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Abstract: Breast cancer is the most frequently diagnosed cancer in women worldwide.
The antiproliferative activities of biochanin A (BA) and ginsenoside Rh2 were determined by evaluating
their inhibitory effect on MDA-MB-231 human breast cancer cell proliferation. The combination of BA
with Rh2 was also assessed. In MDA cells, combination treatment led to a decrease in the EC50 values
of BA and Rh2 to 25.20 µM and 22.75 µM, respectively. In MCF-7 cells, the EC50 values of combined
BA and Rh2 decreased to 27.68 µM and 25.41 µM, respectively. BA combined with Rh2 also improved
the inhibition of MDA-MB-231 and MCF-7 cell migration and invasion compared to the individual
compounds. Western blot analysis demonstrated upregulation in p-p53, p-p38, and p-ASK1 proteins
while levels of TRAF2 were downregulated. These results suggest that BA combined with Rh2 exhibits
synergistic effects against MDA-MB-231 and MCF-7 cell proliferation.
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1. Introduction

Today, breast cancer is the second leading cause of mortality in women worldwide. More than
two hundred thousand new breast cancer cases were diagnosed in the United States in 2016 according
to epidemiology, surveillance, and the end result program seer.cancer.gov [1]. Triple negative breast
cancer is characterized by tumors that are human epidermal growth factor receptor 2-negative,
progesterone receptor-negative, and estrogen receptor-negative [2]. MDA-MB-231 and MCF-7 human
cancer cell lines are estrogen receptor and estrogen receptor-positive cells, respectively. These cell
lines are well-established in vitro models for evaluating estrogen-responsive or estrogen-independent
antineoplastic drugs [3].

Numerous studies have shown that natural products play an important role in the inhibition and
therapy of cancers [4]. The nutritional function of food shows the synergistic and additive effects of
phytochemicals compared to a single compound [5]. Differences in solubility, polarity, and molecular
size of these compounds can affect their distribution and bioavailability in various organs, tissues, cells,
and subcellular organelles. Furthermore, purified phytochemicals may lose some of their bioactivity
and behave differently than in whole foods [6]. Similarly, chemotherapeutic combinatorial methods
have been conducted to decrease drug side effects, slow the growth of cancer cells, and achieve results
superior to those of one active drug alone.
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Biochanin A (BA), an isoflavone, has been shown to possess antiviral [7], antioxidant [8],
anticarcinogenic [9], anti-inflammatory [10], and protective effects on endothelial integrity and function [11].
BA exhibits promise as a phytochemical driving the inhibition of breast cancer through promoting
estrogen receptor-positive cell proliferation [12]. Rh2 (protopanaxadiol-type) is the major dammarane-type
saponin ginsenoside. Previous studies have shown that Rh2 has beneficial impacts against breast
cancer [13], hepatoma cells [14], glioma cells [15], prostate cancer cells [16], and lung cancer cells [17].
Previous publications describe the interactions between isoflavone and ginseng saponins and their role
in suppressing MDA-MB-231 cell proliferation. The aim of this study was to determine whether BA
and Rh2 have additive and/or synergistic effects on MDA-MB-231 and MCF-7 human breast cancer
cell proliferation.

2. Results and Discussion

2.1. Cytotoxicity and Antiproliferative Activities of MDA-MB-231 and MCF-7

BA and Rh2 both show no cytotoxicity at doses of 10–100 µM (data not shown). These data
is supported by previous work performed by Tan and Kim reporting that 100 µM BA had no toxic
effects in PC12 cells [18]. Furthermore, Quan’s studies have shown that Rh2 at 80 µM dose exhibited
no cytotoxic activity in the cells [19]. The antiproliferative effects of BA, Rh2, and the combination
of BA with Rh2 on cell growth are presented in Figure 1. BA, at doses of 30–70 µM (p < 0.05),
shows dose-dependent antiproliferative effects on MDA-MB-231 and MCF-7 cell growth (Figure 1A,B).
The EC50 values of BA in inhibiting the growth of MDA-MB-231 and MCF-7 were 63.76 µM and
59.76 µM, respectively. Rh2 also showed a dose-dependent prevention of proliferation in both cell lines
at doses of 30–70 µM (Figure 1A,B). The EC50 values of Rh2 in inhibiting MDA-MB-231 and MCF-7 cell
line proliferation were 57.53 µM and 52.53 µM, respectively (Table 1).

Molecules 2018, 23, x FOR PEER REVIEW  2 of 14 

Biochanin A (BA), an isoflavone, has been shown to possess antiviral [7], antioxidant [8], 
anticarcinogenic [9], anti-inflammatory [10], and protective effects on endothelial integrity and 
function [11]. BA exhibits promise as a phytochemical driving the inhibition of breast cancer through 
promoting estrogen receptor-positive cell proliferation [12]. Rh2 (protopanaxadiol-type) is the major 
dammarane-type saponin ginsenoside. Previous studies have shown that Rh2 has beneficial impacts 
against breast cancer [13], hepatoma cells [14], glioma cells [15], prostate cancer cells [16], and lung 
cancer cells [17]. Previous publications describe the interactions between isoflavone and ginseng 
saponins and their role in suppressing MDA-MB-231 cell proliferation. The aim of this study was to 
determine whether BA and Rh2 have additive and/or synergistic effects on MDA-MB-231 and 
MCF-7 human breast cancer cell proliferation. 

2. Results and Discussion 

2.1. Cytotoxicity and Antiproliferative Activities of MDA-MB-231 and MCF-7 

BA and Rh2 both show no cytotoxicity at doses of 10–100 μM (data not shown). These data is 
supported by previous work performed by Tan and Kim reporting that 100 μM BA had no toxic 
effects in PC12 cells [18]. Furthermore, Quan’s studies have shown that Rh2 at 80 μM dose exhibited 
no cytotoxic activity in the cells [19]. The antiproliferative effects of BA, Rh2, and the combination of 
BA with Rh2 on cell growth are presented in Figure 1. BA, at doses of 30–70 μM (p < 0.05), shows 
dose-dependent antiproliferative effects on MDA-MB-231 and MCF-7 cell growth (Figure 1A,B). The 
EC50 values of BA in inhibiting the growth of MDA-MB-231 and MCF-7 were 63.76 μM and 59.76 
μM, respectively. Rh2 also showed a dose-dependent prevention of proliferation in both cell lines at 
doses of 30–70 μM (Figure 1A,B). The EC50 values of Rh2 in inhibiting MDA-MB-231 and MCF-7 cell 
line proliferation were 57.53 μM and 52.53 μM, respectively (Table 1). 

 
(A) 

Concentration (μM)

20 30 40 50 60 70 80

C
el

l P
ro

lif
er

at
io

n 
(%

)

0

20

40

60

80

100

120

Control 
BA
RH2
RH2+BA

Figure 1. Cont.



Molecules 2018, 23, 2908 3 of 14
Molecules 2018, 23, x FOR PEER REVIEW  3 of 14 

 
(B) 

Figure 1. Antiproliferative effects of BA, Rh2, and the combination of BA with Rh2 on MDA (A) and 
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triplicate biological experiments. 

Table 1. The EC50 values of BA and Rh2 towards MDA-MB-231 and MCF-7 cells. 

Component 
EC50 Value 

MDA-MB-231 MCF-7 
Single Combined Single Combined 

Biochanin A 63.76 μM 25.20 μM 59.76 μM 27.68 μM 
Rh2 57.53 μM 22.75 μM 52.53 μM 25.41 μM 

Tsu et al. reported that BA concentrations exceeding 30 μg/mL in MCF-7 cells exhibited 
dose-dependent effects on cell proliferation. At 100 μg/mL, MCF-7 cell proliferation was attenuated 
by approximately 80% [20]. Moon et al. demonstrated a role for BA in breast cancer prevention using 
xenograft mouse models. In this study, BA treatment groups (5 mg/kg) had significantly inhibited 
growth of tumors compared to the control group [21]. Choi et al. showed that Rh2 treatment 
inhibited the viability of MDA-MB-231 cells by 28% and 85% at doses of 40 μM and 60 μM, 
respectively [22]. 

Drug combinations have received increasing attention due to the advantages of lower drug 
doses, reduced side effects, and improved anticancer effects. Data in Figure 1 suggest that the 
combination of Rh2 plus BA significantly increased the antiproliferative activity of cells compared to 
the effects of Rh2 or BA alone. In MDA-MB-231 cells, the EC50 values of combined BA and Rh2 were 
decreased to 25.20 μM and 22.75 μM, respectively, which represents 2.53-fold and 2.52-fold less than 
those of BA and Rh2 alone. In MCF-7 cells, the EC50 values of combined BA and Rh2 were decreased 
to 27.68 μM and 25.41 μM, respectively, which were 2.16-fold and 2.07-fold less than those of BA and 
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Figure 1. Antiproliferative effects of BA, Rh2, and the combination of BA with Rh2 on MDA (A) and
MCF-7 (B) human breast cancer cell lines (mean ± SD, n = 3). Each value represents the mean ± SD of
triplicate biological experiments.

Table 1. The EC50 values of BA and Rh2 towards MDA-MB-231 and MCF-7 cells.

Component
EC50 Value

MDA-MB-231 MCF-7

Single Combined Single Combined

Biochanin A 63.76 µM 25.20 µM 59.76 µM 27.68 µM
Rh2 57.53 µM 22.75 µM 52.53 µM 25.41 µM

Tsu et al. reported that BA concentrations exceeding 30 µg/mL in MCF-7 cells exhibited
dose-dependent effects on cell proliferation. At 100 µg/mL, MCF-7 cell proliferation was attenuated
by approximately 80% [20]. Moon et al. demonstrated a role for BA in breast cancer prevention using
xenograft mouse models. In this study, BA treatment groups (5 mg/kg) had significantly inhibited
growth of tumors compared to the control group [21]. Choi et al. showed that Rh2 treatment inhibited
the viability of MDA-MB-231 cells by 28% and 85% at doses of 40 µM and 60 µM, respectively [22].

Drug combinations have received increasing attention due to the advantages of lower drug doses,
reduced side effects, and improved anticancer effects. Data in Figure 1 suggest that the combination
of Rh2 plus BA significantly increased the antiproliferative activity of cells compared to the effects of
Rh2 or BA alone. In MDA-MB-231 cells, the EC50 values of combined BA and Rh2 were decreased to
25.20 µM and 22.75 µM, respectively, which represents 2.53-fold and 2.52-fold less than those of BA
and Rh2 alone. In MCF-7 cells, the EC50 values of combined BA and Rh2 were decreased to 27.68 µM
and 25.41 µM, respectively, which were 2.16-fold and 2.07-fold less than those of BA and Rh2 alone.
At 50, 75, 90, and 95% inhibition of cell growth, the CI numbers of the combined BA and Rh2 treatment
were 0.42 ± 0.05, 0.55 ± 0.09, 0.72 ± 0.11, and 0.88 ± 0.10, respectively, suggesting that considerable
synergistic effects exist at all tested doses (Table 2).

Table 2. The CI numbers of combined BA and Rh2.

CI Values at Different Inhibition of Rates

50% 75% 90% 95%
0.435 0.553 0.723 0.882
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Moon et al. compared the co-administration of quercetin, epigallocatechin-3-gallate, and BA
with the administration of BA alone in a murine xenograft model. The results showed that combined
BA, quercetin, and epigallocatechin-3-gallate (5 mg/kg) led to improved efficacy comparable to
that of 15 mg/kg BA alone [21]. This could be in part due to the fact that the combination of
BA, quercetin, and epigallocatechin-3-gallate causes improved oral bioavailability of BA in animal
models. The combination significantly increases the level of BA in plasma samples after either oral
administration or intravenous injection. Oral bioavailability was improved three-fold compared to the
administration of BA alone [23]. Xie et al. evaluated the synergistic effect of Rh2 plus paclitaxel on
LNCaP prostate cancer models both in vitro and in vivo. The data suggested that Rh2 plus paclitaxel
exhibit synergy in LNCaP cells at less than 50% of the effective dose values. The combination of Rh2

and paclitaxel resulted in a significant reduction of prostate specific antigen in serum, and inhibition in
the growth of LNCaP tumors. In addition, immunohistochemistry results showed obvious effects on
proliferation agents [24].

2.2. Enhanced Inhibition of Cell Migration

Tumor cell migration and invasion are the two most important traits of metastasis. To further
study the inhibitory roles of BA, Rh2, and BA combined with Rh2 on metastasis, we evaluated their
effect on cell migration and invasion. A wound-healing assay was used to evaluate the inhibition of BA,
Rh2, and BA with Rh2 on cell migration. Both BA and Rh2 inhibited wound closure in MDA-MB-231
and MCF-7 cells (Figure 2A,C). In MDA cells, the combination of BA plus Rh2 significantly enhanced
the inhibition compared to Rh2 alone. The combination treatment inhibited wound closure by 39%
and 29% compared to that of the control in MDA-MB-231 and MCF-7 cells, respectively (Figure 2B,D).
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effectiveness in these two assays. 

Figure 2. For the scratch assay, wounds were made when MDA (A,B) and MCF-7 (C,D) cells were
90–100% confluent and after an overnight starvation. Cells were treated with vehicle control, 63.76 µM BA,
57.53 µM Rh2, or 25.20 µM BA + 22.75 µM Rh2 for 24 h. The closure of wounds was imaged and measured
at 0 and 24 h. An asterisk (*) indicates a significant difference from the control (p < 0.05). * Compared to
the control, p < 0.05. Different letters showed significant difference in sample groups (p < 0.05).

To measure the effect of BA, Rh2, and BA plus Rh2 on cell invasion we used a trans-well chamber
assay. The mixture of BA plus Rh2 increased the inhibition in both cell lines compared to BA or Rh2

alone (Figure 3A,B). In MDA cells, the BA plus Rh2 significantly increased inhibition compared to
BA. Migration of MDA-MB-231 and MCF-7 cells was separately inhibited by 57% and 29% under
combined BA and Rh2 treatment compared to the control. In summary, these results indicate that BA,
Rh2, and BA plus Rh2 exert strong inhibition activities on the migration and invasion of triple-negative
breast cancer cells. Additionally, the combination exhibited greater effectiveness in these two assays.
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Xiao et al. showed that BA exhibits anticancer effects by evaluating the migratory effect of BA 
on wound healing and invasion in SK-Mel-28 human malignant melanoma cells. They observe that 
treatment with 0, 10, 50 and 100 μM doses of BA result in the suppression of migration and invasion 
in a dose-dependent manner [25]. 
  

Figure 3. In the trans-well chamber assay, MDA (A) and MCF-7 (B) cells were treated with vehicle control,
EC50 values of BA, Rh2 and BA with Rh2 for 48 h. Cells suspended in serum-free media were seeded on
the upper membrane of the trans-well chamber and incubated for 48 h. Complete growth medium was
added on the bottom. Cells on the lower membrane of the chambers were counted. Data are presented as
mean ± SD. An asterisk (*) indicates a significant difference from the control (p < 0.05). * Compared to the
control, p < 0.05. Different letters showed significant difference in sample groups (p < 0.05).

Xiao et al. showed that BA exhibits anticancer effects by evaluating the migratory effect of BA
on wound healing and invasion in SK-Mel-28 human malignant melanoma cells. They observe that
treatment with 0, 10, 50 and 100 µM doses of BA result in the suppression of migration and invasion in
a dose-dependent manner [25].

2.3. Modulations of Protein Expression and Signalling Pathways

The regulation of protein expression and signaling pathways in MDA-MB-231 and MCF-7 cells were
similar (Figure 4). BA demonstrated considerable capabilities in the upregulation of phosphorylated p53
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(p-p53) and phosphorylated p38 (p-p38) protein levels relative to Rh2 (Figure 4A,B,E,F). The inhibitory
effects were further improved by BA and Rh2 combination. Cell growth, apoptosis and cycle progression
are regulated by p38 MAPK [26]. Expression of phosphorylated apoptosis signal-regulating kinase 1
(p-ASK1) was significantly enhanced after treatment with the BA plus Rh2 combination compared to the
control (Figure 4C,G). However, the combination of BA and Rh2 significantly downregulated the protein
expression of TNF receptor associated factor 2 (TRAF2), which serves as a mediator of the anti-apoptotic
marker (Figure 4D,H). Upregulated p-ASK1 and downregulated TRAF2 promote the kinase p38 pathway,
resulting in the phosphorylation of p53 and thus triggering anti-proliferation and apoptosis in cells [27].

Liu et al. evaluated the proliferative effect of Rh2 in KG1-α and K562 human leukemia cells in vitro
and the inhibitory effect on the growth of human leukemia xenograft tumors in vivo. The data showed
that Rh2 exerts antiproliferative effects on those cells by increasing histone acetylation. In addition,
Rh2 significantly modulated JNK, p-JNK, p38, and p-p38 protein expression thus inducing apoptosis
by activating the MAPK signaling pathway [28]. Choi et al. observed that Rh2 inhibits MDA-MB-231
cell viability by reducing the contents of phosphorylated retinoblastoma protein and lowering the
transcriptional activity of E2 promoter binding factor 1, as shown by the luciferase reporter assay.
In addition, Rh2 regulated cyclin-dependent kinases (Cdk), cyclins, and the cell cycle, resulting in
induced interaction between Cdk4/Cdk6 and cyclin D1, as well as improved recruitment of p15Ink4B
and p27Kip1 to cyclin D1/Cdk4 and cyclin D1/Cdk6 complexes [22]. It has also been reported
that Rh2 induces apoptotic cell death by triggering caspase-1 and caspase-3, and upregulating Bax
in neuroblastoma cells [29]. Ginsenoside Rg5 promotes breast cancer cell apoptosis by inducing
G0/G1 cell cycle arrest in MCF-7 and MDA-MB-453 human breast cancer cell lines. P53-dependent
apoptosis indicates that the tumor inhibitor p53 induces cell self-destruction through the endogenous
mitochondrial and exogenous death receptor pathways [30]. Thus, p53-dependent apoptosis could be
used to lead to the expression of proapoptotic members. If cells undergo DNA damage, p53 arrests
the cell cycle by p21 or by induction of apoptosis. To respond to DNA damage or cellular stress,
p53 is stabilized by post-transcriptional modifications, and the concentration of p53 increases [31].
Stabilization and activation of p53 is responsible for cellular antiproliferative mechanisms, such as
growth arrest, cell senescence, and apoptosis [32].
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p-p38 (B,F), p-ASK1 (C,G), and TRAF 2 (D,H) in MDA-MB-231 and MCF-7 human breast cancer
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mean ± SD of triplicates. Different letters showed significant difference in sample groups (p < 0.05).

3. Materials and Methods

3.1. Chemicals

Rh2 and BA were purchased from the National Institutes for Food and Drug Control (Beijing,
China). MDA-MB-231 human breast cancer cells were purchased from the American Type Culture
Collection (Manassas, VA, USA). Fetal bovine serum, α-minimum essential medium (α-MEM),
Hank’s Balanced Salt Solution (HBSS), 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid
(HEPES) and phosphate-buffered saline (PBS) were purchased from Gibco Life Technologies (Grand
Island, NY, USA). Methylene blue and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Extracellular matrix (ECM) invasion assay kits were purchased from Millipore
(Billerica, MA, USA).

3.2. Cytotoxicity Activity

The cytotoxicity of Rh2 or BA towards MDA-MB-231 cells and MCF-7 cells was evaluated by
methylene blue assay as reported previously [33]. In brief, MDA-MB-231 cells were cultured in α-MEM
containing 10 mM HEPES, 1% antibiotic-antimycotic and 10% fetal bovine serum. MCF-7 cells were
maintained in α-MEM containing 10 mM HEPES, 1% antibiotic-antimycotic, 0.01 mg/mL insulin,
and 10% fetal bovine serum as described previously [34]. MDA-MB-231 and MCF-7 cells were
maintained in an incubator at 5% CO2 and 37 ◦C. A total of 5 × 104 cancer cells in growth media were
placed in each well of a 96-well flat-bottom plate. After that, the growth medium was changed to
include the treatments or 100 µL new medium as control. After 24 h of incubation, cells were rinsed
with phosphate-buffered saline. Cells were then stained with methylene blue solution (0.6% methylene
blue, 0.67% glutaraldehyde, and 98% HBSS) and incubated for 1 h. The solution was removed and
washed with deionized water. After the wells were dried, methylene blue was stained in cells with the
elution buffer (50% ethanol, 49% PBS, and 1% acetic acid) and rotated for 15 min. The absorbance was
read at 570 nm by using a microplate reader (Bio-Rad, Danvers, MA, USA). Cytotoxicity was evaluated
as a percentage compared to the control.
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3.3. Antiproliferative Activity

The antiproliferative activities of Rh2 and BA towards MDA-MB-231 cells and MCF-7 cells were
measured by the methylene blue assay [24]. MDA-MB-231 cells and MCF-7 cells were incubated
in the same conditions described above. The cells were seeded at 2.5 × 106 cells/mL, and various
concentrations of Rh2, BA, or control were added to the cells. After 72 h, cell proliferation was
determined using the methylene blue assay measuring absorbance at 570 nm.

3.4. Combination Study

A study on the combination of Rh2 and BA towards MDA-MB-231 and MCF-7 cell proliferation
was designed. The EC50 values of Rh2 and BA were evaluated according to dose-response curves.
The combination concentrations of Rh2 and BA were 0.125 × EC50, 0.25 × EC50, 0.50 × EC50,
0.75 × EC50, 1.00 × EC50, and 1.25 × EC50, respectively. Finally, a series of concentrations of Rh2 and
BA were mixed to generate the dose-response curve in the MDA-MB-231and MCF-7 cell proliferation
models. A combination index (CI) was calculated for the combinations of Rh2 and BA using the
Compu Syn software (ComboSyn, Inc., Paramus, NJ, USA), on account of the mass-action law and
Chou–Talalay equation [35]. A value of CI below 1 indicates a synergistic effect of a combination,
equal to 1 shows additive effects, and higher than 1 indicates antagonistic effects.

3.5. Wound-Healing Assay

A wound closure seeding model was built using silicon culture inserts (Ibidi, LLC, Munchen,
Germany) with two individual wells for cell seeding. The insert was placed in a culture dish,
and 5 × 105 cells/mL of MDA-MB-231 and MCF-7 cells were plated in each well and grown to
form a confluent and homogeneous layer. The culture insert was removed, and a cell-free area was
recorded after 24 h cell seeding. The wound was approximately 500 µM wide. Healing of the wound
by migrating cells after Rh2, BA or Rh2 plus BA treatment was observed after 24 h by light microscopy
(CX-2, Olympus) and analyzed using Image J software (NIH, Bethesda, Maryland, USA) [36].

3.6. Invasion Assay

An ECM kit assay was used to evaluate cell invasiveness. According to the manufacturer’s
protocols, 5 × 105 cells were suspended in 300 µL of serum-free media and plated on an ECM-coated
membrane insert. The invasion assay was examined after 48 h of control, Rh2, BA or Rh2 combined
with BA treatment. After that, the cells in the upper insert were wiped away, while the cells on the
lower side were stained [37].

3.7. Western Blot Analysis

Western blot analysis was conducted according to the method of Yao et al. [38]. The supernatant
was collected after lysed cells were centrifuged at 12,000 rpm at 4 ◦C for 15 min. Protein extracts were
separated with SDS-PAGE and transferred to PVDF membrane. After blocking, p-p53, p-p38, p-ASK1,
TRAF2, and β-actin antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were added and
incubated. Membranes were washed and incubated in PBST and HRP-conjugated secondary antibody,
respectively. The signals were detected using the Super Signal ELISA Pico Chemiluminescent Substrate
(Thermo Fisher Scientific, Waltham, MA, USA).

3.8. Statistical Analysis

Data were analyzed using Sigma Plot software version 11.0 (Systat Software, Inc., Chicago, IL, USA).
All values were expressed as the means ± SD of at least three independently performed experiments.
Statistical analyses were conducted with Student’s t-test and analysis of variance (ANOVA) by SPSS
software version 16.0. Differences with p < 0.05 were considered to be statistically significant.
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4. Conclusions

In summary, a novel combinatorial treatment with BA plus Rh2 synergistically enhanced the
antiproliferative effect in MDA-MB-231 and MCF-7 cells and was associated with the upregulated
expression of p-p53, p-p38, and p-ASK1 and downregulated expression of TRAF2. Further in vivo
studies are necessary to verify the efficacy and appropriate doses of the combination for alleviating
receptor 2-negative, progesterone receptor-negative, and estrogen receptor-negative breast cancer in
clinical trials.
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