by grouping the results in consistent subsets, with identi-
cal cell lines, methods or peak callers. Most importantly, as
our data show a clear concentration dependence of mRNA–
protein interactions, we have identified exogenous overex-
pression of RBPs as the single most critical factor that
could affect comparison between different experiments or



9996 Nucleic Acids Research, 2022, Vol. 50, No. 17

even produce spurious results. We have, therefore, manu-
ally reviewed all publications behind the studied CLIP data
and excluded experiments involving overexpression from
the analysis. For all of the above reasons, we have also gen-
erally refrained from evaluating correlations over different
RBPs/experiments. An exception was made when it comes
to the correlation between autogenous binding and pro-
tein structuredness/presence of RBDs (Supplementary Fig-
ure S8A, B). Although we only used a single major CLIP
method (eCLIP) for this analysis, the results obtained in this
case could be influenced by methodological factors or pro-
tein properties other than protein structuredness.

Furthermore, the choice of the peak caller in CLIP anal-
ysis also greatly affects characterization of the binding be-
havior of RBPs. For example, protein PTBP1 is reported
in POSTAR3 to interact with 311 mRNA targets if ana-
lyzed by HITS-CLIP/CIMS and 5882 targets if analyzed
by HITS-CLIP/Pir. Notably, these differences in sensitiv-
ity extend to the detection of all interactions and not just
autogenous ones, and are also heavily impacted by the
CLIP method at hand. HITS-CLIP CIMS, for example, re-
lies on cross-link-induced mutation sites, which occur less
consistently than in iCLIP, whereby CIMS (55) relies on
cross-link-induced truncation sites instead. Pir (51), in con-
trast, evaluates sites by fitting genomically mapped read
counts, which can be implemented in all methods equally.
For these reasons, we have presented the results for different
method/peak-caller combinations separately, with Pir serv-
ing as a common denominator for comparison, where possi-
ble. Importantly, by using the Curveball algorithm (61), we
effectively account for these global sensitivity differences,
which is why the high enrichment of autogenous binders is
quite robust across different peak-calling algorithms (Fig-
ure 3H). In fact, this stability clearly illustrates the power
of our null model: an accurate default estimate of mRNA–
RBP interaction frequencies needs to account for the num-
ber of binding partners each molecule has in relation to
the number of possible partners. In CLIP-seq, this is only
partly facilitated by peak callers, which allow usage of co-
variates such as RNA concentration, provided such data
are available (46,51,53–54). Still, other factors, including
RNA composition, size, compactness or localization, could
affect the intrinsic binding probabilities from the mRNA
side. Here, we highlight the use of Markov chain Monte
Carlo algorithms, such as Curveball (61), as a powerful
tool to model null distributions of RNA–protein interac-
tions by accounting for the number of binding partners each
molecule has. Finally, when it comes to possible confound-
ing variables of biological nature, the detected autogenous
binding could be due to the co-localization on the ribosome
of RBPs and their mRNAs during translation. However, a
strong preference for CDS regions over UTRs in autoge-
nous interactions (Figure 4), an undiminished autogenous
binding in translation-inhibited CLIP experiments (Figure
5A) and an increased frequency of intronic peaks (Figure
5B) strongly suggest that translational proximity is proba-
bly not the main contributor to the observed prevalence of
autogenous binding.

While our model of mRNA–protein interactions assumes
interaction between unstructured partners, many RBPs
exhibit modular architecture consisting of several well-

characterized, folded RBDs (73,74). Similarly, well-defined
secondary and tertiary structural motifs in RNA play an
important role in protein recognition in many cases (75–78).
On the other hand, it has been shown that >50% of RBPs
do not contain any canonical RBDs (2,79) and are also
heavily intrinsically disordered (80,81). In general, RNA
binding is the most enriched function among highly disor-
dered proteins in human (36,82). In agreement with this,
the average structural disorder per residue among the 341
RBPs studied herein, as predicted by IUPred2A (83), is
43.4%. Importantly, while our results do highlight a po-
tential role for RBDs in recognizing autogenous mRNAs
of RBPs, their presence is not obligatory: both proteins
with and without RBDs exhibit an increased specificity to-
ward their own mRNAs as compared with the expectations
based on both protein-centric and symmetric backgrounds
(Supplementary Figure S8). When it comes to RNA, it has
been shown that most RBDs bind short, single-stranded
RNA stretches of ∼2–10 nt in length (84–86). Furthermore,
mRNAs in particular have on average a lower propensity
towards forming well-defined base-paired structures, espe-
cially in vivo (87). While recognition between folded part-
ners undeniably plays an important role in RNA biology,
these points suggest that our model of binding in the un-
structured state could capture a biologically relevant aspect
of mRNA–protein recognition.

Importantly, our model assumes interaction along the
complete protein sequence and the respective mRNA CDS
stretch, but such perfectly co-aligned binding is probably
never realized. Rather, interaction is expected to be dy-
namic and multivalent, with fleeting local contacts being
constantly made and broken. Indeed, our analysis indicates
that co-aligned interactions over very short stretches may be
sufficient to create a bias towards autogenous binding (Sup-
plementary Figure S10). This also may, but does not have
to include situations where both partners are partially or
fully folded (Supplementary Figure S11B), since the biases
present at the primary sequence level could still contribute
to RNA binding of even folded protein domains (36). Loop
regions could be one such site of interaction, as previously
suggested (72). This would in part also explain why there
is no significant difference in autogenous binding between
mRNA CDS positions that map to PFAM domains and
those that do not (Supplementary Figure S12B). Moreover,
there exist multiple contexts in which even folded domains
are unfolded, including during translation, degradation or
translocation, as well as upon chemical or thermal stress.
We cannot exclude the possibility that the detected auto-
genous mRNA–protein interactions took place in such or
similar contexts. Finally, the bias toward autogenous CDS
binding, as created by the intrinsic nucleobase–amino acid
preferences, could also promote the establishment of inter-
actions in own transcript’s non-CDS regions, as often seen
here.

The relationship between mRNAs and proteins they en-
code is without a doubt a cornerstone of biology at the
molecular level. The present analysis shows that RBPs bind
their own mRNAs extensively, reproducibly and statisti-
cally significantly, with extreme cross-link peak densities
and peak caller scores, and a strong preference for inter-
action in CDS regions. We hope that our work will stim-
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ulate further research to reveal the biological functions of
autogenous mRNA–protein binding in cells. Furthermore,
the present results indicate that intrinsic nucleobase–amino
acid affinities, which in turn are related to the structure of
the genetic code (30–37), are consistent with the co-aligned
binding between mRNA coding regions and the protein re-
gions they encode. As a novel statement about the funda-
mental relationship between two key types of biomolecules,
we hope that these findings will influence different areas
of biological research focusing on gene expression and be-
yond.

DATA AVAILABILITY

Deposited data

CLIPseq-data: POSTAR3 (47) http://postar.ncrnalab.org
MANE v0.93: NCBI https://ftp.ncbi.nlm.nih.gov/refseq/

MANE/
Transcript data: ENSEMBL Biomart https://m.ensembl.

org/biomart/martview/
Coding sequences: EMBL-EBI https://ftp.ebi.ac.uk/pub/

databases/reference proteomes/QfO/
RNA HPA cell line gene data: The Human Protein Atlas

(58) https://www.proteinatlas.org/about/download
RBP-binding motifs: ATtRACT (69) http://attract.cnic.

es
Reference proteomes: EMBL-EBI https://ftp.ebi.ac.uk/

pub/databases/reference proteomes/QfO/

Software and algorithms

Curveball algorithm: Strona et al. (61) https://www.nature.
com/articles/ncomms5114

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Zoya Ignatova, Graham Warren, Renee
Schroeder and all the members of the Laboratory of Molec-
ular Biophysics for useful comments and suggestions.

FUNDING

Austrian Science Fund FWF [P 30550, P 30680-B21 to
B.Z.]; VolkswagenStiftung LIFE [#98187 to B.Z.]; Na-
tional Key Research and Development Plan of China
[2016YFA0500803 to Z.L.]; National Natural Science
Foundation of China [31522030 and 31771461 to Z.L.]; Bei-
jing Advanced Innovation Center for Structural Biology to
Z.L.; and Bio-Computing Platform of China National Cen-
ter for Protein Sciences Beijing to Z.L. Funding for open
access charge: University of Vienna.
Conflict of interest statement. None declared.

REFERENCES
1. Gerstberger,S., Hafner,M. and Tuschl,T. (2014) A census of human

RNA-binding proteins. Nat. Rev. Genet., 15, 829–845.

2. Hentze,M.W., Castello,A., Schwarzl,T. and Preiss,T. (2018) A brave
new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol., 19,
327–341.

3. Mitchell,S.F. and Parker,R. (2014) Principles and properties of
eukaryotic mRNPs. Mol. Cell, 54, 547–558.

4. Rinn,J.L. and Ule,J. (2014) Oming in on RNA–protein interactions.
Genome Biol., 15, 401.

5. Beckmann,B.M., Castello,A. and Medenbach,J. (2016) The
expanding universe of ribonucleoproteins: of novel RNA-binding
proteins and unconventional interactions. Pflügers Arch., 468,
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Hammarskjöld,M.-L. (2006) An intron with a constitutive transport
element is retained in a Tap messenger RNA. Nature, 443, 234–237.

21. Tai,N. (2004) Translational autoregulation of thymidylate synthase
and dihydrofolate reductase. Front. Biosci., 9, 2521–2526.

22. Proctor,A.R. and Crawford,I.P. (1975) Autogenous regulation of the
inducible tryptophan synthase of Pseudomonas putida. Proc. Natl
Acad. Sci. USA, 72, 1249–1253.

23. Moschall,R., Gaik,M. and Medenbach,J. (2017) Promiscuity in
post-transcriptional control of gene expression: Drosophila sex-lethal
and its regulatory partnerships. FEBS Lett., 591, 1471–1488.

24. Tan,L., Chang,J.S., Costa,A. and Schedl,P. (2001) An autoregulatory
feedback loop directs the localized expression of the Drosophila
CPEB protein orb in the developing oocyte. Development, 128,
1159–1169.

http://postar.ncrnalab.org
https://ftp.ncbi.nlm.nih.gov/refseq/MANE/
https://m.ensembl.org/biomart/martview/
https://ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/
https://www.proteinatlas.org/about/download
http://attract.cnic.es
https://ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/
https://www.nature.com/articles/ncomms5114
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac756#supplementary-data
https://doi.org/10.1128/microbiolspec.RWR-0006-2017


9998 Nucleic Acids Research, 2022, Vol. 50, No. 17

25. Arumugam,K., MacNicol,M.C. and MacNicol,A.M. (2012)
Autoregulation of musashi1 mRNA translation during Xenopus
oocyte maturation. Mol. Reprod. Dev., 79, 553–563.

26. Dai,W., Zhang,G. and Makeyev,E.V. (2012) RNA-binding protein
HuR autoregulates its expression by promoting alternative
polyadenylation site usage. Nucleic Acids Res., 40, 787–800.

27. Yi,J., Chang,N., Liu,X., Guo,G., Xue,L., Tong,T., Gorospe,M. and
Wang,W. (2010) Reduced nuclear export of HuR mRNA by HuR is
linked to the loss of HuR in replicative senescence. Nucleic Acids Res.,
38, 1547–1558.

28. Zanzoni,A., Marchese,D., Agostini,F., Bolognesi,B., Cirillo,D.,
Botta-Orfila,M., Livi,C.M., Rodriguez-Mulero,S. and Tartaglia,G.G.
(2013) Principles of self-organization in biological pathways: a
hypothesis on the autogenous association of alpha-synuclein. Nucleic
Acids Res, 41, 9987–9998.

29. Cirillo,D., Agostini,F., Klus,P., Marchese,D., Rodriguez,S.,
Bolognesi,B. and Tartaglia,G.G. (2013) Neurodegenerative diseases:
quantitative predictions of protein–RNA interactions. RNA, 19,
129–140.

30. Hlevnjak,M., Polyansky,A.A. and Zagrovic,B. (2012) Sequence
signatures of direct complementarity between mRNAs and cognate
proteins on multiple levels. Nucleic Acids Res., 40, 8874–8882.

31. Polyansky,A.A. and Zagrovic,B. (2013) Evidence of direct
complementary interactions between messenger RNAs and their
cognate proteins. Nucleic Acids Res., 41, 8434–8443.

32. Polyansky,A.A., Hlevnjak,M. and Zagrovic,B. (2014) Proteome-wide
analysis reveals clues of complementary interactions between
mRNAs and their cognate proteins as the physicochemical
foundation of the genetic code. RNA Biol., 10, 1248–1254.

33. de Ruiter,A. and Zagrovic,B. (2015) Absolute binding-free energies
between standard RNA/DNA nucleobases and amino-acid sidechain
analogs in different environments. Nucleic Acids Res., 43, 708–718.

34. Bartonek,L. and Zagrovic,B. (2017) mRNA/protein sequence
complementarity and its determinants: The impact of affinity scales.
PLoS Comput. Biol., 13, e1005648.

35. Koonin,E.V. and Novozhilov,A.S. (2017) Origin and evolution of the
universal genetic code. Annu. Rev. Genet., 51, 45–62.

36. Zagrovic,B., Bartonek,L. and Polyansky,A.A. (2018) RNA–protein
interactions in an unstructured context. FEBS Lett., 592, 2901–2916.

37. Boots,J.L., von Pelchrzim,F., Weiss,A., Zimmermann,B.,
Friesacher,T., Radtke,M., Żywicki,M., Chen,D.,
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