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ORIGINAL ARTICLE
Maternal iron levels early in pregnancy are not associated with

offspring IQ score at age 8, findings from a Mendelian
randomization study

SJ Lewis', C Bonilla', M-J Brion', DA Lawlor?, D Gunnell', Y Ben-Shlomo', A Ness® and GD Smith?

BACKGROUND/OBJECTIVES: Iron is fundamental to many basic biological functions, and animal studies suggest that iron
deficiency early in life can have a lasting impact on the developing brain.

OPEN

SUBJECTS/METHODS: We used a population-based cohort of mothers and their children to assess the effect of iron status among
pregnant women on the cognitive ability of their offspring. But to avoid the inherent confounding that occurs within observational
epidemiology studies we examined the association of maternal genotype at single-nucleotide polymorphisms in the genes HFE
(rs1799945) and (rs1800562), TF (rs3811647) and TMPRSS6 (rs1800562), which are related to iron, haemoglobin or transferrin levels,

on their child’s cognitive test scores at age 8.

RESULTS: We found strong associations between HFE and TMPRSS6 genotypes and mother’s haemoglobin levels early in
pregnancy (P-values are all <4.1 x 10 ) and a genetic score comprised of alleles at these loci was even more strongly associated

with haemoglobin levels (P=3.0 x 10~ ')

, suggesting that this was a good instrument to use to look at the effect of prenatal iron

levels on offspring cognition. However, mother’s genotype at the above loci was not associated with offspring IQ at age 8.
CONCLUSIONS: We therefore concluded that there is no evidence of an effect of exposure to low levels of iron (within the normal
range) in pregnancy on offspring cognition at age 8. However, pregnant women in the UK with low haemoglobin levels are
prescribed iron supplements and so we were unable to look at the effect of iron deficiency in our study.
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INTRODUCTION

Iron is fundamental to many basic biological functions including
oxygen transport, production of adenosine triphosphate (ATP),
DNA synthesis, mitochondrial function and protection of cells
from oxidative damage." However, iron deficiency is the most
common nutritional deficiency worldwide, with around 1.6 billion
people thought to be affected. This is particularly the case in
developing countries where 25% of pregnant women are reported
to be iron deficient.?

Animal studies suggest that iron deficiency early in life can have
a lasting impact on the developing brain.® In humans, the brain is
likely to be most vulnerable to nutrient deficiencies during the
brain growth spurt that occurs in the period between the last
trimester of fetal life and the first 2 years of childhood.?

A recent meta-analysis of five randomized controlled trials of
early life iron supplementation on motor and mental development
in children under 3 years of age found evidence of a beneficial
effect on motor development and very weak evidence of a
beneficial effect on mental development.” The same review found
only one randomized controlled trial that specifically addressed
the effect of prenatal iron supplementation on child’s IQ (at age 4).
This study was carried out in Australia, and showed no differences

in 1Q between the two groups. There was, however, a very high
drop-out rate (30%), so the sample used for the final analysis may
not be representative of those randomized.> Further intervention
studies of iron supplementation among pregnant women would
need robust evidence to justify their conduct, as around half of all
pregnant women require iron supplements to prevent anaemia
when pregnant. Although observational studies are feasible, they
are limited in their ability to examine whether maternal iron status
in pregnancy affects offspring neurological development and
cognitive function, because they are likely to be confounded by
socio-economic background, and related lifestyle factors, which
are strongly associated with both nutritional status® and
childhood cognitive function.”

Associations between genetic polymorphisms, which are
associated with iron levels, and cognition are less likely to be
subject to the problem of confounding by lifestyle factors, which
occurs in observational studies,® and studies of this type are not
subject to the ethical issues that arise in randomized controlled
trials.” We used genetic variants known to be associated with iron
levels to determine whether maternal iron status during
pregnancy was causally associated with child’s 1Q score at age 8
in a large population-based study.
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MATERIALS AND METHODS
Study population

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a
population-based prospective study investigating factors that affect the
health and development of children and their parents. The study methods
are described in detail elsewhere (http://www.alspac.bris.ac.uk'®'?).
In brief, pregnant women living in Bristol, UK who had an expected date
of delivery between April 1991 and December 1992 were eligible. A total of
14541 pregnant women enrolled in the study. A detailed outline of the
exclusion criteria for this analysis and numbers with missing data is given
in Figure 1. Extensive data have been collected from the mothers from
pregnancy onwards by questionnaire, abstraction from medical notes,
record linkage and by attendance at research clinics. Ethical approval for
the study was obtained from the ALSPAC law and ethics committee and
the local research ethics committees.

Ethnicity

We excluded all non-white women from this analysis to avoid population
stratification (see Figure 1 for exclusions). Ethnicity was available from self-
report or had been imputed from five genetic ancestry-informative
markers with established population-specific allelic distributions:
rs713598 and rs1726866 in TAS2R38,'® rs4988235 in MCMe,'™
rs41310927 in ASPM' and rs930557 in MCPH1."®

Measurement of cognition

Cognitive testing of children was carried-out during a clinical visit when
the children were aged 8 using a shortened version of the Wechsler
Intelligence Scale for Children (WISC-IIl), described in detail elsewhere.'®
An overall age-adjusted cognitive score was derived from this assessment
for each child who completed the test.'” This test has been shown to be
associated with mother’s educational level, parity, socio-economic status
and several other socio-economic and lifestyle factors in a previous
analysis, thus we are confident of the validity of this test (supplementary
tables in Bonilla et al.'®).

Measurement of mothers educational level

Mother's educational level was obtained by questionnaires administered to
the mother during pregnancy, in which women were asked to report their
highest educational attainment from five-ordered categories. For the
purposes of adjustment in the models of mother’s genotype and child’s IQ,
the five categories were used. However, when mother’s education was
used as the outcome, these categories were collapsed as follows: ordinary
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exam-based qualification for students aged 14-16 years (16 is the legal
minimum school leaving age in the UK), which was replaced by the General
Certificate of Secondary Education (GCSE) in 1988 in the UK. Further
details are available at http://www.direct.gov.uk/en/EducationAndLearning/
QualificationsExplained/DG_10039024.

Iron supplementation

ALSPAC mothers were asked at 18 and 32 weeks of pregnancy whether
they had taken iron supplements during this pregnancy, they were also
asked to list any medications they were taking as a text answer. If mothers
reported taking iron supplements and/or taking medications or supple-
ments containing iron, they were classed as taking iron supplements.
We constructed three groups as follows: (1) not taking iron supplements,
women who did not report taking supplements or medication containing
iron at 18 or 32 weeks of pregnancy; (2) taking iron supplements at 18
weeks, women who reported taking supplements or medication contain-
ing iron at 18 weeks of pregnancy, irrespective of whether they were
taking supplements at 32 weeks or not; (3) taking iron supplements at 32
weeks, women who reported taking supplements or medication contain-
ing iron at 32 weeks but not at 18 weeks of pregnancy.

Measurement of confounders

Data on selected characteristics from ALSPAC mothers were used to
conduct an assessment of the potential for confounding of the genotype-
outcome association. These were collected either from hospital records or
from the questionnaires completed by the mother during pregnancy.
Mother’s social class was based on occupation and determined according
to the 1991 British Office of Population Statistics classification. Marital
status, housing tenure, parity, inter-pregnancy interval, breastfeeding,
infection during pregnancy, ever smoked, alcohol consumption before
supplements during pregnancy, calcium supplements during pregnancy,
folate supplements during pregnancy, other supplements and sex of the
child were all tested as potential confounders.

Laboratory methods

DNA was extracted using the salting out method. This was part of a larger
study in which 58 single-nucleotide polymorphisms (SNPs) related to
nutrient intake or levels were genotyped to look at the effect of early life
nutrition on child’s 1Q score. In addition, a genome-wide association study
was later carried out in this cohort. Four SNPs previously shown to cause
haemochromatosis'® or to be strongly associated (for all P<4 x 10~ %) with
serum iron, serum transferrin or haemoglobin®® were genotyped, these were

level (O-level) or equivalent vs higher or lower. The O-level was an HFE rs1800562, rs1799945; TF rs3811647; and TMPRSS6 rs4820268.
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Figure 1.
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Flow diagram showing total number of women recruited into the study with reasons for exclusion and numbers excluded at each stage.
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A summary of what is known about these SNPs is given in Text Box 1.
Genotyping was undertaken by KBioscience Ltd (www.kbioscience.co.uk),
who use their own form of competitive allele-specific PCR system (KASPar)
and Tagman for SNP analysis. KBiosciences have their own quality control
checks. They state that to deem an assay successful it must possess three
distinct clusters: the water controls must be negative, the number of
genotypes callable must be >90% and the minor allele frequency should
be >2%. In addition, we added blind duplicates to the samples, we
checked that there were in fact three true clusters for each genotype, and
where there was evidence that an SNP was not in Hardy-Weinberg
equilibrium, we looked at the clusters by eye to verify whether there was
any evidence of miscalling of genotypes or whether any of the unresolved
genotypes could be called.

Diplotypes and genotype score

As haemochromatosis can arise from having a rare homozygous genotype
at rs1799945 or rs1800562 in the HFE gene or by being a composite
heterozygote with one rare allele at each site, we combined genotypes at
these two loci as follows: two low-iron alleles (any two haemochromatosis
alleles); three low-iron alleles (heterozygotes at just one locus, with the
common homozygous genotype at the other locus); four low-iron alleles
(double homozygotes for common alleles).

Genotype score comprised alleles at three loci, the two above in HFE and
rs4820268 inTMPRSS6, with risk alleles defined as those associated with
lower haemoglobin levels, that is, allele C at rs1799945, G at rs1800562
and G at rs4820268. Individuals were categorised according to
whether they had 2 or 3, 4, 5 or 6 risk alleles. No individual had 0 or 1
low iron allele.

Measurement of haemaglobin in ALSPAC

Mother’s haemoglobin levels were measured routinely at various time
points during pregnancy by healthcare workers and were extracted from
obstetric notes. The levels used to assess associations with outcome and
genotype were the first measurement taken during pregnancy, with most
(87%) taken before 18 weeks of pregnancy, and the last measurement
taken during pregnancy (for this we specified that the measurement
should have been done after 28 weeks of pregnancy).

Statistical analysis

Ordered logistic regression analysis was carried out in Stata (Stata
Corporation, College Station, TX, USA) to test for associations of mother’s
educational level (<O-level, O-level, >O-level) with genotype without

Box 1 SNPs used in this study

HFE rs1800562 and rs1799945

Two mutations in the hemochromatosis (HFE) gene are
known to cause iron overload (hemochromatosis) by
affecting iron metabolism and storage (C282Y rs1800562
and H63D rs1799945)."

TMPRSS6 rs4820268
Finberg et al.?® recently showed that mutations in the trans-
membrane protease, serine 6 gene (TMPRSS6) could cause
iron-deficiency anemia refractory to oral iron therapy. In
genome wide association studies the synonymous variant
rs4820268 in TMPRSS6 has been found to be associated
with haemoglobin levels®? and serum iron levels.?

TF rs3811647

SNPs in the transferrin gene (TF), which codes for an iron
carrying plasma protein and has previously been implicated
in iron deficiency in pregnancy,®* were found to be strongly
associated with serum transferrin levels with the strongest
association for rs3811647.%°

adjustment and with adjustment for population stratification. Associations
between supplement use (not taking supplements, taking supplements at
18 weeks and taking supplements at 32 weeks only) and genotype, and
categorical confounders and genotype were tested using y*-tests. Linear
regression models were used to examine the association of maternal
genotype (exposure) with WISC score or haemoglobin as outcome, and to
test the association between mother’s haemoglobin level and child’s WISC
score. Per allele odds ratios are reported for individual genotypes/
genotype scores.

We carried out crude analyses of mother’s genotype and child’s WISC
score, we also carried out an analysis adjusting for: child’s genotype (to
assess whether mother’s genotype was exerting an independent effect on
outcome rather than affecting outcome by influencing child’s genotype);
mother’s educational level (there were two reasons for adjusting for this—
first, in a sensitivity analysis where we adjusted for all potential
confounders, only mother's educational level exerted an independent
effect on outcome and second, we wanted to exclude the possibility that
mother's genotype was influencing outcome by affecting her own
educational attainment); we also adjusted for population stratification
using the top 10 principal components (PCs), from genome wide
association data available in ALSPAC, that reflect the population’s genetic
structure estimated according to Price et al.?' Assumptions of Hardy-
Weinberg equilibrium were formally tested using a likelihood ratio test and
the asymptotic P-value is reported. All the above analysis was carried-out
using Stata 11.0.

RESULTS

The TMPRSS6 rs4820268 polymorphism showed evidence of
Hardy-Weinberg disequilibrium in the mothers (P=0.001) but
not in the children in ALSPAC (Table 1), this was due to a slight
excess in heterozygotes compared with the number expected.
We studied the raw data, but could find no evidence of miscalling
or that homozygotes were over-represented among the women
for whom genotype was not resolved. All other genotypes were in
accordance with Hardy-Weinberg equilibrium in ALSPAC. There-
fore no genotype was excluded on the basis of Hardy-Weinberg
equilibrium.

Mother’s haemoglobin levels by genotype in early pregnancy

We found a strong association between HFE genotypes and
haemoglobin levels measured early in pregnancy (Table 2) and
similar effects with haemoglobin measured late in pregnancy
(results not shown), with rare homozygotes having higher levels
compared with wild-type homozygotes and levels among
heterozygotes being intermediate between the two. TMPRSS6
rs4820268 was also strongly associated with haemoglobin levels
at both time points with the rare homozygote GG having the
lowest levels. The TF SNP investigated in this study did not show
evidence of being associated with haemoglobin levels, for this
reason this SNP was not included in the genotype score. Both the
HFE diplotype and the genotype score based on both HFE
genotypes and TMPRSS6 rs4820268 explained more of the
variation in haemoglobin levels than individual SNPs alone, with
the genotype score showing very strong evidence of a dose-
response relationship with haemoglobin levels, but still only

Table 1. Hardy-Weinberg equilibrium test for mothers’ and children’s
genotypes
dbSNP Major/minor Mothers Children
alleles
P-value N P-value N
rs1799945 C/G 0.20 6637 0.08 8294
rs1800562 G/A 0.74 6627 0.15 8227
rs3811647 G/A 0.44 6594 0.14 8266
rs4820268 A/G 0.001 6616 0.08 8289

European Journal of Clinical Nutrition (2014) 496 - 502

© 2014 Macmillan Publishers Limited


www.kbioscience.co.uk

Iron levels in pregnancy are not associated with 1Q
SJ Lewis et al

Table 2. Maternal genotypes at SNPs in iron-related genes and Hb levels measured early in pregnancy adjusted by gestational age at the time of
measurement
Genotype Mean s.d N Coefficient s.e Adj P-value % Variance explained
rs1799945 HFE
GG 12.5 0.9 144 -0.093 0.023 41x10°° 0.19
CG 124 1.0 1532
CcC 123 1.0 4731
rs1800562 HFE
AA 12.6 1.1 29 -0.174 0.032 46x108 0.34
GA 12.5 1.0 828
GG 123 1.0 5541
rs3811647 TF
GG 12.3 1.0 2766 -0.007 0.017 0.69 0.00
GA 12.3 1.0 2885
AA 12.3 0.9 717
rs4820268 TMPRSS6
AA 124 1.0 1721 -0.103 0.016 36x10°'° 0.55
AG 12.3 1.0 3316
GG 12.2 1.0 1351
rs1799945/rs1800562
2 risk alleles 12,6 1.0 297 -0.136 0.020 49x10° " 0.56
3 risk alleles 12.4 1.0 2080
4 risk alleles 123 1.0 3931
Genotypic score
<3 risk alleles 12.5 1.0 822 -0.113 0.013 30x10° '8 1.02
4 risk alleles 124 1.0 2093
5 risk alleles 12.3 1.0 2462
6 risk alleles 12.2 1.0 844
Table 3. Proportion of mothers taking iron supplements at 18 or 32 weeks of pregnancy according to their genotype at iron-related SNPs
dbSNP Gene Genotype Not taking Taking supplements  Taking supplements P-value
supplements (%) at 18 weeks (%) at 32 weeks (%)
rs1799945 HFE GG 63 (48.8) 42 (32.6) 24 (18.6) 0.1
cG 676 (46.7) 433 (29.9) 339 (23.4)
CcC 1927 (43.4) 1390 (31.3) 1123 (25.3)
rs1800562 HFE AA 17 (65.4) 5(19.2) 4 (15.4) 0.04
GA 367 (47.9) 230 (30.0) 169 (22.1)
GG 2285 (43.8) 1623 (31.1) 1307 (25.1)
rs3811647 TF GG 1117 (43.2) 787 (30.4) 681 (26.3) 0.04
GA 1244 (45.7) 851 (31.3) 624 (23.0)
AA 283 (42.0) 218 (32.3) 173 (25.7)
rs4820268 TMPRSS6 AA 759 (47.4) 481 (30.1) 360 (22.5) 0.01
AG 1378 (44.1) 969 (31.0) 780 (24.9)
GG 521 (40.9) 415 (32.6) 339 (26.5)
rs1799945/rs1800562 2 risk alleles 0 144 (53.1) 77 (28.4) 50 (18.5) 0.001
3 risk alleles 1 907 (46.4) 591 (30.3) 455 (23.3)
4 risk alleles 2 1580 (42.7) 1164 (31.5) 955 (25.8)
genotypic score <3 risk alleles 0 391 (51.4) 217 (28.6) 152 (20.0) <0.001 X2=129.66 6 df
4 risk alleles 1 897 (45.7) 608 (31.0) 456 (23.3)
5 risk alleles 2 982 (42.2) 725 (31.1) 621 (26.7)
6 risk alleles 3 325 (40.8) 262 (32.9) 210 (26.3)

explaining 1.02% of the variation in early pregnancy haemoglobin
levels.

Genotypes and iron supplementation during pregnancy among
ALSPAC mothers

Table 3 shows associations between taking iron supplements
during pregnancy and genotype. Both the HFE loci were

© 2014 Macmillan Publishers Limited

associated with taking supplements during pregnancy such that
women with rare homozygote genotypes were less likely to take
supplements, with some evidence of a dose response (albeit weak
evidence). Women carrying the TMPRSS6 rs4820268 G allele were
more likely to take supplements during pregnancy, and there
seemed to be a per allele effect for this genotype. The TF
rs3811647 SNP showed no clear pattern of association with taking
supplements. Although there was weak evidence that women
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with the heterozygous genotype were less likely to take
supplements. Furthermore, HFE diplotypes and a genotypic score
containing both HFE SNPs and TMPRSS6 rs4820268 were stronger
predictors of supplement use than individual genotypes.

Genotypes and potential confounders

We looked at the association between genotype/diplotype/
genotype score in mothers and 19 potential confounding factors.
We found evidence for a small number of associations at P=0.05
level, which are as follows: HFE rs1800562 and alcohol intake
before pregnancy (P=0.02), HFE rs1800562 and social class
(P=0.02), HFE rs1800562 and taking folate supplementation
(P=0.001), TMPRSS6 rs4820268 and parity (P=0.01), These four
associations are 5.3% of the total number of genotype—potential
confounder associations tested (that is, the expected number (5%)
due to chance). Associations between confounders and diplo-
types/genotype score largely reflected associations with individual
genotypes and were as follows: HFE diplotypes and social class
(P=10.001); HFE diplotypes and folate supplementation (P = 0.001);
genotype score and infection during pregnancy (P=0.003); and
genotype score and folate supplementation (P=0.001).

Genotype and mothers’ educational level

We found associations between mothers’ educational level and
HFE rs1799945 genotypes, such that mothers with the rare allele
(associated with higher iron levels) were more likely to have an
educational level that was greater than O-level (Table 4). We also
found an association between the TF rs3811647 genotype and
mother’s educational level, such that the A allele (associated with
higher transferrin levels) was associated with a higher educational
attainment. Adjustment for population stratification did not
change these results.

Mother’s haemoglobin level in pregnancy and child’s IQ

Mother’s haemoglobin levels early in pregnancy among mothers
on whom we had offspring IQ data were on average (mean)
12.3 g/dl, with a range of 7.2-16.2, and only 7.8% of mothers had
levels considered to be low (<11g/dl). If we take the last
haemoglobin measurement that was available during pregnancy,

the mean haemoglobin level during pregnancy among mothers
who had children with WISC data was 11.4g/dl, range 7.3-15.7,
with 30% of mothers having haemoglobin levels of <11 g/dl.
Mothers’” haemoglobin level (g/dl) early in pregnancy (adjusted by
gestation in days when measured) was not found to be associated
with child’s WISC score at age 8 (mean difference in WISC score
per g/dl=0.01 (95% confidence interval (Cl)= —0.44 to 0.46),
P=0.96) even after the adjustment for iron supplement intake
during pregnancy (mean difference=0.11 (95% Cl= —0.37 to
0.60) P=0.65). There was weak evidence that haemoglobin levels
measured after 28 weeks of pregnancy (adjusted by gestation in
days when measured) were associated with the child’s IQ score
(mean difference in WISC score per g/dl =0.41 (95% Cl= — 0.07 to
0.46), P=0.09), but this effect disappeared after adjustment for
potential confounders g/dl=0.01 (95% Cl= —0.53 to 0.51),
P=0.98).

Mother’s genotype and child’s IQ score

We found no evidence of associations between mother’s
genotype and child’s WISC score at age 8 (Table 5) in our crude
analysis and in an analysis adjusted by iron supplementation,
child’'s genotype, mother's education level and population
stratification.

DISCUSSION

We found strong evidence of associations between two SNPs in
HFE, which have been previously shown to cause iron overload,
and haemoglobin levels during early pregnancy in this large
population based study of women. We also found strong
associations between rs4820268 in TMPRSS6 and haemoglobin
levels. In addition, an iron genotype score that comprised of the
above three SNPs was associated (P=1.9 x 10~ '®) with a 0.3 s.d.
difference in haemoglobin levels. Therefore, we concluded that
we had a good genetic instrument with which to determine
whether iron levels during pregnancy were associated with
offspring cognition. We did not find any evidence for an
association between TF rs3811647 and haemoglobin levels,
although the A allele at this site has previously been reported to

Table 4. Maternal education levels according to genotype at iron-related SNPs
dbSNP Gene Genotype® <O level O level >0 level Unadjusted OR (95% Cl) Adjust‘edb OR (95% Cl)
(%) (%) (%) P-value N P-value N
rs1799945 HFE GG 0 (22.4) 40 (29.8) 64 (47.8) 0.89 (0.81, 0.98) 0.01 6152 0.89 (0.80, 0.99) 0.03 4535
CG 418 (28.3) 540 (36.6) 518 (35.1)
CC 1378 (30.4) 1600 (35.2) 1564 (34.4)
rs1800562 HFE AA 8 (28.6) 9 (32.1) 1(39.3) 1.00 (0.88, 1.14) 1.00 6139 0.99 (0.85, 1.15) 0.89 4521
GA 259 (32.7) 237 (29.9) 296 (37.4)
GG 1553 (29.2) 1928 (36.3) 1838 (34.5)
rs3811647 TF GG 803 (30.1) 954 (35.8) 905 (34.0) 1.08 (1.01, 1.16) 0.03 6112 1.10 (1.01, 1.19) 0.03 4517
GA 829 (29.9) 971 (35.0) 971 (35.0)
AA 184 (27.1) 226 (33.3) 269 (39.6)
rs4820268 TMPRSS6 AA 506 (30.9) 567 (34.6) 566 (34.5) 1.03 (0.97, 1.10) 0.34 6133  1.03 (0.95, 1.11) 0.45 4533
AG 924 (29.0) 1153 (36.1) 1115 (34.9)
GG 383 (29.4) 453 (34.8) 466 (35.8)
rs1799945/rs1800562 HFE 2 risk alleles 81 (28.8) 80 (28.5) 120 (42.7) 0.92 (0.85, 0.99) 0.04 6055 0.91 (0.83, 1.00) 0.05 4465
3 risk alleles 581 (29.1) 708 (354) 710 (35.5)
4 risk alleles 1135 (30.1) 1359 (36.0) 1281 (33.9)
genotypic score HFE-TMPRSS6 <3 risk alleles 241 (30.6) 249 (31.9) 294 (37.5) 0.99 (0.94, 1.04) 0.61 5974 0.98 (0.92, 1.04) 0.54 4417
4 risk alleles 591 (29.5) 724 (36.2) 687 (34.3)
5 risk alleles 684 (28.8) 872 (36.7) 818 (34.5)
6 risk alleles 252 (30.9) 279 (34.3) 283 (34.8)

genotype, adjusted by maternal principle component.

aGenotypes are ordered from higher to lower associated iron levels. POR obtained using ordered logistic regression of 3-level maternal education and
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Table 5. Maternal genotypes at SNPs in iron-related genes and full scale 1Q of their children at 8 years of age
dbSNP Gene Genotype  Full scale IQ  s.d N Unadjusted® effect (95% Cl) Adjusted®® effect (95% Cl)
P-value N P-value N
rs1799945 HFE GG 105.9 17.0 79 0.50 (-0.59, 1.58) 0.37 3543 1.09 (-0.27, 2.45) 0.39 2402
cG 102.9 16.3 850
cC 104.1 164 2614
rs1800562 HFE AA 107.1 12.8 15 -0.52 (-2.05, 1.00) 0.50 3535 0.38 (-1.57, 2.32) 0.71 2352
GA 104.2 16.6 455
GG 103.8 16.5 3065
rs3811647 TF GG 104.0 163 1511 -0.13 (-0.95, 0.69) 0.76 3514  -0.36 (-1.40, 0.68) 0.50 2378
GA 103.9 163 1613
AA 103.6 173 390
rs4820268 TMPRSS6 AA 104.3 16.0 962 -0.74 (-1.52, 0.05) 0.07 3527 -0.23 (-1.23, 0.77) 0.66 2389
AG 104.1 16.7 1837
GG 102.7 16.3 728
rs1799945/rs1800562 2 risk alleles 0 106.1 16.3 156 0.11 (-0.83, 1.05) 0.82 3490 0.99 (-0.19, 2.18) 0.10 2312
3 risk alleles 1 103.1 16.5 1163
4 risk alleles 2 104.0 164 2171
genotypic score <3 risk alleles 0 103.8 16.1 464 -0.32 (-0.94, 0.30) 0.31 3444 0.22 (-0.54, 0.98) 0.57 2254
4 risk alleles 1 104.4 16.7 1143
5 risk alleles 2 103.5 16.1 1392
6 risk alleles 3 103.3 16.8 445
2Effect = mean difference in offspring 1Q per risk allele or unit increase in genetic score. "Model adjusted by iron supplementation, child’s genotype or score,
maternal education and population stratification.

be associated with serum transferrin and reduced transferrin
saturation,?® it has not previously been demonstrated to be
associated with haemoglobin to our knowledge.

The association between mother’s genotype and haemoglobin
was strong at the beginning of pregnancy, and we expected this
association to be less evident later on in pregnancy, as women in
the UK with low iron levels during pregnancy are advised by a
medical practitioner to take supplements. Those genotypes
associated with low haemoglobin levels are also associated with
an increased likelihood of receiving iron supplements, and
supplementation will remove or at least diminish an association
between genotype and iron levels. However, we tested by
comparing genotypes with haemoglobin later in pregnancy and
found that the associations were as strong.

We found no evidence that low iron levels in pregnancy have a
detrimental effect on the developing fetus’ brain, either in the
observational analysis (using haemoglobin measured in early and
late pregnancy) or using genotypes in the Mendelian randomiza-
tion approach. Our study had sufficient power to detect a
0.80-unit change in 1Q score per g/dl increase in haeomglobin
with a P-value <0.05 (assuming 80% power) in the observational
analysis. As a 1-g/dl change in haemoglobin levels is quite large,
this is likely to be at the lower end of what is clinically relevant,
thus we were satisfied that we had sufficient power to detect an
effect in the observational analysis. The power to detect an effect
in the Mendelian randomization analysis is much lower; however,
as we did not see an effect of haemoglobin in the observational
analysis, we are not concerned that we missed an important effect
of prenatal exposure to iron on childhood IQ due to low power in
the study. There are several limitations to this analysis, which are
described below. The first is that while nutrient intake and
therefore haemoglobin levels of the mother during pregnancy are
expected to be strongly confounded by socio-economic factors,
the expectation is that genotype will not be associated with these
factors.? In this study, we found some evidence that rare alleles in
HFE rs1800562 and TF rs3811647 were associated with an
increased educational attainment among ALSPAC mothers.
These variants are both likely to have an effect on overall iron
availability. The rare variant in HFE rs1800562 causes iron overload
and is associated with an increase in haemoglobin levels,'*??
whereas the rare allele in TF rs3811647 is associated with higher
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transferrin levels® and lower transferrin saturation.”® But more
importantly for this study, as maternal educational level is one of
the strongest predictors of childhood cognition, this violates the
assumption of no confounding by genotype. However,
adjustment of our mothers’ genotype-childs’ IQ analysis by
mother’s educational level did not change our conclusions. The
frequency of the alleles used in this analysis differs widely by
population, so there is also the potential for any association to be
confounded by population structure. However, we adjusted our
analysis by the top 10 principal components that reflect the
population structure from GWAS data carried out on this
population and found that this adjustment did not affect our
conclusions.

The HFE variant rs1800562 that was associated with educational
status was also associated with social class, which may be a
chance finding or may be a consequence of the association with
educational status, as the two are closely linked. Similarly, the
association between genotypes at this loci and taking folic acid
supplements could be due to chance or could be because many
women taking iron supplements may take iron with folic acid.

A further limitation of this study is that the number of women
with HFE rare homozygous genotypes were small and our study
therefore does not have any power to detect effects with these
genotypes. Replication in a larger study would be desirable to
confirm our findings; however, we are not aware of any large
studies with DNA from mothers and 1Q from children that could
readily do this analysis.

Finally, as this is a relatively well-nourished population who
were closely monitored during pregnancy, and given supplements
if their iron levels were found to be low, it is possible that the
haemoglobin levels in this study simply did not fall low enough to
be detrimental to the fetus. By the end of pregnancy 30% of the
mothers had levels that are generally considered to be low.
However, it is not known whether these are sufficiently low as to
affect cognitive development in their offspring, indeed it is likely
that levels in the mothers are low, because iron is preferentially
diverted to the fetus to negate any deleterious effects.

In conclusion, our results do not support the hypothesis that
exposure to low levels of iron early in fetal life adversely affect
brain development and therefore 1Q in childhood. However, our
findings should be interpreted with caution owing to the fact that
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pregnant women with low haemoglobin levels in the UK receive
iron supplements fairly early on in pregnancy; thus, we are unable
to study the effects of low iron in the second and third trimester of
pregnancy in this cohort.
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