BMC Evolutionary Biology st

Research article

Loss of the flagellum happened only once in the fungal lineage:
phylogenetic structure of Kingdom Fungi inferred from RNA
polymerase Il subunit genes

Yajuan J Liu*, Matthew C Hodson and Benjamin D Hall

Address: Departments of Biology and Genome Sciences, University of Washington, Seattle, WA 98195, USA

Email: Yajuan J Liu* - yajuan@u.washington.edu; Matthew C Hodson - machrisod@gmail.com; Benjamin D Hall - benhall@u.washington.edu
* Corresponding author

Published: 29 September 2006 Received: |13 June 2006
BMC Evolutionary Biology 2006, 6:74  doi:10.1186/1471-2148-6-74 Accepted: 29 September 2006
This article is available from: http://www.biomedcentral.com/1471-2148/6/74

© 2006 Liu et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: At present, there is not a widely accepted consensus view regarding the phylogenetic
structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly
delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been
advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi)
may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either
once or multiple times during fungal evolution. All of these issues are capable of being resolved by a
molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no
fungal phylogeny based upon molecular characters has satisfied this criterion.

Results: Using the translated amino acid sequences of the RPB| and RPB2 genes, we have inferred a fungal
phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with
significant statistical support, are: (I) Microsporidia are sister to kingdom Fungi and are not members of
Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota,
the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage.
(3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4)
Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from
Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups.

Conclusion: In general, this paper highlights the evolutionary position and significance of the lower fungi
(Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once
during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are
nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the
widely accepted morphology-based classification of Fungi. We find that, contrary to what has been
published elsewhere, the four morphologically defined phyla (Ascomycota, Basidiomycota, Zygomycota
and Chytridiomycota) do not overlap with one another. Microsporidia are not included within kingdom
Fungi; rather they are a sister-group to the Fungi. Our study demonstrates the applicability of protein
sequences from large, slowly-evolving genes to the derivation of well-resolved and highly supported
phylogenies across long evolutionary distances.
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Background

The 9 + 2 flagellum is a major defining characteristic of
eukaryotic organisms [1]. Of the three crown eukaryote
taxa, only the fungi generally lack flagella, both in vegeta-
tive forms and sexual stages. Among lower fungi, how-
ever, flagellated gametes are found in a number of taxa.
These organisms, coincidentally, are the fungi for which
phylogenetic ascertainment is most problematic. This
paper is addressed to the goal of obtaining a more
robustly supported molecular phylogeny in order to
determine whether a single loss event can have been
responsible for the lack of flagella in the majority of fungi.

Fungi are one of the most ancient and diverse groups of
eukaryotic organisms [2]. While their fossil remains
extend back to 600 mya [3], molecular clock estimates
place the origin of fungi at or before 1.5 bya [4]. The rec-
ognition, delimitation and typification of fungi have been
formidable problems since the discovery of these organ-
isms. The presence of chitin in the cell wall is a common
character, but it is not unique to fungi [5]. Many fungi are
saprobes; others are pathogens or mutualistic symbionts
of plants and insects [5,6]. Despite this great variability in
form and function, systematic studies based upon mor-
phology and life cycle produced, by the mid 20t century,
a manageable number of major phyla. Ascomycota (yeasts
and molds), Basidiomycota (mushrooms, smuts and
rusts), and a number of taxa regarded as more ancestral
forms constituted the group of organisms that were con-
sidered to be true fungi [5].

Molecular approaches to the study of eukaryote evolution
began with the study of genes for small (5 S), then large
(18S and 28 S) ribosomal RNA molecules. Major early
contributions of rDNA studies to the circumscription of
the monophyletic Kingdom Fungi showed that organisms
such as Oomycetes (i.e. Phytophthora and Achyla) bore lit-
tle similarity to the true fungi [7-11]. Subsequently, these
organisms have been grouped with brown algae and other
Stramenopila [12]. Conversely, TDNA studies were the
first to identify Pneumocystis carinii, the infectious agent of
AIDS-associated pneumonia, as a fungus belonging to the
Ascomycota [13]. As fungal classification based on DNA
sequences became a widely-used taxonomic tool,
sequences of the ribosomal RNA molecules and ITS
sequences were also shown to be useful for resolving very
closely related fungal species from one another [14-16].

A profound understanding of the fungi and their interre-
lationships requires knowledge of the branching topology
between major groups of fungi. Fungal phylogenies based
on rDNA sequences are broadly in accord with morphol-
ogy-based taxonomic concepts for Ascomycota and Basid-
iomycota, but are inconsistent with them for the earliest
fungal lineages, namely the Zygomycota and Chytridio-
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mycota [9,17-23]. With a few exceptions, species in
Chytridiomycota have flagellated zoospores, appropriate
to their aqueous native habitat, while Zygomycota, like
Basidiomycota and Ascomycota, are without flagella. The
phylogenetic studies of Zygomycota and Chytridiomycota
based upon rDNA have repeatedly found that these two
phyla were polyphyletic [20,24,25]. Specifically, Basidi-
obolus ranarum (Entomophthorales, Zygomycetes) con-
sistently grouped with the Chytridiomycota and is most
close to members of Neocallimasticales while other mem-
bers of the Entomophthorales are closely related to Allo-
myces and other Blastocladiales [20,24,25]. A more recent
study, based upon a combined 18S and 28S rDNA data set
from fewer taxa, reached a similar conclusion [23]. In nei-
ther of these studies were the conclusions strongly sup-
ported by the data. The Glomales, a fourth important
zygomycete taxon, came out as sister to the asco-basidio-
mycete lineage [20,23]. Other studies using rDNA have
elevated the Glomales to the position of a fifth fungal
phylum, Glomeromycota [23,26-28]. A literal interpreta-
tion of these and other rDNA studies might lead one to
question the validity of the traditional subdivision of
basal fungi into Zygomycota and Chytridiomycota. Con-
versely this raises several questions. Are there structural,
physiological or genetic attributes of rRNA genes that
compromise their usefulness for phylogenetic ascertain-
ment at the ordinal level and above? If so, does the phyl-
ogenetic tree of fungal rRNA genes accurately reflect
organismal relationships? The answers to these questions
are essential to a general understanding of fungi, of their
evolutionary history and of the degree to which vegetative
and sexual stages in their life cycles are homologous. For
example, if Chytridiomycota is indeed polyphyletic, this
would mean that flagella were lost repeatedly during the
evolutionary adaptation of fungi from water to land.

Although the most extensive broad phylogenetic studies
of fungi have been done with rDNA, similar work with
more limited sampling has used the mitochondrial
genome or, alternatively, several nuclear protein coding
genes, such as EF-1a, small portions of RPB1, and tubulin
genes [9,19,20,23-25,29-31]. None of the studies with
these protein coding genes sampled Glomales. Generally,
molecular studies based on these genes show polyphyletic
or paraphyletic Chytridiomycota because of the place-
ment of the blastocladialean chytrids with the Zygomy-
cota.[9,20,23-25,31]. A recent phylogenetic study showed
that overall fungal phylogenies based on EF-1a sequences
were poorly resolved [31].

To gain a more complete understanding of the relation-
ships among fungal orders and phyla, we have used
sequences of nuclear genes RPB1 and RPB2 to infer a phy-
logeny of these organisms. These genes encode the largest
(210 kd.) and second-largest (140 kd) subunits of nuclear
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Figure |

Some of fungi used in this study. a-d, Chytridiomycota, Allomyces macrogynus (a), Coelomomyces stegomyiae (b), Mono-
blepharis sp. (c), Chytriomyces hyalinus (d); e, Rhizopus oryzae (Zygomycota); f, Neolecta vitellina (Ascomycota); g-i, Basidiomy-
cota,Amanita phalloides (g),Hydnum repandum (h),Ustilago maydis (i). Photographs are courtesy of Howard Whisler for b and c,
Christopher Skory for e, Raymond Boyer for f, Steven Trudell for g and h, and Joe Ammirati for i.

RNA Polymerase II. Because these genes have a functional
role that is essentially general, transcribing all mRNA-
encoding genes of the nucleus, their evolution is highly
constrained and correspondingly slow. In studies of other
fungal phyla [32,33], RPB1 and RPB2 made possible the
ascertainment of deep phylogenetic branches with a high
degree of confidence. The resolution and statistical sup-
port manifested in RPB1 and RPB2 phylogenies, as com-
pared to that afforded by the best available alternative,
18S 1DNA, is shown by a third analysis we present here.
For the same taxa included in the RPB phylogenetic anal-
ysis, we have derived an 18S rDNA phylogeny for compar-
ison.

The phylogenetic data across Kingdom Fungi for RPB1
and RPB2 has made it possible to examine another
reported relationship that is surprising, that of the Micro-
sporidia to fungi. On the basis of a phylogenetic analysis

of a- and B-tubulin gene sequences, it has been proposed
that Microsporidia are fungi and that they are a sister
taxon to certain Zygomycetes[34,35]. This conclusion
must be evaluated carefully because tubulins are uniquely
susceptible to convergent changes. The macromolecular
properties of tubulin that reflect their amino acid
sequence likely play an important role in determining cell
shape, a property that is highly variable among lower
fungi. We chose, therefore, to examine the microsporidian
RPB1 and RPB2 sequences in relation to those of many
fungal taxa, to find out whether the position inferred [35]
for Microsporidia within Kingdom Fungi could be con-
firmed.

Results

RPBI and RPB2 sequences in fungi

Taxa from four fungal phyla with diverse reproductive
structures are sampled in this study (Figure 1). For each
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taxon, we sequenced at least 3.1 kb of RPB1 (A-G) and 2.7
kb of RPB2 (3-11) (Figure 4). When overlapping multiple
PCR products were sequenced from individual taxa, there
was no evidence for more than one copy of RPB1 or RPB2
in most of the fungal species examined. However, two
RPB1 genes with slightly different sequences were found
in Allomyces macrogynus, and two similar RPB2 copies were
detected in Glomus mosseae, Neocallimastix frontalis, Allomy-
ces macrogynus and Chytriomyces hyalinus. Two RPB2
sequences also were recovered by a search of the genomic
sequence of Rhizopus oryzae [36]. For those species with
paralogous gene copies, the percentage difference in
nucleotide sequence ranged from 2.2 to 9.8, while the cor-
responding amino acid sequences had intraspecies varia-
tion of only 0.2 to 3.8%, since most of the nucleotide
differences between them were synonymous substitu-
tions. In both the RPBI and RPB2 phylogenetic analyses,
paralogs from the same species grouped closely together
(Figure 2); therefore, only a single RPB1 and a single RPB2
gene were chosen for each of these six species in making
up the combined data set (Figure 3).

Coding regions of the RPB1 and RPB2 genes of the major
fungal taxa fall into a very distinct pattern as regards base
composition. For three of the phyla, the range was similar,
being from 39 to 55% G+C for Ascomycota, 48 to 57% for
Basidiomycota and 37 to 54% for Zygomycota (Figure 3).
In the Chytridiomycota the spread was much greater,
ranging from a low of 33% G+C in Neocallimastix fronta-
lis to a high of 66% in members of Blastocladiales (Figure
3). Previous studies have shown that phylogenetic analy-
ses made by standard maximum likelihood or distance-
based algorithms using nucleotide sequences give gene
trees that differ significantly from one another when the
GC content varies greatly between taxa [37]. For this and
other reasons, we chose to use encoded protein sequences
for phylogenetic analysis in this study.

Phylogenetic relationships among major lineages of fungi
based on RPBI and RPB2 protein sequences

In phylogenetic analyses with the predicted amino acid
sequences of RPB1 and RPB2, the majority of positions
were informative based on the parsimony criterion (Table
1). The single most parsimonious tree obtained from
RPB1, RPB2, or the combined dataset was in each case
largely congruent with that from Bayesian analysis (Fig-
ures 2 and 3). The RPB1 and RPB2 phylogenies were also
generally congruent (Figure 2), differing mainly as regards
the branching within Taphrinomycotina and Chytridio-
mycota. In neither of these cases was this aspect of the
topology highly supported (Figure 2).

The phylogeny from parsimony analysis of the combined
RPB1 and RPB2 dataset was highly resolved, as was that
from Bayesian inference (Figure 3). Our criterion for sta-
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tistically significant support of an individual node
requires that the parsimony bootstrap value be >70% and
the Bayesian posterior probability at least 0.95 [38]. Both
methods of analysis found that monophyletic Ascomy-
cota, Basidiomycota, and Zygomycota all were strongly
supported (Figure 3). The most parsimonious tree and the
tree from Bayesian inference were highly congruent; both
trees included Glomales, Zygomycetes and Trichomycetes
in the Zygomycota clade (Table 2, Figure 3). In the SH test,
the phylogeny obtained by Bayesian analysis had the
highest InL score among the topologies tested, while for
the most parsimonious tree InL was lower, but not signif-
icantly so (Table 2, Figure 3). As regards the monophyly
of Zygomycota, the less likely alternative hypothesis of
Glomales being sister to Dikaryomycota and the Zygomy-
cota being paraphyletic was not rejected (Table 2, Figure
3).

Ascomycota as a sister group to Basidiomycota had strong
support (Figure 3). Basal to the clade of Ascomycota-
Basidiomycota (Dikaryomycota) was monophyletic Zygo-
mycota, a group with highly non-uniform morphology
(Figure 3). Support for the node separating Chytridiomy-
cota from the clade of Zygomycota-Dikaryomycota was
remarkably strong (84% bootstrap, 100% Bayesian, Fig-
ure 3).

All phylogenies based upon RPB1 and RPB2 indicated
that Chytridiomycota was paraphyletic and that it was the
basal taxon of Kingdom Fungi (Figures 2 and 3). Within
the Chytridiomycota were two well-supported lineages:
Blastocladiales, which was sister to the Zygomycota-
Dikaryomycota clade (Figure 3) and Chytridiales, the
most basal clade of the fungi (Figure 3). Monoblepharis was
sister either to the Blastocladiales clade in parsimony
analysis or to the Chytridiales in Bayesian analysis (Figure
3), while Neocallimastix invariably occupied a position
between the clades of Blastocladiales and Chytridiales.
Although phylogenies based upon 18S rDNA sequences
have found both Zygomycota and Chytridiomycota to be
polyphyletic (Figure 2A), this alternative hypothesis is
rejected in our SH test based on the combined data set of
RPB genes (Table 2). Kingdom Fungi was strongly sup-
ported as a monophyletic group (Figure 3). Microsporidia
were sister to the fungi in all phylogenies based upon
RPB1 and RPB2 sequences (Figures 2 and 3). All alterna-
tive positions for the Microsporidia were rejected (Table
2), except for the possibility that Microsporidia cluster
with the most basal members of Chytridiomycota (not
including Blastocladiales).

Nuclear 18S rDNA sequences in fungi

For each taxon sampled, we analyzed 1.8 kb (NS1-NS8) or
more of aligned 18S rDNA. In the case of Coelomomyces
stegomyiae the 18S rDNA is 2346 bp long and has many
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Phylogenies of fungi based on 18S rDNA sequences (A), RPBI (B) and RPB2 (C) protein sequences. The phylog-
enies shown are the consensus trees of Bayesian Inference with maximum likelihood branch lengths evaluated using TREE-
PUZZLE 5.2. The dots (*)above branches represent the braches with significant statistical support (>95% posterior probabili-
ties of Bayesian inferences and >70% bootstrap values of parsimony analyses)

insertions. The 18S rDNA alignment contains regions of
strongly conserved sequence interspersed with shorter
regions prone to higher rates of substitution. Nuclear 18S
rDNA exhibited a larger rate heterogeneity than do RPB1
and RPB2, as indicated by the higher proportion of invar-
iable sites in the 18S rDNA (32% invariable sites, Table 1),
and the relatively short interior branches and longer ter-
minal branches in the 18S rDNA phylogeny (Figure 2A).

Phylogenetic relationships among major lineages of fungi
based on 18S rDNA sequences

The 18S rDNA phylogenies inferred by Bayesian or Parsi-
mony analyses were closely similar (Figure 2A). Twenty-
two most parsimonious trees were obtained in the Parsi-
mony analyses. In the 18S rDNA phylogeny (Figure 2A),

there was significant support for monophyly of both
Ascomycota and Basidiomycota and for a sister relation-
ship between them. These results were consistent with the
RPB1 and RPB2 phylogenies. The main conflict between
the 18S rDNA and RPB1 + RPB2 phylogenies concerned
the relationships between members of Zygomycota and
Chytridiomycota (Table 3). In the former, both Zygomy-
cota and Chytridiomycota were polyphyletic, with mem-
bers of Zygomycota falling into three clades. One of these,
the Glomales, was sister to Dikaryomycota, another
included Mucor of Zygomycetes and members of Tri-
chomycetes, while in the third clade Basidiobolus of Zygo-
mycetes was clustered with the members of
Chytridiomycota (Figure 2A). Chytridiomycota was split
between two clades, one being the Blastocladeales; the
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The phylogeny based on the combined RPBI and RPB2 protein sequences. This phylogeny is obtained by Bayesian
inference. Bayesian posterior probabilities (% are noted above individual branches and bootstrap values below the branches.
The chart on the right side of the phylogeny depicts the %G+C of coding sequences of RPBI| and RPB2 with error bars for each
taxon. The unique gains and losses of certain characters are mapped on the phylogeny.

other including all other members of Chytridiomycota
and Basidiobolus of Zygomycetes (Figure 2A). Neither of
the above phylogenetic relationships in the 18S rDNA
phylogeny was supported statistically (Figure 2A).

Tests for congruency between 18S rRNA gene and RPB
genes

Pairwise partition-homogeneity tests among three data
sets indicated that 18S rDNA was neither congruent with
the RPB1 nor the RPB2 data set, while the RPB1 and RPB2
data sets were congruent with one another.

We compared the major clades between phylogenies
based on 18S rRNA and RPB genes and their respective
bootstrap and Bayesian support values for the nodes sub-
tending them (Table 3). In our RPB1 and RPB2 phyloge-

nies, Chytridiomycota was shown to be the basal taxon in
the Fungi and was separated from other fungi with high
support (Figure 3, 100% Bayesian and 84% bootstrap).
Therefore, the possibility that Zygomycetes were part of
the earliest diverging fungal lineage as suggested by the
18S rDNA phylogeny was not considered further.

Discussions and conclusion

The genes most extensively used for broad-scale fungal
phylogeny are, in addition to RPB1 and RPB2: EF-1q,
5.8S, 18S, and 28S rRNA genes. Of these, the 18S rRNA
gene most closely approaches RPB1 and RPB2 in its effi-
ciency of providing phylogenetic resolution at this level.
Consequently, we have included it in this study to make
possible a direct comparison of the resolution afforded, to
facilitate tests for congruency between the 18S rDNA and
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| |
>Aror - Dior "Ffor G, - ! 1000 bp !
RPBI El:lf-‘_“-:l h g B[ [evoT]
*RPB1-Ag,.  (ECPGHFG) -GAR TGY CCD CAY TTY GG-3’
*RPB1- Dfor (YNADFDG) 5'—TAC AAT GCY GAY TTY GAY GG-3’
*RPB1-Fr,  (HAMGGREG)  5’-CAY GCD ATG GGD GGD MGD GAR GG-3'
'RPBl—CreV (YMDND/EIAG) 5’- CC NGC DAT NTC RTT RTC CAT RTA-3’
'RPBl—Drev (DFDGDEMN) 5’—- TT CAT YTC RTC DCC RTC RAA RTC-3’
*RPB1-F,_.,  (HAMGGREG) 5’- CC YTC NCK WCC WCC CAT DGC RTG-3’
.RPBl_Grev (OMTLNTFH) 5/- TG RAA DGT RTT DAG DGT CAT YTG-3’
=3bF 5F - 6F 27 '
SRe= 6R €= 11aR €= €= {1hR
PSR i N B . N o I v
* RPB2-3bF (GGYFIING) 5"-GGW GGM TAY TTY ATY ATY AAT GG-3’
eAdaptor-3.1F (GGYFXING) 5’ -CTAATACGACTCACTATAGGGC GGN GGN TAY TTY RTN ATH AAY GG-3’
e Adaptor-3.2F (EKVXIAQE/D) 5’ -CTAATACGACTCACTATAGGGC GAR AAR GTN HTN ATH GCN CAR GA-3’

eAdaptor (nested primer)

*RPB2-5F (DDRDHFG) 57

*RPB2-5R (DDRDHEFEG) 5’-CC RAA RTG
*RPB2-6F (WGM/LVCPA)

*RPB2-"IcF (MGKQAMG) 57

*RPB2-7cR (MGKQAMG) 5’-CC CAT RGC
*RPB2-11laR (MVDDKIHA) 5’"-GC RTG GAT
*RPB2-11bR (GEMERD) 5’ -CA ATC WCG

Figure 4

5’ -CTAATACGACTCACTATAGGGC-3"
-GAY GAY MGW GAT CAY TTY GG-3'

ATC WCK RTC RTC-3'

5’ -TGG GGK WTG GTY TGY CCT GC-3'
-ATG GGY AAR CAA GCY ATG GG-3'

TTG YTT RCC CAT-3'
CTT RTC RTC SAC CAT-3’
YTC CAT YTC WCC-3'

RPBI and RPB2 primers used in the study. The long bars show the extent of the coding regions of RPBI and RPB2, while

the boxes with letters or numbers in them represent the amino

acid motifs that are conserved throughout the eukaryotes. The

arrows above show the positions of the primers used in this study, and their amino acid sequences and degenerate oligonucle-

otide sequences are listed below.

RPB trees and to search for any mutually well-supported
conflicts between the two.

To effectively yield information about phylogeny places
two requirements on the genes employed. First, there
must be sufficient sequence variation across the taxa stud-
ied to resolve them. Second, the extent of variation must
be low enough and broadly enough distributed so that
multiple changes at the same site will be rare. These con-
siderations imply that studies over long phylogenetic dis-
tances, such as those here that relate major fungal taxa, are

best carried out using genes with slow but appreciable
evolutionary rates.

The conflict among data sets, i.e. among rDNA, RPB genes
and other protein-coding genes such as tubulins and EF-
la, can occur for several different root causes. First, the
resolving power varies depending upon the data set. For
example, both rDNA and EF-1a lack resolving power for
internal branches in the tree due to lack of information
and/or uncertainty in alignment [23,31]. Therefore, for
many parts of the phylogenetic tree, the difference is

Table I: Summary of data sets of 18S rDNA, RPBI and RPB2 and their branch support values under maximum parsimony (MP)

criterion for single locus and combined analyses.

Characters 18S rDNA Nucleotide RPBI Amino acids RPB2 Amino acids RPBI & RPB2 Amino acids
aligned 2388 bp 1119 (3357bp) 944 (2832bp) 2063 (6189bp)
excluded 649 58 43 101
included 1739 1061 901 1962
constant 745 257 244 501
parsimony-informative 738(31%) 723 (65%) 566 (60%) 1289 (63%)
No. of clades > 70% bootstrap 25 (59%) 31 (74%) 30 (71%) 33 (79%)
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Table 2: Results of Shimodaira-Hasegawa (SH) tests for alternative hypotheses.

Hypothesis2

Bayesian phylogeny (= ML tree)
Microsporidia sister to Fungi (MP tree)
Microsporidia clustered with Blastocladiales
Microsporidia clustered to other Members of Chytridiomycota
Microsporidia clustered with Zygomycota
Microsporidia clustered with Dikaryomycota
Microsporidia clustered with Animals
Glomales sister to Dikaryomycota
Blastocladiales sister to zygo_trichomycetes
Blastocladiales sister to Zygomycota
monophyletic Chytridiomycota

SH test
-InL A-InL P-value Rejected b
-78347.57 0 1.000 best
-78378.47 30.90 0.297 no
-78407.55 59.98 0.030 yes
-78392.05 44.48 0.156 no
-78437.65 90.08 0.002 yes
-78453.52 105.95 0.002 yes
-78424.12 76.55 0.010 yes
-78383.99 36.42 0.248 no
-78418.76 71.19 0.009 yes
-78429.05 81.48 0.019 yes
-78376.30 28.73 0.367 no

Note: InL, natural log likelihood; P values, the confidence limit for rejection of the alternative tree topology.
a. The maximum likelihood tree (ML tree), the most parsimonious tree (MP tree), and the most likely trees under the constrained conditions.
b. Best, the tree with the highest likelihood in comparison; Yes, rejected by maximum likelihood (P < 0.05); No, not rejected by maximum

likelihood.

between a node that is resolved and supported by the RPB
data vs. a non-result (unresolved polytomy) or unsup-
ported node for the rDNA/EF-1a data.

Second, the functional role of the gene can determine its
utility in phylogenetics. Neutral or near-neutral mutations
that occur over a long period of time in genes under puri-
fying selection are the most reliable source of phyloge-
netic information. The difficulties inherent in genes
undergoing adaptive evolution can seriously impact the
deep branch topology in a broad scale phylogenetic study.
For example tubulins, important elements in cell struc-
tures, can undergo adaptive evolution to different envi-
ronmental challenges in the course of fungal evolution/
speciation. They are not good candidates for phylogenetic
study, especially for broad scale phylogeny. In contrast,
RPB1 and RPB2 have provided the basic catalytic structure
for RNA Polymerase II, an enzyme which has had the
same relation to its DNA template and RNA product over
the entire span of eukaryote evolution.

Although DNA sequences are helpful in resolving the top-
ological relationships at the tips of the phylogeny, they are
not as useful as protein sequences in determining the
deeper branching topology in a study of this type. That is
because, over the range of organisms we have studied,
there is saturation of mutational changes at the 3t posi-
tions of codons, with resulting homoplasy if this informa-
tion is included. If, to avoid that problem, only first and
second codon positions are included, some information
will be lost, since certain 3t position changes do result in
amino acid changes. Analyzing the amino acid sequence
with a JTT matrix is the best solution not only because it
eliminates the noise at 31 positions but also because it
takes into account the differences of selective pressure
exerted by different amino acid substitutions.

Chytridiomycota is paraphyletic and the basal taxon in
fungi

Determining the phylogenetic relationship between
Chytridiomycota and Zygomycota is a central issue in fun-

Table 3: Comparison between 18S rRNA and RPB gene phylogenies in the topology and statistical support for the major clades.

Major clade

18S rDNA

RPBI+RPB2

Monophyletic Ascomycota
Monophyletic Basidiomycota
Monophyletic Dikaryomycota

Monophyletic Zygomycota

Clade of Asco-, Basidio- and Zygomycota
Monophyletic Chytridiomycota
Monophyletic kingdom Fungi
Microsporidia sister to Fungi

100%, 75% 2
100%, 89%
100%, 89%

No (polyphyletic)

No b

No (polyphyletic)
72%, 71%

No¢

100%, 99%
100%, 100%
100%, 100%
100%, 78%
100%, 84%
No (paraphyletic)
100%, 91%
100%, 99%

a. The numbers are the values of Bayesian posterior probability and parsimony bootstrap support respectively.
b. Zygomycota did not form a clade with Ascomycota and Basidiomycota in the 18S rDNA phylogeny (Figure 2A).
c. Microsporidia is not included in the phylogenetic analyses based on 18S rDNA (Figure 2A) due to highly divergence of the sequences and difficulty

in the alignment.
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gal evolutionary biology and a controversial one. It relates
both to the question of which phylum is basal in King-
dom Fungi and to the mode of evolution of the flagellum,
the lack of which differentiates most fungi from metazo-
ans and flagellate protists. Members of Chytridiomycota
are considered to be the basal lineage of fungi since, like
metazoans, they use glycogen to store energy and have
flagellated spores (zoospores) but, like other fungi, they
have chitinous cell walls, flattened mitochondrial cristae,
and use the AAA lysine synthesis pathway [39,40].

The RPB1 and RPB2 phylogenies show Chytridiomycota
to be the basal taxon in the Fungi (Figures 2 and 3).
Chytridiomycota is paraphyletic in the combined RPB1
and RPB2 phylogeny and consists of two major lineages;
one being the Blastocladiales, the other including
Chytridiales-Spizellomycetales-Monoblepharidales with
Neocallimasticales as an outlier (Figure 3). These results
are in accord with traditional morphological and
ultrastructural studies of Chytridiomycota. A cladistic
analysis of thallus morphology and ultrastructure showed
three clades within the Chytridiomycota: Blastocladiales,
Neocallimasticales, and Spizellomycetales-Chytridiales-
Monoblepharidales [41]. A consideration of both the
molecular and morphological evidence identifies the lin-
eage containing the Monoblepharidales, Chytridiales and
their close relatives as the most basal one in Kingdom
Fungi.

The transition from water to land happened only once
during the evolution of fungi

Members of Chytridiomycota can exist in either unicellu-
lar or filamentous form. They are the only fungi that typi-
cally reproduce by forming flagellated zoospores as part of
the life cycle. Chytridiomycota are considered to be
aquatic because their unwalled and flagellated zoospores
require water for dispersal although some of them have
lost their flagella and produce amoebae instead of
zoospores (i.e. Amebochytrium).

An assemblage containing all Ascomycota, Basidiomy-
cota, and Zygomycota is a well-supported clade in these
studies (Figure 3). All taxa within it lack flagella, contrast-
ing with the Chytridiomycota which are mainly flagel-
lated. Thus the flagellum was lost as a single event,
coinciding with the loss of 9+2 microtubule centrioles,
the appearance of the spindle pole body (SPB) as micro-
tubule organizing center for mitotic and meiotic nuclear
division and the shift from aqueous to terrestrial growth
habit.

With the loss of motile cells, alternative methods of gam-
ete release and dissemination evolved in fungi. Both
mitotic and meiotic spores act to facilitate long-distance
dispersal and resistance to adverse environmental condi-
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tions. Sporangiospores and zygospores formed internally
were retained in most Zygomycota [42]. Novel mecha-
nisms for conidium and meiospore formation and ballist-
osporic discharge have evolved in the Ascomycota and
Basidiomycota.

Zygomycota is monophyletic with significant statistical
support

The unifying characteristics of Zygomycota are: mostly
coenocytic hyphae (lacking regular septation), formation
of highly resistant zygotes by the fusion of gametangia,
and the absence of flagellated cells and centrioles [5]. The
Zygomycota consist of two classes, the Trichomycetes and
Zygomycetes|5]. All members of Trichomycetes are obli-
gately associated with living arthropods [43]. Tradition-
ally Zygomycetes consist of many orders including the
Glomales, asexually reproducing soil fungi with very large
spores which form endomycorrhizae with many vascular
plants [27,44,45]. Previously published molecular phyl-
ogenies based on rDNA, B-tubulin, and EF-1a found
Zygomycota to be non-monophyletic [9,20,21,23-
25,27,29,34,46,47].

The phylogeny inferred in this paper from RPB1 and RPB2
sequence data supported a monophyletic Zygomycota
that encompassed Zygomycetes, Trichomycetes, and Glo-
males (Table 3 and Figure 3). A shared derived trait unit-
ing the Zygomycota is the production of asexual
nonflagellate mitospores in sporangia (Figure 3). Our SH
tests show that a monophyletic Zygomycota including
Glomales has higher likelihood than a clade of Glomales
with Ascomycota and Basidiomycota, however, the latter
hypothesis is not rejected (Table 2).

The relationship of Microsporidia to fungi

Microsporidia are widespread, obligate intracellular para-
sites of animals [48]. The view that Microsporidia
belonged to an ancient group, the Archaezooans, that pre-
dated mitochondrial endosymbiosis was based upon the
small size of their ribosomes and their lack of typical
eukaryotic cytoplasmic organelles [49]. Early phyloge-
netic studies, using sequences of microsporidial 18S
IDNA [50], EF-1a and EF-2 [51,52] also seemed consist-
ent with a very early divergence of this taxon. Further anal-
yses, however, attributed this conclusion to high rates of
sequence divergence in microsporidial 18S rRNA and EF-
lo gene sequences and consequent long branch attrac-
tion, leading to an incorrect assignment of phylogenetic
position [53-55].

Relatedness of the Microsporidia to Fungi was suggested
by subsequent phylogenetic studies using the genes RPB1,
TBP, vacuolar ATPase subunit A, Valyl-tRNA synthetase,
nuclear 28S rDNA, and two genes encoding tubu-
lins[53,55-62]. Specialized features of the microsporidial
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RPB1 and EF-1a genes link microsporidia to the "crown"
eukaryote group [53,63] and a relationship to fungi is also
suggested by the presence of chitin in the spore during the
reproduction of Microsporidia. Strong evidence against
the Archaezooan hypothesis came from the finding, in the
genome of Encephalitozoon cuniculli, of genes that clearly
are of mitochondrial origin [58,59,62], implying that a
secondary loss of mitochondria occurred during the evo-
lution of Microsporidia.

While the preceding studies suggested a close relationship
between Microsporidia and Fungi, they left open two pos-
sibilities: either that Microsporidia are a taxon within
Kingdom Fungi or that Fungi and Microsporidia are sister
to one another. These remain open because, in the initial
study, no representatives were included from the two
basal taxa of Fungi, the Chytridiomycota and Zygomycota
[53,55-62]. A subsequent phylogenetic study, based on a-
and B-tubulin sequences did include representatives of the
basal fungal groups Zygomycota and Chytridiomycota.
The phylogeny inferred from these data placed Micro-
sporidia within Zygomyecetes, in a position close to Ento-
mophthorales and Zoopagales [34,35]. Because of the
role that tubulin proteins play in determining cell shape,
there is a strong possibility that in this instance, the affin-
ity between Microsporidia and Zygomycetes results from
common responses to developmental or environmental
challenges and not from common descent. Between dif-
ferent groups of organisms, the rate of evolutionary
change of tubulin genes is highly variable. For example, in
members of Chytridiomycota, tubulin gene sequences are
relatively conserved, while both in Zygomycetes and
Microsporidia these genes diverged rapidly [34,35,55]. A
likely consequence of this rate difference is long-branch
attraction between Zygomycete and Microsporidial
sequences.

It has been proposed by Cavalier-Smith [48] that Micro-
sporidia evolved from harpellalean fungi (Trichomyc-
etes). Three taxa of Harpellales (Trichomycetes) and other
Zygomycota are included in this study; SH tests rejected
the hypothesis of a harpellalean or zygomycete origin of
Microsporidia (Table 2).

The results we have obtained show definitively that Micro-
sporidia occupy a phylogenetic position outside Kingdom
Fungi. Phylogenies inferred from RPB1, RPB2, and their
combined sequences all show that Microsporidia are the
sister taxon to fungi (Figures 2 and 3). In contrast to all of
the other phylogenetic associations previously suggested
for Microsporidia [34,35,64], this one receives excellent
statistical support from the data. The relevant node has
100% Bayesian posterior probability and 99% bootstrap
support in Figure 3. Statistical tests of various alternative
derivations of Microsporidia (SH test, Table 2) rejected
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not only the hypothesis of an origin of Microsporidia
within Zygomycota, but also rejected a close relationship
either to Dikaryomycota or to Metazoa.

Our results suggest that the loss of flagella and their 9+2
microtubule structure in the members of Microsporidia is
a separate event from the loss event that led to Zygomy-
cota, Basidiomycota and Ascomycota. We envision the
common ancestor of Fungi, Microsporidia and Metazoans
as a unicellular, flagellated heterotroph, based upon com-
parisons between basal fungi, Microsporidia, basal Meta-
zoans and associated groups such as Choanoflagellates.
Our results suggest that loss of the flagellum happened at
only one point in the evolution of fungi enabling the
derived fungal phyla to adapt from the aquatic environ-
ment to a terrestrial one.

Methods

Materials

Fifty-eight taxa were used, including four Microsporidia,
nine members of Chytridiomycota, eight zygomycetes,
nine basidiomycetes, and thirty-two ascomycetes. As out-
groups, ten taxa of animals, plants and protists were
included in the analyses. We sampled four of the five
orders of the Chytridiomycota as well as four orders rep-
resenting all the classes of Zygomycota [5]. The sources of
fungal strains and GenBank accession numbers for
nuclear 18S rDNA, RPB1 and RPB2 gene sequences are
listed in Supplementary Table [see Additional file 1]. The
diverse reproductive structures of some representatives
from the major fungal lineages are shown in Figure 1.

Molecular techniques and phylogenetic analyses

The methods for fungal culture, DNA isolation, PCR
amplification, cloning, and DNA sequencing have been
described [65]. Primers NS1 through NS8 were used in
this study to amplify nuclear 18S rDNA [66]. The set of
general oligonucleotide primers used in this study for
amplifying regions A to G of RPB1 and regions 3 to 11 of
RPB2 genes are listed in Figure 4. All pairs of primers were
used in the initial PCR amplification. For RPB1, Dfor and
Frev usually work well for most fungi. Species specific
primers were designed in the D-F region and paired with
Afor and Grev for subsequent amplifications for some
fungi (Figure 4). For RPB2, regions 5-7 and 7-11a were
usually amplified easily by PCR. Species specific primers
were designed in the region of 5-7 and paired with 3bF,
3.1F-adaptor, 3.2F-adaptor and 11aR for subsequent
amplifications for some fungi (Figure 4). For certain
fungi, nested PCR with the primer of adaptor sequence
and species-specific primer were performed to amplify the
3-5 region of RPB2.

The nucleotide sequences of nuclear 18S rDNA and the

amino acid sequences of RPB1 and RPB2 translated from
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DNA sequences were aligned using Clustal X [67], with
subsequent visual adjustment, resulting in 2388, 1119
and 944 aligned positions, respectively, including gaps.
The regions that could not be aligned reliably were
removed leaving a total of 1739 positions for 18S rDNA,
1061 positions for RPB1 and 901 positions for RPB2 to
use in phylogenetic analyses. Bayesian inference and max-
imum parsimony phylogenetic analyses were carried out
for 18S rDNA, RPB1, and RPB2 singly, and for the com-
bined protein sequences. To detect topological incongru-
ence among data partitions of 18S rDNA, RPB1 and RPB2,
pairwise partition-homogeneity tests among three data
sets were conducted using PAUP* 4.0b10.[68] with parsi-
mony criterion and heuristic search (10,000 replications).

The model selection approach, the Akaike Information
Criterion (AIC), was used to estimate the best-fit model
for Bayesian methods using MODELTEST 3.7[69,70]. A
general time reversible (GTR) model including a propor-
tion of invariant sites and a gamma distribution parame-
ter was selected as the best-fit model for the 18S rDNA
data set. For each dataset, Bayesian phylogenetic analyses
with Markov chain Monte Carlo (MCMC) sampling was
conducted using MrBayes v3.1 [71]. Six independent
MCMC runs were carried out using the GTR model for the
nucleotide substitution and JTT model for amino acid
substitution. In addition, the proportion of invariable
sites and a gamma distribution parameter to allow for rate
heterogeneity among sites (six categories) and uniform
prior probabilities and tree topologies were implemented
in the analyses. The six runs included one run with 3 x 10°
generations, two runs with 2 x 10°¢ generations and three
runs with 1 x 10°¢ generations to ensure a sufficient
number of generations and sampling of the same poste-
rior probability landscape. Each run started with random
trees for each of four simultaneous chains, resulted in con-
cordant joint posterior probability distributions for the
topology. The sampling was done every 100t generation
for each run. The samples before the convergence of the
Markov chain were discarded for each run. The remaining
samples from each run were combined into a single file
with a total of 97830, 98095, 98876, and 98970 phyloge-
netic trees for the data sets of 18S rDNA, RPB1, RPB2 and
combined RPB1 and RPB2, respectively. These were then
imported into PAUP* 4.0b10 to compute the 50% major-
ity rule consensus tree. The percentages for the branches in
the consensus tree represent the Bayesian posterior prob-
abilities which are the rough equivalent of a maximum
likelihood search with bootstrapping|[71]. The resulting
consensus tree from Bayesian analyses for each dataset
was evaluated for branch lengths using TREE-PUZZLE 5.0
by maximum likelihood algorithm with a gamma-distri-
bution, the GTR model for nucleotide substitution and
the JTT model for amino acid substitution[72].
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Parsimony analyses were conducted using PAUP*
4.0b10.[68] with equal weights for 18S rDNA sequences
and a weighted step matrix converted from the JTT matrix
[73,74] for RPB1, RPB2 and their combined data set. Gaps
were scored as missing. The heuristic search using the ran-
dom addition of taxon option was performed with 1000
replicates to increase the chance of finding all of the most
parsimonious trees. To evaluate the strength of the phylo-
genetic conclusions, 500 parsimony bootstrap replicates
were performed using the heuristic search with the ran-
dom addition of taxon option (10 times per replicate).

In order to test alternative phylogenetic hypotheses, anal-
yses were conducted using PAUP to construct the most
parsimonious trees under the constrained conditions, and
the resulting trees were evaluated together with the most
parsimonious tree and the tree of Bayesian inference in
TREE-PUZZLE 5.2 using the SH test based on the com-
bined data set of RPB1 and RPB2 [72,75]. TREE-PUZZLE
5.2 incorporates the JTT matrix for amino acid substitu-
tions and gamma-distributed rates to allow for rate heter-
ogeneity among sites. The gamma distribution parameter
o of 0.33 was estimated from our combined dataset of
RPB1 and RPB2. Eight rate categories were used in the
analyses.

Abbreviations
RPB1: the largest subunit of nuclear DNA-dependent RNA
polymerase 11

RPB2: the second largest subunit of nuclear DNA-depend-
ent RNA polymerase 11

rRNA: ribosomal RNA
rDNA: ribosomal DNA
EF-1a: translation elongation factor 1a
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