
TOPIC PAGE

Origins of DNA replication

Babatunde Ekundayo, Franziska BleichertID*

Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

* franziska.bleichert@yale.edu

Abstract

In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the

genetic material between generations requires timely and accurate duplication of DNA by

semiconservative replication prior to cell division to ensure each daughter cell receives the

full complement of chromosomes. DNA synthesis of daughter strands starts at discrete

sites, termed replication origins, and proceeds in a bidirectional manner until all genomic

DNA is replicated. Despite the fundamental nature of these events, organisms have evolved

surprisingly divergent strategies that control replication onset. Here, we discuss commonali-

ties and differences in replication origin organization and recognition in the three domains of

life.

Introduction

In the second half of the 19th century, Gregor Mendel’s pioneering work on the inheritance of

traits in pea plants suggested that specific “factors” (today established as genes) are responsible

for transferring organismal traits between generations [1]. Although proteins were initially

assumed to serve as the hereditary material, Avery, MacLeod and McCarty established a cen-

tury later DNA, which had been discovered by Friedrich Miescher, as the carrier of genetic

information [2]. These findings paved the way for research uncovering the chemical nature of

DNA and the rules for encoding genetic information, and ultimately led to the proposal of the

double-helical structure of DNA by Watson and Crick [3]. This three-dimensional model of

DNA illuminated potential mechanisms by which the genetic information could be copied in a

semiconservative manner prior to cell division, a hypothesis that was later experimentally sup-

ported by Meselson and Stahl using isotope incorporation to distinguish parental from newly

synthesized DNA [4][5]. The subsequent isolation of DNA polymerases, the enzymes that cata-

lyze the synthesis of new DNA strands, by Kornberg and colleagues pioneered the identifica-

tion of many different components of the biological DNA replication machinery, first in the

bacterial model organism E. coli, but later also in eukaryotic life forms [6].

A key prerequisite for DNA replication is that it must occur with extremely high fidelity

and efficiency exactly once per cell cycle to prevent the accumulation of genetic alterations

with potentially deleterious consequences for cell survival and organismal viability [7]. Incom-

plete, erroneous, or untimely DNA replication events can give rise to mutations, chromosomal

polyploidy or aneuploidy, and gene copy number variations, each of which in turn can lead to
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diseases, including cancer [8][9]. To ensure complete and accurate duplication of the entire

genome and the correct flow of genetic information to progeny cells, all DNA replication

events are not only tightly regulated with cell cycle cues but are also coordinated with other

cellular events such as transcription and DNA repair [10][11][12].

DNA replication is divided into different stages (Fig 1). During initiation, the replication

machineries–termed replisomes–are assembled on DNA in a bidirectional fashion. These

assembly loci constitute the start sites of DNA replication or replication origins. In the elonga-

tion phase, replisomes travel in opposite directions with the replication forks, unwinding the

DNA helix and synthesizing complementary daughter DNA strands using both parental

strands as templates. Once replication is complete, specific termination events lead to the dis-

assembly of replisomes. As long as the entire genome is duplicated before cell division, one

might assume that the location of replication start sites does not matter; yet, it has been shown

that many organisms use preferred genomic regions as origins [13][14]. The necessity to regu-

late origin location likely arises from the need to coordinate DNA replication with other pro-

cesses that act on the shared chromatin template to avoid DNA strand breaks and DNA

damage [8][12][15][16][17][18][19].

The replicon model

More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to

explain the regulation of chromosomal DNA synthesis in E. coli [20]. The model postulates

that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA ele-

ment, the replicator, to promote replication onset at a nearby origin (Fig 1A, i). Once bound

to replicators, initiators (often with the help of co-loader proteins) deposit replicative helicases

onto DNA, which subsequently drive the recruitment of additional replisome components

and the assembly of the entire replication machinery (Fig 1A, ii). The replicator thereby speci-

fies the location of replication initiation events, and the chromosome region that is replicated

from a single origin or initiation event is defined as the replicon.

A fundamental feature of the replicon hypothesis is that it relies on positive regulation to

control DNA replication onset, which can explain many experimental observations in bacterial

and phage systems [20]. For example, it accounts for the failure of extrachromosomal DNAs

without origins to replicate when introduced into host cells. It further rationalizes plasmid

incompatibilities in E. coli, where certain plasmids destabilize each other’s inheritance due to

competition for the same molecular initiation machinery [21]. By contrast, a model of negative

regulation (analogous to the replicon-operator model for transcription) fails to explain the

above findings [20]. Nonetheless, research subsequent to Jacob’s, Brenner’s and Cuzin’s pro-

posal of the replicon model has discovered many additional layers of replication control in

bacteria and eukaryotes that comprise both positive and negative regulatory elements,

highlighting both the complexity and the importance of restricting DNA replication tempo-

rally and spatially [22][23][24].

The concept of the replicator as a genetic entity has proven very useful in the quest to iden-

tify replicator DNA sequences and initiator proteins in prokaryotes, and to some extent also in

eukaryotes, although the organization and complexity of replicators differ considerably

between the domains of life (for reviews, see [25][26]). While bacterial genomes typically con-

tain a single replicator that is specified by consensus DNA sequence elements and that controls

replication of the entire chromosome (Fig 1A), most eukaryotic replicators–with the exception

of budding yeast–are not defined at the level of DNA sequence; instead, they appear to be spec-

ified combinatorially by local DNA structural and chromatin cues [27][28][29][30] [31][32]

[33][34][35][36]. Eukaryotic chromosomes are also much larger than their bacterial
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counterparts, raising the need for initiating DNA synthesis from many origins simultaneously

to ensure timely replication of the entire genome (Fig 1B). Additionally, many more replica-

tive helicases are loaded than activated to initiate replication in a given cell cycle (Fig 1B). The

context-driven definition of replicators and selection of origins suggests a relaxed replicon

model in eukaryotic systems that allows for flexibility in the DNA replication program [25].

Although replicators and origins can be spaced physically apart on chromosomes, they often

co-localize or are located in close proximity; for simplicity, we will thus refer to both elements

as ‘origins’ throughout this review. Taken together, the discovery and isolation of origin

sequences in various organisms represents a significant milestone towards gaining mechanistic

understanding of replication initiation. In addition, these accomplishments had profound bio-

technological implications for the development of shuttle vectors that can be propagated in

bacterial, yeast, and mammalian cells [37][38][39].

Bacterial replication origins

Most bacterial chromosomes are circular and contain a single origin of chromosomal replica-

tion (oriC). Bacterial oriC regions are surprisingly diverse in size (ranging from 250 bp to 2

Fig 1. Models for bacterial (A) and eukaryotic (B) DNA replication initiation. A) Circular bacterial chromosomes

contain a cis-acting element, the replicator, that is located at or near replication origins. i) The replicator recruits

initiator proteins in a DNA sequence-specific manner, which results in melting of the DNA helix and loading of the

replicative helicase onto each of the single DNA strands (ii). iii) Assembled replisomes bidirectionally replicate DNA to

yield two copies of the bacterial chromosome. B) Linear eukaryotic chromosomes contain many replication origins.

Initiator binding (i) facilitates replicative helicase loading (ii) onto duplex DNA to license origins. iii) A subset of

loaded helicases is activated for replisome assembly. Replication proceeds bidirectionally from origins and terminates

when replication forks from adjacent active origins meet (iv).

https://doi.org/10.1371/journal.pgen.1008320.g001
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kbp), sequence, and organization [41][42]; nonetheless, their ability to drive replication onset

typically depends on sequence-specific readout of consensus DNA elements by the bacterial

initiator, a protein called DnaA [43][44][45][46]. Origins in bacteria are either continuous or

bipartite and contain three functional elements that control origin activity: conserved DNA

repeats that are specifically recognized by DnaA (called DnaA-boxes), an AT-rich DNA

unwinding element (DUE), and binding sites for proteins that help regulate replication initia-

tion (for reviews, see [13][47][48]; Fig 2A). Interactions of DnaA both with the double-

stranded (ds) DnaA-box regions and with single-stranded (ss) DNA in the DUE are important

for origin activation and are mediated by different domains in the initiator protein: a helix-

turn-helix (HTH) DNA binding element and an ATPase associated with various cellular activi-

ties (AAA+) domain, respectively (Fig 2B) [49][50][51][52][53][54][55][56]. While the

sequence, number, and arrangement of origin-associated DnaA-boxes vary throughout the

bacterial kingdom, their specific positioning and spacing in a given species are critical for oriC
function and for productive initiation complex formation [41][42][57][58][59][60][61].

Among bacteria, E. coli is a particularly powerful model system to study the organization,

recognition, and activation mechanism of replication origins. E. coli oriC comprises an

approximately 260 bp region containing four types of initiator binding elements that differ in

their affinities for DnaA and their dependencies on the co-factor ATP (Fig 2A). DnaA-boxes

R1, R2, and R4 constitute high-affinity sites that are bound by the HTH domain of DnaA irre-

spective of the nucleotide-binding state of the initiator [43][62][63][64][65][66]. By contrast,

the I, τ, and C-sites, which are interspersed between the R-sites, are low-affinity DnaA-boxes

and associate preferentially with ATP-bound DnaA, although ADP-DnaA can substitute for

ATP-DnaA under certain conditions [67][68][69][60]. Binding of the HTH domains to the

high- and low-affinity DnaA recognition elements promotes ATP-dependent higher-order

oligomerization of DnaA’s AAA+ modules into a right-handed filament that wraps duplex

DNA around its outer surface, thereby generating superhelical torsion that facilitates melting

of the adjacent AT-rich DUE (Fig 2C) [49][70][71][72]. DNA strand separation is additionally

aided by direct interactions of DnaA’s AAA+ ATPase domain with triplet repeats, so-called

DnaA-trios, in the proximal DUE region [73]. The engagement of single-stranded trinucleo-

tide segments by the initiator filament stretches DNA and stabilizes the initiation bubble by

preventing reannealing [53]. The DnaA-trio origin element is conserved in many bacterial spe-

cies, indicating it is a key element for origin function [73]. After melting, the DUE provides an

entry site for the E. coli replicative helicase DnaB, which is deposited onto each of the single

DNA strands by its loader protein DnaC.

Although the different DNA binding activities of DnaA have been extensively studied bio-

chemically and various apo, ssDNA-, or dsDNA-bound structures have been determined [52]

[53][54][71], the exact architecture of the higher-order DnaA-oriC initiation assembly remains

unclear. Two models have been proposed to explain the organization of essential origin ele-

ments and DnaA-mediated oriC melting. The two-state model assumes a continuous DnaA fil-

ament that switches from a dsDNA binding mode (the organizing complex) to an ssDNA

binding mode in the DUE (the melting complex) (Fig 2C, left panel) [71][74]. By contrast, in

the loop-back model, the DNA is sharply bent in oriC and folds back onto the initiator fila-

ment so that DnaA protomers simultaneously engage double- and single-stranded DNA

regions (Fig 2C, right panel) [75]. Elucidating how exactly oriC DNA is organized by DnaA

remains thus an important task for future studies. Insights into initiation complex architecture

will help explain not only how origin DNA is melted, but also how a replicative helicase is

loaded directionally onto each of the exposed single DNA strands in the unwound DUE, and

how these events are aided by interactions of the helicase with the initiator and specific loader

proteins.
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Archaeal replication origins

Archaeal replication origins share some but not all of the organizational features of bacterial

oriC. Unlike bacteria, archaea often initiate replication from multiple origins per chromosome

(one to four have been reported) [76][77][78][79][80][81][82] [83][42]; yet, archaeal origins

also bear specialized sequence regions that control origin function (for recent reviews, see [84]

Fig 2. Origin organization and recognition in bacteria. A) Schematic of the architecture of E. coli origin oriC, Thermotoga maritima oriC, and the

bipartite origin in Helicobacter pylori. The DUE is flanked on one side by several high- and weak-affinity DnaA-boxes as indicated for E. coli oriC. B)

Domain organization of the E. coli initiator DnaA. The magenta circle indicates the single-strand DNA binding site. C) Models for origin

recognition and melting by DnaA. In the two-state model (left panel), the DnaA protomers transition from a dsDNA binding mode (mediated by

the HTH-domains recognizing DnaA-boxes) to an ssDNA binding mode (mediated by the AAA+ domains). In the loop-back model, the DNA is

sharply bent backwards onto the DnaA filament (facilitated by the regulatory protein IHF [40]) so that a single protomer binds both duplex and

single-stranded regions. In either instance, the DnaA filament melts the DNA duplex and stabilizes the initiation bubble prior to loading of the

replicative helicase (DnaB in E. coli). HTH–helix-turn-helix domain, DUE–DNA unwinding element, IHF–integration host factor.

https://doi.org/10.1371/journal.pgen.1008320.g002
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[85][86]). These elements include both DNA sequence-specific origin recognition boxes

(ORBs or miniORBs) and an AT-rich DUE that is flanked by one or several ORB regions [82]

[87]. ORB elements display a considerable degree of diversity in terms of their number,

arrangement, and sequence, both among different archaeal species and among different ori-

gins within in a single species [77][82][88]. An additional degree of complexity is introduced

by the initiator, Orc1/Cdc6 in archaea, which binds to ORB regions. Archaeal genomes typi-

cally encode multiple paralogs of Orc1/Cdc6 that vary substantially in their affinities for dis-

tinct ORB elements and that differentially contribute to origin activities [82][89][90][91]. In

Sulfolobus solfataricus, for example, three chromosomal origins have been mapped (oriC1,

oriC2, and oriC3; Fig 3A), and biochemical studies have revealed complex binding patterns of

initiators at these sites (Fig 3B) [82][83][92][93]. The cognate initiator for oriC1 is Orc1-1,

which associates with several ORBs at this origin [82][90]. OriC2 and oriC3 are bound by both

Orc1-1 and Orc1-3 [82][90][93]. Conversely, a third paralog, Orc1-2, footprints at all three ori-

gins but has been postulated to negatively regulate replication initiation [82][93]. Additionally,

the WhiP protein, an initiator unrelated to Orc1/Cdc6, has been shown to bind all origins as

well and to drive origin activity of oriC3 in the closely related Sulfolobus islandicus [90][92].

Because archaeal origins often contain several adjacent ORB elements, multiple Orc1/Cdc6

paralogs can be simultaneously recruited to an origin and oligomerize in some instances [91]

[94]; however, in contrast to bacterial DnaA, formation of a higher-order initiator assembly

does not appear to be a general prerequisite for origin function in the archaeal domain.

Structural studies have provided insights into how archaeal Orc1/Cdc6 recognizes ORB ele-

ments and remodels origin DNA [94][95]. Orc1/Cdc6 paralogs are two-domain proteins and

are composed of a AAA+ ATPase module fused to a C-terminal winged-helix fold (Fig 3C)

[96][97][98]. DNA-complexed structures of Orc1/Cdc6 revealed that ORBs are bound by an

Orc1/Cdc6 monomer despite the presence of inverted repeat sequences within ORB elements

[94][95]. Both the ATPase and winged-helix regions interact with the DNA duplex but contact

the palindromic ORB repeat sequence asymmetrically, which orients Orc1/Cdc6 in a specific

direction on the repeat [94][95]. Interestingly, the DUE-flanking ORB or miniORB elements

often have opposite polarities [77][82][91][99][100], which predicts that the AAA+ lid subdo-

mains and the winged-helix domains of Orc1/Cdc6 are positioned on either side of the DUE

in a manner where they face each other (Fig 3B, bottom panel) [94][95]. Since both regions of

Orc1/Cdc6 associate with the minichromosome maintenance (MCM) replicative helicase

[101][102], this specific arrangement of ORB elements and Orc1/Cdc6 is likely important for

loading two MCM complexes symmetrically onto the DUE (Fig 3B) [82]. Surprisingly, while

the ORB DNA sequence determines the directionality of Orc1/Cdc6 binding, the initiator

makes relatively few sequence-specific contacts with DNA [94][95]. However, Orc1/Cdc6

underwinds and bends DNA, suggesting that it relies on a mix of both DNA sequence and

context-dependent DNA structural features to recognize origins [94][95][103]. Notably, base

pairing is maintained in the distorted DNA duplex upon Orc1/Cdc6 binding in the crystal

structures [94][95], whereas biochemical studies have yielded contradictory findings as to

whether archaeal initiators can melt DNA similarly to bacterial DnaA [90][91][104]. Although

the evolutionary kinship of archaeal and eukaryotic initiators and replicative helicases indi-

cates that archaeal MCM is likely loaded onto duplex DNA (see next section), the temporal

order of origin melting and helicase loading, as well as the mechanism for origin DNA melting,

in archaeal systems remains therefore to be clearly established. Likewise, how exactly the

MCM helicase is loaded onto DNA needs to be addressed in future studies.
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Eukaryotic replication origins

Origin organization, specification, and activation in eukaryotes are more complex than in bac-

terial or archaeal kingdoms and significantly deviate from the paradigm established for pro-

karyotic replication initiation. The large genome sizes of eukaryotic cells, which range from 12

Mbp in S. cerevisiae to 3 Gbp in humans, necessitates that DNA replication starts at several

hundred (in budding yeast) to tens of thousands (in humans) origins to complete DNA repli-

cation of all chromosomes during each cell cycle (for recent reviews, see [32][23]). With the

exception of S. cerevisiae and related Saccharomycotina species, eukaryotic origins do not con-

tain consensus DNA sequence elements but their location is influenced by contextual cues

such as local DNA topology, DNA structural features, and chromatin environment [25][31]

[33]. Nonetheless, eukaryotic origin function still relies on a conserved initiator protein com-

plex to load replicative helicases onto DNA during the late M and G1 phases of the cell cycle, a

step known as origin licensing (Fig 1B). [107] In contrast to their bacterial counterparts, repli-

cative helicases in eukaryotes are loaded onto origin duplex DNA in an inactive, double-hex-

americ form and only a subset of them (10–20% in mammalian cells) is activated during any

given S phase, events that are referred to as origin firing (Fig 1B) [108][109][110]. The location

of active eukaryotic origins is therefore determined on at least two different levels, origin

licensing to mark all potential origins, and origin firing to select a subset that permits assembly

of the replication machinery and initiation of DNA synthesis. The extra licensed origins serve

as backup and are activated only upon slowing or stalling of nearby replication forks, ensuring

that DNA replication can be completed when cells encounter replication stress [111][112].

Together, the excess of licensed origins and the tight cell cycle control of origin licensing and

firing embody two important strategies to prevent under- and overreplication and to maintain

the integrity of eukaryotic genomes.

Fig 3. Origin organization and recognition in archaea. A) The circular chromosome of Sulfolobus solfataricus contains three different origins. B)

Arrangement of initiator binding sites at two S. solfataricus origins, oriC1 and oriC2. Orc1-1 association with ORB elements is shown for oriC1. Recognition

elements for additional Orc1/Cdc6 paralogs are also indicated, while WhiP binding sites have been omitted. C) Domain architecture of archaeal Orc1/Cdc6

paralogs. The orientation of ORB elements at origins leads to directional binding of Orc1/Cdc6 and MCM loading in between opposing ORBs (in B).

(m)ORB–(mini-)origin recognition box, DUE–DNA unwinding element, WH–winged-helix domain.

https://doi.org/10.1371/journal.pgen.1008320.g003
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Early studies in S. cerevisiae indicated that replication origins in eukaryotes might be recog-

nized in a DNA-sequence-specific manner analogously to those in prokaryotes. In budding

yeast, the search for genetic replicators lead to the identification of autonomously replicating

sequences (ARS) that support efficient DNA replication initiation of extrachromosomal DNA

[113][114][115]. These ARS regions are approximately 100–200 bp long and exhibit a multi-

partite organization, containing A, B1, B2, and sometimes B3 elements that together are essen-

tial for origin function (Fig 4) [116][117]. The A element encompasses the conserved 11 bp

ARS consensus sequence (ACS) [118][119], which, in conjunction with the B1 element, consti-

tutes the primary binding site for the heterohexameric origin recognition complex (ORC), the

eukaryotic replication initiator [120][121][122][123]. Within ORC, five subunits are predi-

cated on conserved AAA+ ATPase and winged-helix folds and co-assemble into a pentameric

ring that encircles DNA (Fig 4) [123][124][125]. In budding yeast ORC, DNA binding ele-

ments in the ATPase and winged-helix domains, as well as adjacent basic patch regions in

some of the ORC subunits, are positioned in the central pore of the ORC ring such that they

aid the DNA-sequence-specific recognition of the ACS in an ATP-dependent manner [123]

[126]. By contrast, the roles of the B2 and B3 elements are less clear. The B2 region is similar to

the ACS in sequence and has been suggested to function as a second ORC binding site under

certain conditions, or as a binding site for the replicative helicase core [127][128][129][130]

[131]. Conversely, the B3 element recruits the transcription factor Abf1, albeit B3 is not found

at all budding yeast origins and Abf1 binding does not appear to be strictly essential for origin

function [116][132][133].

Origin recognition in eukaryotes other than S. cerevisiae or its close relatives does not con-

form to the sequence-specific readout of conserved origin DNA elements. Pursuits to isolate

specific chromosomal replicator sequences more generally in eukaryotic species, either geneti-

cally or by genome-wide mapping of initiator binding or replication start sites, have failed to

identify clear consensus sequences at origins [134][135][136][137][138][139][140][141][142]

[143][144][145]. Thus, sequence-specific DNA-initiator interactions in budding yeast signify a

specialized mode for origin recognition in this system rather than an archetypal mode for ori-

gin specification across the eukaryotic domain. Nonetheless, DNA replication does initiate at

discrete sites that are not randomly distributed across eukaryotic genomes, arguing that alter-

native means determine the chromosomal location of origins in these systems. These mecha-

nisms involve a complex interplay between DNA accessibility, nucleotide sequence skew (both

AT-richness and CpG islands have been linked to origins), nucleosome positioning, epigenetic

features, DNA topology and certain DNA structural features (e.g., G4 motifs), as well as regula-

tory proteins and transcriptional interference [13][14][30][31][33][146][147][139][148].

Importantly, origin properties vary not only between different origins in an organism and

among species, but some can also change during development and cell differentiation. The

chorion locus in Drosophila follicle cells constitutes a well-established example for spatial and

developmental control of initiation events. This region undergoes DNA-replication-dependent

gene amplification at a defined stage during oogenesis and relies on the timely and specific

activation of chorion origins, which in turn is regulated by origin-specific cis-elements and

several protein factors, including the Myb complex, E2F1, and E2F2 [149][150][151][152]

[153]. This combinatorial specification and multifactorial regulation of metazoan origins has

complicated the identification of unifying features that determine the location of replication

start sites across eukaryotes more generally.

To facilitate replication initiation, ORC assemblies from various species have evolved spe-

cialized auxiliary domains that are thought to aid initiator targeting to chromosomal origins or

chromosomes in general (Fig 4). For example, the Orc4 subunit in S. pombe ORC contains

several AT-hooks that preferentially bind AT-rich DNA [154], while in metazoan ORC the
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TFIIB-like domain of Orc6 is thought to perform a similar function [155]. Metazoan Orc1 pro-

teins also harbor a bromo-adjacent homology (BAH) domain that interacts with H4K20me2--

nucleosomes [106]. Particularly in mammalian cells, H4K20 methylation has been reported to

be required for efficient replication initiation, and the Orc1-BAH domain facilitates ORC asso-

ciation with chromosomes and Epstein-Barr virus origin-dependent replication [156][157]

[158][159][160]. Therefore, it is intriguing to speculate that both observations are mechanisti-

cally linked at least in a subset of metazoa, but this possibility needs to be further explored in

future studies. In addition to the recognition of certain DNA or epigenetic features, ORC also

associates directly or indirectly with several partner proteins that could aid initiator recruit-

ment, including LRWD1, PHIP (or DCAF14), HMGA1a, among others (Fig 4) [29][161][162]

Fig 4. Origin organization and recognition in eukaryotes. Specific DNA elements and epigenetic features involved

in ORC recruitment and origin function are summarized for S. cerevisiae, S. pombe, and metazoan origins. A

schematic of the ORC architecture is also shown, highlighting the arrangement of the AAA+ and winged-helix

domains into a pentameric ring that encircles origin DNA. Ancillary domains of several ORC subunits involved in

targeting ORC to chromosomes are included. Other regions in ORC subunits may also be involved in initiator

recruitment, either by directly or indirectly associating with partner proteins. A few examples are listed. Note that the

BAH domain in S. cerevisiae Orc1 binds nucleosomes [105] but does not recognize H4K20me2 [106]. BAH–bromo-

adjacent homology domain, WH–winged-helix domain, TFIIB–transcription factor II B-like domain in Orc6, G4 –G

quadruplex, OGRE–origin G-rich repeated element.

https://doi.org/10.1371/journal.pgen.1008320.g004
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[163][164][165][166][167]. Interestingly, Drosophila ORC, like its budding yeast counterpart,

bends DNA and negative supercoiling has been reported to enhance DNA binding of this

complex, suggesting that DNA topology and malleability might influence the location of ORC

binding sites across metazoan genomes [27][123][168][169][170]. A molecular understanding

for how ORC’s DNA binding regions might support the readout of structural properties of the

DNA duplex in metazoans rather than of specific DNA sequences as in S. cerevisiae awaits

high-resolution structural information of DNA-bound metazoan initiator assemblies. Like-

wise, how different epigenetic factors contribute to initiator recruitment in metazoan systems

is poorly defined and is an important question that needs to be addressed in more detail.

Once recruited to origins, ORC and its co-factors Cdc6 and Cdt1 drive the deposition of

the minichromosome maintenance 2–7 (Mcm2-7) complex onto DNA (for reviews see [107]

[171]). Like the archaeal replicative helicase core, Mcm2-7 is loaded as a head-to-head double

hexamer onto DNA to license origins (Fig 1B) [108][109][110]. In S-phase, Dbf4-dependent

kinase (DDK) and cyclin-dependent kinase (CDK) phosphorylate several Mcm2-7 subunits

and additional initiation factors to promote the recruitment of the helicase co-activators

Cdc45 and GINS, DNA melting, and ultimately bidirectional replisome assembly at a subset of

the licensed origins (Fig 1B) [172][24]. In both yeast and metazoans, origins are free or

depleted of nucleosomes, a property that is crucial for Mcm2-7 loading, indicating that chro-

matin state at origins regulates not only initiator recruitment but also helicase loading [140]

[173][174][175][176][177]. A permissive chromatin environment is further important for ori-

gin activation and has been implicated in regulating both origin efficiency and the timing of

origin firing. Euchromatic origins typically contain active chromatin marks, replicate early,

and are more efficient than late-replicating, heterochromatic origins, which conversely are

characterized by repressive marks [23][175][178]. Not surprisingly, several chromatin

remodelers and chromatin-modifying enzymes have been found to associate with origins and

certain initiation factors [179][180], but how their activities impact different replication initia-

tion events remains largely obscure. Remarkably, cis-acting “early replication control ele-

ments” (ERCEs) have recently also been identified to help regulate replication timing and to

influence 3D genome architecture in mammalian cells [181]. Understanding the molecular

and biochemical mechanisms that orchestrate this complex interplay between 3D genome

organization, local and higher-order chromatin structure, and replication initiation is an excit-

ing topic for further studies.

Why have metazoan replication origins diverged from the DNA sequence-specific recogni-

tion paradigm that determines replication start sites in prokaryotes and budding yeast? Obser-

vations that metazoan origins often co-localize with promoter regions in Drosophila and

mammalian cells and that replication-transcription conflicts due to collisions of the underlying

molecular machineries can lead to DNA damage suggest that proper coordination of tran-

scription and replication is important for maintaining genome stability [135][137][139][142]

[182][16][17][19]. Recent findings also point to a more direct role of transcription in influenc-

ing the location of origins, either by inhibiting Mcm2-7 loading or by repositioning of loaded

Mcm2-7 on chromosomes [183][148]. Sequence-independent (but not necessarily random)

initiator binding to DNA additionally allows for flexibility in specifying helicase loading sites

and, together with transcriptional interference and the variability in activation efficiencies of

licensed origins, likely determines origin location and contributes to the co-regulation of DNA

replication and transcriptional programs during development and cell fate transitions.

Computational modeling of initiation events in S. pombe, as well as the identification of cell-

type specific and developmentally-regulated origins in metazoans, are in agreement with this

notion [136][144][184][185][186][187][188][148]. However, a large degree of flexibility in ori-

gin choice also exists among different cells within a single population [139][145][185], and the
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molecular mechanisms that lead to the heterogeneity in origin usage remain ill-defined. Map-

ping origins in single cells in metazoan systems and correlating these initiation events with sin-

gle-cell gene expression and chromatin status will be important to elucidate whether origin

choice is purely stochastic or controlled in a defined manner.

Concluding remarks

Although DNA replication is essential for genetic inheritance, defined, site-specific replication

origins are technically not a requirement for genome duplication as long as all chromosomes

are copied in their entirety to maintain gene copy numbers. Certain bacteriophages and

viruses, for example, can initiate DNA replication by homologous recombination independent

of dedicated origins [189]. Likewise, the archaeon Haloferax volcanii uses recombination-

dependent initiation to duplicate its genome when its endogenous origins are deleted [78].

Similar non-canonical initiation events through break-induced or transcription-initiated

replication have been reported in E. coli and S. cerevisiae [190][191][192][193][194]. Nonethe-

less, despite the ability of cells to sustain viability under these exceptional circumstances,

origin-dependent initiation is a common strategy universally adopted across different domains

of life. The controlled assembly of the replication machinery at origins likely confers long-

term advantage to cells by allowing tight cell cycle regulation and by maintaining a specific

replication dynamics. The divergent origin specification modes between prokaryotes and

budding yeast on the one hand and metazoans on the other hand appear to reflect distinct

needs to coordinate the spatiotemporal replication program with gene expression and cell

differentiation programs to ensure not only genetic but also epigenetic inheritance and to pre-

serve cell identity. Deciphering the underlying molecular mechanisms that modulate origin

location, usage, and timing to define the replication program in metazoan systems represents

an important major challenge in the field and will be essential to understand how dysregula-

tion of these events are linked to human diseases. In addition, detailed studies of replication

initiation have focused on a limited number of model systems. The extensively studied fungi

and metazoa are both members of the opisthokont supergroup and exemplify only a small

fraction of the evolutionary landscape in the eukaryotic domain [195]. Comparably few efforts

have been directed at other eukaryotic model systems, such as kinetoplastids or tetrahymena

[196][197][198][199][200] [201][202]. Surprisingly, these studies have revealed interesting dif-

ferences both in origin properties and in initiator composition compared to yeast and metazo-

ans. Further exploration of replication initiation mechanisms across different branches of the

eukaryotic domain will likely yield unexpected insight into the diversity and evolution of this

fundamental biological process.

Supporting information

S1 Text. Version history of the text file.

(XML)

S2 Text. Peer reviews and response to reviews.

(XML)

References

1. Mendel G (1865) Versuche ueber Pflanzenhybriden Verhandlungen des naturforschenden Vereines

in Bruenn, Bd IV Abhandlungen:3–47

2. Avery OT, Macleod CM & McCarty M (1944) Studies on the chemical nature of the substance inducing

transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008320 September 12, 2019 11 / 21

https://en.wikipedia.org/wiki/Haloferax_volcanii
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Opisthokont
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008320.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008320.s002
https://doi.org/10.1371/journal.pgen.1008320


fraction isolated from pneumococcus type iii J. Exp. Med. 79:137–58 [https://doi.org/10.1084/jem.79.

2.137 PMID: 19871359]

3. Watson JD & Crick FH (1953) The structure of DNA Cold Spring Harb. Symp. Quant. Biol. 18:123–31

[https://doi.org/10.1101/sqb.1953.018.01.020 PMID: 13168976]

4. Meselson M & Stahl FW (1958) The replication of DNA in Escherichia coli Proc. Natl. Acad. Sci. U.S.

A. 44:671–82 [https://doi.org/10.1073/pnas.44.7.671 PMID: 16590258]

5. Meselson M & Stahl FW (1958) The replication of DNA Cold Spring Harb. Symp. Quant. Biol. 23:9–12

[https://doi.org/10.1101/sqb.1958.023.01.004 PMID: 13635537]

6. IR Lehman, MJ Bessman, ES Simms & Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic

acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli J. Biol.

Chem. 233:163–70 [PMID: 13563462]

7. O’Donnell M, Langston L & Stillman B (2013) Principles and concepts of DNA replication in bacteria,

archaea, and eukarya Cold Spring Harb Perspect Biol 5:a010108 [https://doi.org/10.1101/

cshperspect.a010108 PMID: 23818497]

8. Barlow JH & Nussenzweig A (2014) Replication initiation and genome instability: a crossroads for

DNA and RNA synthesis Cell. Mol. Life Sci. 71:4545–59 [https://doi.org/10.1007/s00018-014-1721-1

PMID: 25238783]

9. Abbas T, Keaton MA & Dutta A (2013) Genomic instability in cancer Cold Spring Harb Perspect Biol 5:

a012914 [https://doi.org/10.1101/cshperspect.a012914 PMID: 23335075]

10. Siddiqui K, On KF & Diffley JF (2013) Regulating DNA replication in eukarya Cold Spring Harb Per-

spect Biol 5:a012930 [https://doi.org/10.1101/cshperspect.a012930 PMID: 23838438]

11. Sclafani RA & Holzen TM (2007) Cell cycle regulation of DNA replication Annu. Rev. Genet. 41:237–

80 [https://doi.org/10.1146/annurev.genet.41.110306.130308 PMID: 17630848]

12. Garcı́a-Muse T & Aguilera A (2016) Transcription-replication conflicts: how they occur and how they

are resolved Nat. Rev. Mol. Cell Biol. 17:553–63 [https://doi.org/10.1038/nrm.2016.88 PMID:

27435505]
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