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Abstract

Sleep deprivation (SD) could amplify the temporal fluctuation of spontaneous brain

activities that reflect different arousal levels using a dynamic functional connectivity

(dFC) approach. Therefore, we intended to evaluate the test–retest reliability of dFC

characteristics during rested wakefulness (RW), and to explore how the properties of

these dynamic connectivity states were affected by extended durations of acute

sleep loss (28/52 hr). We acquired resting-state fMRI and neuropsychological

datasets in two independent studies: (a) twice during RW and once after 28 hr of SD

(n = 15) and (b) after 52 hr of SD and after 14 hr of recovery sleep (RS; n = 14).

Sliding-window correlations approach was applied to estimate their covariance matri-

ces and corresponding three connectivity states were generated. The test–retest reli-

ability of dFC properties demonstrated mean dwell time and fraction of connectivity

states were reliable. After SD, the mean dwell time of a specific state, featured by

strong subcortical–cortical anticorrelations, was significantly increased. Conversely,

another globally hypoconnected state was significantly decreased. Subjective sleepi-

ness and objective performances were separately positive and negative correlated

with the increased and decreased state. Two brain connectivity states and their alter-

ations might be sufficiently sensitive to reflect changes in the dynamics of brain men-

tal activities after sleep loss.
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1 | INTRODUCTION

Many prior studies (Goel, Rao, Durmer, & Dinges, 2009; Harrison &

Horne, 2000; Louca & Short, 2014; Pilcher & Huffcutt, 1996) demon-

strated that acute sleep deprivation (SD), even a single night of sleep

loss, could induce substantial impairments of cognitive performance,

memory abilities, and emotion regulations. Meanwhile, a growing

body of research (Chee & Chuah, 2008; Yoo, Gujar, Hu, Jolesz, &

Walker, 2007) has emerged showing that the brain structural or func-

tional connectivity (FC) are influenced by acute sleep loss.

In particular, resting-state functional MRI (rs-fMRI) enables us to

record the brain spontaneous activities and to measure their intrinsic
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FC among distinct brain regions. Relative to rested wakefulness (RW),

some rs-fMRI studies (Chen et al., 2018; Kaufmann et al., 2016;

Samann et al., 2010; Tashjian, Goldenberg, Monti, & Galvan, 2018)

revealed that the brain regions belonging to the default mode network

(DMN) and subcortical network were more susceptible to worsen

sleep quality. For instance, Shao et al. (2013) conducted a seed-based

analysis and found that FC strengths between the thalamus, which

plays a critical role in arousal regulation, and several temporal and pre-

frontal regions were reduced after 36 hr of SD. Regarding the changes

of the DMN subnetwork, Chen et al. (2018) found significantly

decreased connectivity within the dorsal DMN but increases within

the ventral DMN and between two subsystems after 24 hr of SD, as

well as significant correlations between these changes and working

memory ability and psychomotor vigilance task speed.

Recently, dynamic functional connectivity (dFC) approach (Allen

et al., 2014; Calhoun, Miller, Pearlson, & Adali, 2014; Chang & Glover,

2010; Preti, Bolton, & Van De Ville, 2017) has been proposed to cap-

ture the temporal features of spontaneous brain activities via short

frames of time courses during rs-fMRI scanning. For dFC analysis, the

covariances were calculated across entire sliding time windows of all

participants and then clustered into several brain connectivity states.

Next, the dFC properties were used for investigating their time-

varying abnormalities in specific populations compared to healthy

controls (Damaraju et al., 2014; Diez-Cirarda et al., 2018; Dong et al.,

2018; Rashid et al., 2018). For example, Rashid et al. (2018) observed

that a high level of autistic traits and autism spectrum disorder diag-

nosis was closely associated with a globally disconnected FC pattern

in 774 6- to 10-year old children. Moreover, these dFC characteristics

achieved high accuracy rate in distinguishing various diseases (Jin

et al., 2017; Yao et al., 2017). Comparing 36 hr of SD with RW, Xu

et al. (2018) identified different occurrence probabilities of seven SD-

and RW-dominant connectivity states. Using an index of eyelid clo-

sure in sleep-deprived subjects, Wang et al., (2016) estimated two

connectivity states reflecting FC pattern of high- and low-arousal

levels. The occurrence of these states predicted inter-subjects' behav-

ioral lapsing and intra-subjects' response speeds (Patanaik et al., 2018;

Yeo, Tandi, & Chee, 2015). However, several studies (Choe et al.,

2017; Zhang, Baum, Adduru, Biswal, & Michael, 2018) debated the

low replicabilities of both temporal brain fluctuations and their dFC

parameters across sliding windows using some large samples of public

datasets.

Therefore, we hypothesized that: (a) the dFC properties drawn

from the temporal features of spontaneous brain activities have high

test–retest reliability between two separate RW sessions, (b) the dFC

matrices of some specific brain connectivity states could effectively

reflect the altered temporal features after acute SD, and (c) the dFC

instabilities correlate with the deficiencies of neuropsychological

performances.

To answer these questions, we performed two independent

within-subjects laboratory studies with rs-fMRI scanning and neuro-

psychological tests after SD and during RW/RS conditions. In details,

we first evaluated the test-retest reliability of dFC properties during

two separate sessions of RW conditions prior to the 28 hr of SD

(Study 1). Then, we statistically examined the differences of dFC prop-

erties after 28 hr of SD to two separate sessions of RW conditions

(Study 1). Similarly, we compared FC during wakefulness after 52 hr

of SD and after 14 hr of recovery sleep (Study 2). Furthermore, we

performed correlation analysis between dFC parameters of the brain

states and neuropsychological tests. Additionally, we examined the

similarities of the estimated brain states between two studies by

combing their rs-fMRI datasets. Finally, to ensure robustness of our

main results, we tested out different sliding window sizes and num-

bers of clusters prior to the final analysis.

2 | METHOD AND MATERIALS

2.1 | Participants and study design

A prior statistical power analysis was conducted based on the results

of a similar previous study comparing dFC properties in healthy con-

trols after 36 hr of SD and RW (Xu et al., 2018). The effect size in this

study was 1.68, which can be considered to be extremely large using

Cohen's (1988) criteria. Based on an alpha = .05 and a power = 0.80,

the projected sample size needed with this effect size (GPower

3.1.9.4 software) is approximately N = 6 to detect significant effects

between SD and RW/recovery sleep (RS). Thus, our proposed sample

size of 13/14 will be sufficient for the purpose to detect the expected

between-conditions differences.

2.1.1 | SD28 study

Fifteen healthy young volunteers (seven female; age: 27.8 ± 5.57 years;

mean body mass index: 23.59 ± 2.91) were recruited in this study. Two

participants were excluded because of the inconsistent scanning

parameters (different Time of Repetition) of rs-fMRI datasets. All sub-

jects underwent clinical examinations to exclude any psychiatric or neu-

rological diseases. One week before arriving to the sleep research lab,

the participants were instructed to maintain 9 hr of sleep duration per

day (22:00/23:00 hr–7:00/8:00 hr) for sleep satiation that was verified

by actigraphy. Once they came to the lab, the sleep episodes were

scheduled from 23:00 to 7:00 hr or from 00:00 to 8:00 hr for nine con-

secutive days, then participants stayed awake for 36 hr. Afterward, all

participants ended with a final 14-hr RS episode (21:00–7:00 hr or

22:00–8:00 hr). The participants were allowed to do some activities

and continuously monitored by our research staff. Light level was mea-

sured at ~650 lx. Participants were nonsmokers and instructed to

refrain from caffeine (confirmed by self-determination) and alcohol

intake 1 week before and during the study. Two days prior and 1 day

prior to SD, we performed MRI scans, labeled as RW1 and RW2 in this

study. The two scans were scheduled 24 hr apart and were carried out

either at 11:00 hr or at 13:00 hr. The third MRI scan was taken 24 hr

after RW2 at 28/29 hr of SD (SD28). Before each MRI scan, we con-

ducted a 10-min version of a psychomotor vigilance task (PVT; Dinges &

Powell, 1985), both a spatial 3-back task and a letter 3-back task, and
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the Karolinska Sleepiness Scale (KSS; Akerstedt & Gillberg, 1990). The

averaged PVT-lapses (reactions longer than 500 ms), PVT-speed, n-

back hits, and KSS sleepiness scores were computed to assess partici-

pants' level of sustained attention, working memory, and subjective

sleepiness (more detailed are provided in Supporting Information). This

study was approved by the Ethics Committee of the Ärztekammer

Nordrhein and informed consent was obtained from all participants.

2.1.2 | SD52 study

In this study, we enrolled 14 young males (age: 28.21 ± 5.21 years,

mean body mass index: 24.39 ± 3.58). Study procedures and neuropsy-

chological tests were documented in detail in a previous publication

(Elmenhorst et al., 2017). In brief, the participants were requested to

maintain their regular sleep habits (time in bed: 23:00 hr to 7:00 hr), to

refrain from caffeine and wear a wrist-actigraph during 1 week, 5 days,

and 3 days before coming to the sleep research lab, respectively. MRI

scans and neuropsychological tests were completed after 52 hr of SD

(SD52) and 14 hr of RS (RS14). Light condition and other setups were

as same as those of the SD28 study. The MRI scanning time was same

as the SD28 study, that is, either at 11:00 hr or at 13:00 hr. The neuro-

psychological tests in this study included a 3-min version of PVT, spatial

3-back task, and KSS sleepiness scores. This study was approved by the

Ethics Committee of the Medical Faculty of the University of

Düsseldorf and informed consent was obtained from all participants.

2.2 | MRI acquisitions

We used a 3T MR-PET Scanner (Biograph mMR, Siemens) to collect

the MRI datasets for SD28 study. During the rs-fMRI scanning, each

participant was instructed to keep the eyes open and concentrate on

the cross presented by a MRI-compatible screen inside the scanner

room. Additionally, a camera was equipped to monitor the partici-

pants' wakefulness during scanning. If the eyes of participants were

closed longer than a blink, they would be addressed over the intercom

system up by the research staff. To diminish the occurrences of micro-

sleep inside the scanner, we only acquired ~5 min of resting-state

fMRI datasets for each run of subject. Under this condition, their neu-

ronal fluctuations were identified as high wake probability thus they

were more likely to stay awake (Tagliazucchi & Laufs, 2014). More

specifically, rs-fMRI datasets were acquired using a gradient-echo

echo planar imaging (GE-EPI) sequence with following parameters:

Time of Repetition (TR) = 2.3 s, Echo Time (TE) = 30 ms, Flip

angle = 90�, matrix size = 64 * 64, number of slices = 36, slice thick-

ness = 3.1 mm, voxel size = 3.1 * 3.1 mm2, 146 volumes in total.

Meanwhile, we conducted a 3D magnetization-prepared rapid acquisi-

tion gradient echo (MPRAGE) anatomical scanning with following

parameters: TR = 2.25 s, TE = 3.03 ms, matrix size = 256 * 256, num-

ber of slices = 176, voxel size = 1 * 1 mm2, slice thickness = 2.25 mm,

flip angle = 90�. For the SD52 study, we used a 3T Siemens MAG-

NETOM Trio MRI scanner (Erlangen, Germany) with a 32-channel

head coil to collect the MRI datasets using same parameters except

TR = 2.2 s and 165 volumes for the rs-fMRI scanning.

2.3 | Rs-fMRI preprocessing

We preprocessed the rs-fMRI datasets using DPABI_V3.1 (http://

rfmri.org/dpabi; Yan, Wang, Zuo, & Zang, 2016) which ran in SPM12

(Revision Number: 7219, http://www.fil.ion.ucl.ac.uk/spm/software/

spm12/). Briefly, the first six and five volumes were discarded to make

sure the participants were adapted to the MRI environments for

SD28 and SD52 study, respectively. Then, we conducted slice-timing

correction and realignment for slices acquisitions and head motion

corrections. Subjects were not excluded as they did not exceed the

head transitions <3 mm, rotations <3� or the mean framewise displace-

ment (FD) value <0.6 mm (Power, Barnes, Snyder, Schlaggar, & Petersen,

2012). As a result, the mean FD values were calculated (SD28: RW1,

0.17 ± 0.10 mm; RW2, 0.14 ± 0.05 mm; SD28, 0.21 ± 0.16 mm; SD52:

SD52, 0.16 ± 0.06 mm; RS14, 0.15 ± 0.07 mm) and no subjects were

excluded in further analysis. The Friston 24-motion parameters, signals

from cerebrospinal fluid and white matter were regressed out as the nui-

sance variables. Finally, we normalized the preprocessed fMRI images to

the MNI standard template space using the DARTEL algorithm and

smoothed them using 4 mm full width at half maximum. As several stud-

ies (Wong, Olafsson, Tal, & Liu, 2013; Yeo et al., 2015) evidenced that

the global signal fluctuations often co-occurred with the arousal drops,

we did not perform the global signal regression during the pre-processing

steps. Prior to independent component analysis (ICA), the voxel-wise var-

iance normalization (z-scored) was conducted for optimizing the follow-

ing temporal decomposition (Allen et al., 2014).

2.4 | ICA and preprocessing

To reproduce the independent components (ICs) for our two SD stud-

ies, we separately employed Group ICA of fMRI Toolbox (GIFTv3.0b,

http://mialab.mrn.org/software/gift/) to estimate the ICs and post-

process our ICA results. First, we reduced the subject-specific

datasets to 120 ICs using principal components analysis (PCA) algo-

rithm and constrained the group datasets to 100 ICs using

expectation–maximization (EM) algorithm (Roweis, 1998). To replicate

our decomposed ICs, the Infomax ICA algorithm was repeated for

10 times in ICASSO and the aggregate spatial maps (SMs) were gener-

ated. Using the group ICA back reconstruction method (Erhardt et al.,

2011), we then generated the subject-specific SMs and their

corresponding time courses. We identified ICs if their peak activations

were located in gray matter and further categorized them into follow-

ing subnetworks: Subcortical (SC), auditory (AUD), default-mode net-

work (DMN), visual (VIS), somatomotor (SM), cognitive control (CC),

and cerebellar (CB) networks. Finally, we postprocessed the ICA

results with detrending linear, quadratic, and cubic trends, removal of

detected outliers, and low-pass filtering with a frequency cutoff of

0.15 Hz.
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2.5 | Dynamic FC processing

The dFC approach was conducted with Temporal dynFN toolbox

implemented in the GIFTv3.0b software. We applied a sliding window of

22 TRs (50.6 s and 48.4 s, respectively) with a Gaussian alpha value

(σ = 3TRs) and a step between windows of 1TR to divide the time course

resulting in 118 and 138 sliding-windows, respectively. To reduce the

inadequacies of short sliding time windows, we estimated variances from

the regularized precision matrix (inverse covariance matrix; Smith et al.,

2011). Based on all covariance matrices, the number of clusters (k) was

determined by the elbow criterion of cluster validity index and cluster

centroids of brain states were calculated by k-means clustering algorithm.

Consequently, we estimate the dFC properties including number of tran-

sitions, mean dwell time, and fraction of states. Briefly, number of state

transitions refers to the number of times that a brain state changes into

another state for each subject. Mean dwell time is measured by the num-

ber of total sliding windows of one brain state divided by the number of

transitions entering this state. Accordingly, the fraction of state repre-

sents the percentage of the number of sliding windows spent in one

state of total number of sliding windows.

F IGURE 1 Independent functional
components and corresponding functional
connectivity network for the 28 hr of
sleep deprivation study. Abbreviations:
ACC, anterior cingulate cortex; AG,
angular gyrus; CB, cerebellar; IOG, inferior
occipital gyrus; IFG, inferior frontal gyrus;
LingualG, lingual gyrus; MFG, middle
frontal gyrus; MOG, middle occipital
gyrus; MTG, middle temporal gyrus;
ParaCG, paracentral gyrus; PoCG,
postcentral gyrus; PreCG, precentral
gyrus; PCC, posterior cingulate cortex;
SPG, superior parietal gyrus; SMG,
supramarginal gyrus; STG, superior
temporal gyrus
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2.6 | Statistical comparisons and correlations
analysis

For the test–retest reliability of each dFC parameter, the intraclass

correlation coefficient (ICC) and their 95% confidence intervals for

two separate sessions of RW conditions were calculated based on a

single-rating, absolute-agreement, two-way mixed-effects model

which is implanted in SPSS22. Subsequently, we respectively applied

one-way repeated ANOVA analysis (factor condition: RW1, RW2,

SD28; or factor condition: SD52, RS14) and paired t test (two-tailed)

F IGURE 2 Cluster centroids of brain states for 28 hr and 52 hr of sleep deprivation. The percentage means the occurrence probability of the
specific brain state across the sliding windows of all subjects. Abbreviations: AUD, auditory network; CB, cerebellar network; CC, cognitive
control network; DMN, default mode network; SC, subcortical network; SM, somatomotor network; VIS, visual network

TABLE 1 Test–retest reliability (TRT), which is indicated by the intraclass correlation coefficient (ICC) and their 95% confident intervals, of
the dynamic functional connectivity parameters during two rested wakefulness conditions in the 28 hr of sleep deprivation study

Mean dwell time (95% CI) Fraction of states (95% CI) Number of state transitions (95% CI)

22 TRs, k = 3 State 1 0.64 (0.18, 0.87) 0.78 (0.41, 0.93) 0.29 (0.13, 0.65)

State 2 0.39 (−0.12, 0.76) 0.59 (0.11, 0.85)

State 3 0.61 (0.09, 0.86) 0.94 (0.82, 0.98)

22 TRs, k = 4 State 1 0.63 (0.16, 0.87) 0.89 (0.68, 0.96) 0.68 (0.05, 0.90)

State 2 0.71 (0.28, 0.9) 0.98 (0.92, 0.99)

State 3 −0.06 (−0.52, 0.47) −0.03 (−0.51, 0.49)

State 4 0.81 (0.49,0.94) 0.96 (0.88, 0.99)

30 TRs, k = 3 State 1 0.86 (0.61, 0.95) 0.82 (0.52, 0.94) 0.36 (0.09, 0.81)

State 2 0.42 (−0.12, 0.78) 0.604 (0.13, 0.86)

State 3 0.55 (0.004, 0.84) 0.83 (0.52, 0.94)

Note: The first column represents the selected sliding window and number of clusters for dynamic functional connectivity analysis. Abbreviations: CI,

confidence interval; k, number of clusters; TRs, time of repetitions.
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to examine the statistical significances of their dFC properties and

neuropsychological tests for the SD28 and SD52 studies. For the

ANOVA analysis, Tukey's honestly significant difference was utilized

to perform post hoc tests. Statistical power for each study was indi-

cated by the effect size using Cohen's d (Hojat & Xu, 2004) and partial

eta squared (η2). Additionally, we computed the Pearson's correlations

coefficient between dFC parameters and neuropsychological tests for

both, SD28 and SD52. All of above statistical comparisons and correla-

tions were conducted using SPSS statistical package version 22 (SPSS

Inc., Chicago, IL) at an uncorrected significant level of α < .05.

2.7 | Validations of the altered dFC properties

Additionally, we processed the two datasets by using a different num-

ber of clusters (k = 4) or sliding-window length (30 TRs) to investigate

the robustness of the methods. Furthermore, both rs-fMRI datasets

were pooled together for an overall group ICA analysis in order to apply

the same independent components and subnetworks of the two stud-

ies to the dFC analysis. Cross-correlations of the dynamic connectivity

states were computed to indicate their similarity. Lastly, we indepen-

dently applied global signal regression (GSR) to access its influences on

our main conclusions during the preprocessing procedures.

3 | RESULTS

3.1 | Differences on head motion and
neuropsychological tests

Head motion (mean FD values) was not significantly different

between conditions (SD28: F[2,11], p = .13, η2 = 0.16; SD52, t = 0.79,

p = .44, Cohen's d = 0.21). For the SD28 study, we observed signifi-

cant increases of PVT-lapses (F[2,11] = 18.28, p < .001, η2 = 0.60) and

KSS sleepiness scores (F[2,11] = 32.04, p < .001, η2 = 0.73), but signif-

icant reductions in PVT-speed (F[2,11] = 22.42, p < .001, η2 = 0.65)

and spatial 3-back hits (F[2,11] = 14.62, p < .001, η2 = 0.55) after 28 hr

of SD compared to RW1 and RW2 (Table S1). For the SD52 study, we

found significantly increased PVT-lapses (t = 2.5, p = .026, Cohen's

d = 0.78), and KSS sleepiness scores (t = 14.27, p < .001, Cohen's

d = 4.96), and decreased PVT-speed (t = −5.68, p < .001, Cohen's d = 1.52)

after 52 hr of SD compared to 14 hr of RS (Table S2).

3.2 | Test–retest reliability of dFC properties
during two sessions of RW

Figure 1 illustrated our identified 39 ICs for the SD28 study and these

ICs were categorized into seven functional subnetworks (Figure 1). Nota-

bly, mostly ICs derived from the SD28 study were replicated through our

SD52 study (37 of total 39 ICs, Figure S1). According to the elbow crite-

rion, the number of clusters was determined as 3. Subsequently, we esti-

mated the corresponding cluster centroids of brain connectivity states

(Figure 2), as well as their dFC parameters. For the test–retest reliability

of RW (Table 1), we found that the number of state transitions showed a

lower ICC value compared to both the mean dwell time and fraction of

states. Moreover, this finding was reproduced when we set the sliding-

window length = 30 TRs or k = 4, respectively (Table 1).

3.3 | Altered dFC properties after acute SD

For the SD28 study, there was no significant difference in number of

state transitions (F[2,11] = 0.25, p = .78, η2 = 0.02) among the three

conditions (i.e., RW1, RW2, and SD28). Meanwhile, we found the

mean dwell time and fraction of State 2 were significantly increased

(F(2,11) = 5.63, p = .03, η2 = 0.32; F(2,11) = 4.69, p = .02, η2 = 0.28),

but mean dwell time of State 3 was significantly reduced (F[2,11] = 3.78,

p = .04, η2 = 0.24) after SD (Figure 3). Follow-up comparisons indicated

that each pairwise comparison between the 28 hr of SD and RW was

significantly different. The dFC parameters of State 1 did not show sig-

nificant differences among three conditions (Figure 3).

For the SD52 study, we also estimated the cluster centroids of three

brain states when k = 3 and found that number of state transitions mis-

sed significance (t = 2.05, p = .061, Cohen's d = 0.81) after SD relative to

after 14 hr of RS (Figure 3). Interestingly, the brain State 2 was

only detected in the sleep-deprived conditions, but both mean dwell time

and fraction of State 3 were significantly reduced (t = −3.13, p = .008,

Cohen's d = 0.84; t = −3.68, p = .003, Cohen's d = 0.98; Figure 3).

3.4 | Correlations analysis after acute SD

For the SD28 study, our correlations revealed that the increased mean

dwell time and fraction of State 3 was significantly associated with a

decreased PVT-speed during both RW1 (Figure 4, p = .022, r = −.63;

p = .004, r = −.74) and RW2 (p = .005, r = −.73; p = .001, r = −.79).

After 28 hr of SD, an increase in mean dwell time of State 3 was also

significantly correlated with a decrease in PVT-speed (p = .044,

r = −.57) and an increase in PVT-lapses (p = .038, r = .56). Meanwhile,

an increase in mean dwell time and fraction of State 2 under SD rela-

tive to RW (RW1-SD28 and RW2-SD28) was significantly correlated

with a decrease in spatial 3-back hits (Figure 5a, p = .018, r = −.64) and

PVT-speed (p = .007, r = −.71; p = .036, r = −.58). We did not observe

any significant correlations between other brain states and the neuro-

psychological tests.

For the SD52 study, the increases of mean dwell time and fraction

of State 1 was significantly associated with a decrease in KSS sleepiness

scores (Figure 4, p = .004, r = −.72; p = .003, r = −.738) but an increase

in the fraction of State 2 was significantly correlated with an increase in

sleepiness (p = .022, r = .61) after 52 hr of SD. Meanwhile, the increases

in mean dwell time and fraction of State 2 under SD relative to recovery

conditions (RS14-SD52) was also significantly correlated with an increase

in KSS sleepiness scores (Figure 5b, p = .023, r = .60; p = .019, r = .61).

We did not find any significant associations between other brain states

and the neuropsychological tests.
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3.5 | Altered dFC properties after acute SD

Similar results were replicated for the SD28 and SD52 studies when

applying a sliding-window length = 30 TRs or k = 4 (please refer to

Figures S2, S3, S5, and S6 for more details). Meanwhile, the use of GSR

reproduced our main findings partly due to the fact of significantly

decreased dynamic properties of State 2 but decreases of State

3 (datasets not shown). For the joint rs-fMRI analysis, we identified

42 independent components and estimated the corresponding connec-

tivity states. Notably, we found State 2 and State 3 of SD28 were

significantly correlated with the States 2 and 3 of SD 52 (Figure S4,

r = .36 and r = .51), as well as the between-group differences of dFC

metrics after SD (Figure S6).

4 | DISCUSSION

In this current study, we applied a dynamic approach to investigate

the alterations of time-varying fluctuations of FC after SD. We

observed that mean dwell time and fraction of two brain connectivity

states were significantly altered after acute SD relative to either the

RW or RS condition. One of these connectivity states (State 2) was

significant increased after prolonged SD, which might represents a

manifestation of light sleep/drowsiness. Moreover, this state was only

present after 52 hr of SD in comparisons with 14 hr of RS. On the

contrary, the dFC parameters (mean dwell time and fraction) of State

3 that occupied high proportion across entire sliding windows were

remarkably reduced after acute SD in our two SD studies. Moreover,

the test–retest reliability of dFC properties across two wakefulness

states suggested that mean dwell time and fraction of states are two

highly reliable measures for evaluating the time-varying fluctuations

of spontaneous brain activities. Finally, we validated the dFC

characteristics of the identified brain states and their sleep-loss

related alterations were reproducible using a different number of clus-

ters or sliding window lengths. Using the same independent compo-

nents and subnetworks, we further found high similarities of State

2 and State 3 between two studies, as well as their changes after

sleep loss. In summary, these results greatly enhance our understand-

ing on the temporal features of dFC characteristics after acute SD and

are promising to assess the individual's arousal/sleepiness level.

We found that 52 hr of SD induced a higher frequency of state

transitions. This finding is similar to prior work (Xu et al., 2018) that

discovered higher transition probabilities among SD-dominant states

after 36 hr of SD. Thus, these results suggest that extended wakeful-

ness can indeed accelerate the shifts between distinct connectivity

states across all participants. Nevertheless, it should be noticed that

this effect was not present after 28 hr of SD that may be due to the

duration of time awake.

The time spent in brain State 2 was significantly increased after

acute SD and correlated with high sleepiness. The cluster centroids of

this connectivity state are illustrated by strong anti-correlated func-

tional connections between subcortical and task-positive cortical sub-

networks, and hyper-activated FC couplings within task-specific

subnetworks. Previous sleep-related FC studies (Killgore et al., 2015;

Picchioni et al., 2014; Shao et al., 2013) evidenced that prolonged

wakefulness deactivated or even inhibited thalamocortical connec-

tions, deteriorating alertness and processing of sensory or visual infor-

mation. In fact, using sliding-window correlations, a comparable

connectivity state was repetitively estimated and proposed as the FC

configuration of light sleep/drowsiness (Abrol et al., 2017; Damaraju

et al., 2014). Furthermore, in a simultaneous EEG-fMRI study (Allen,

Damaraju, Eichele, Wu, & Calhoun, 2018), the FC characteristics of

this connectivity state were correlated with reduced EEG alpha but

increased delta and theta power reflecting drowsiness which has been

F IGURE 3 Statistical comparisons of dynamic functional connectivity during rested wakefulness (RW), sleep deprivation (SD) and following
recovery sleep (RS). Number of subjects = 13 and 14 in SD28 and SD52 study. Black line indicates the mean value of each group and light gray
area represents the 95% confidence interval. * Statistically different at p < .05 level
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shown repeatedly in EEG experiments (Aeschbach et al., 1999).

Regarding the influences of acute sleep loss, Xu et al. (2018) identified

three comparable SD-dominant states with increased dwell time and

transition probabilities in 37 young males after 36 hr of

SD. Meanwhile, a series of dFC studies (Patanaik et al., 2018; Wang

et al., 2016; Yeo et al., 2015) assessed two discrete connectivity

states representing brain activities of high and low arousal levels of

which the latter one was accompanied by an impairment of cognitive

performance especially with respect to PVT-lapses, speed of PVT

processing and 3-back working memory. Additionally, during an

auditory vigilance task (AVT)-based fMRI scanning, the AVT-lapses

were significantly positively and negatively correlated with low

arousal and high arousal states, respectively (Wang et al., 2016). In

our studies, the increased occurrence of State 2 under SD condition

was associated with a decrease in PVT response speed and an

increase in KSS sleepiness scores. Therefore, our results provide evi-

dence that this connectivity state reflects the neural substrate of light

sleep/drowsiness. More importantly, its increases may represent a

potential biomarker for daytime sleepiness and compromised cogni-

tive performance healthy individuals.

F IGURE 4 Correlations between dynamic functional connectivity properties and neuropsychological test scores. Number of subjects = 13
and 14 in SD28 and SD52 study. Abbreviations: KSS, Karolinska Sleepiness Scale; PVT, psychomotor vigilance task; RW, rested wakefulness;
SD28, 28 hr of sleep deprivation; SD52, 52 hr of sleep deprivation. The r values represent Pearson correlation coefficients
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Connectivity State 3 was predominant (59 and 62%) for both the

SD28 and SD52 studies. This globally hypo-connected FC network is

featured with higher FC strengths within subnetworks than inter-

subnetwork connections. To our knowledge, similar characteristics of

this state and its high proportion were also observed by other dFC

studies (Diez-Cirarda et al., 2018; Marusak et al., 2017; Rashid et al.,

2018). Allen et al. (2014) attributed this state to the average of large

numbers of extra connectivity states that were not adequately distinct

or frequent to be separated. Yet, the increased mean dwell time of a

comparable state was significantly positive correlated with self-

focused thoughts in a population of healthy children (Marusak et al.,

2017). Rashid et al. (2018) demonstrated this state's close associations

with high levels of autistic traits and autism spectrum disorder diagno-

sis. Giving these outcomes, we assume that this connectivity state is

primarily involved with the self-consciousness processing. In our stud-

ies, the reduction of occurrence probability in connectivity State

3 might be a consequence of disabled retaining of the self-relative

mental activities after a lack of sleep. Furthermore, reduced occur-

rence of this state was associated with slower PVT response speed

and more PVT lapses. Together with the changes of State 2, we pro-

pose that, after prolonged wakefulness, State 3 is substituted by

increasing occurrences of brain connectivity state reflecting light

sleep/drowsiness, and as a result, induce higher number of state tran-

sitions between connectivity states.

Notably, there are some additional or uncontrolled factors that could

have influenced our results in these two SD studies, such as a difference

in sex distribution, duration of prolonged wakefulness, and the circadian

phase. Possibly, owing to these factors, we detected that the FC profile

of Connectivity State 1 in the SD28 study is characterized by strong pos-

itive connections within DMN and negative correlations between DMN

and other cortical subnetworks. In contrast, the network architecture of

Connectivity State 1 in the SD52 study is featured by the extensive hyp-

erconnected connections. Further, statistical comparisons of dFC proper-

ties in these states exhibited no significant differences between the

acute SD and RW/RS conditions suggesting the occurrence probability

of this state is less influenced by prolonged wakefulness. Nevertheless,

after 52 hr of sleep loss, the significant correlations between the occur-

rence probabilities of Connectivity State 1 and KSS sleepiness scores

indicate that it probably represents whole brain FC configuration of high

arousal level. Consistent with other states, our results were replicated

across different sliding-window length and number of clusters.

Our test–retest evaluation of dFC properties revealed that the

number of state transitions is a less reliable parameter. On the other

hand, our findings highlight the importance of mean dwell time and

F IGURE 5 Correlations of the differences (A, RW1-SD28; B, RW2-SD28; C, RS14-SD52) of dynamic functional connectivity properties and
neuropsychological tests. Number of subjects = 13 and 14 in SD28 and SD52 study

1002 LI ET AL.



fraction of connectivity states potentially acting as robust statistical

indicators with low intra-subject variabilities. Up to now, there have

been several studies that attempted to examine the test–retest reliabil-

ity of dynamic correlations and their connectivity states, as well as the

summary measures of states (Abrol et al., 2017; Choe et al., 2017). For

instance, Zhang et al., 2018 analyzed the reliability of both static FC and

dynamic fluctuations (standard deviation, amplitude of low frequency

fluctuations, and excursions) in a large population of adults (820 subjects

from Human Connectome Project). They found the variations of con-

nectivity dynamics were most robust when the sliding-window length

was less than 40 s. However, Choe et al. (2017) found, although the

temporal features of connectivity dynamics were reliably reproducible,

their dFC parameters of connectivity states (number of state transitions

and dwell time) had poorer reliabilities across the sliding windows, taped

sliding window, and dynamic conditional correlations approach. Thus,

our results are informative to demonstrate the robustness of dFC prop-

erties in terms of their reproducibility during RW conditions across

numbers of clusters or sliding-window lengths.

Additionally, several issues should be taken into account in our

study. First, the sample size was relatively small to evaluate the dFC

abnormalities. To address this limitation, we analyzed two indepen-

dent studies with the same data-processing pipeline and examined

their dFC alternations gaining similar results. Nevertheless, more par-

ticipants should be recruited in the further and our study is explor-

atory. Second, although we demonstrated high reproducibility of our

two brain states and their alterations across many parametric choices

(sliding-window length, number of clusters, and GSR), we acknowl-

edge that the additional methodological approaches (e.g., a narrower

frequency band filtering or the mathematical approaches of con-

structing correlation matrix) also have been proposed to remove non-

neuronal noises or quantify variations of neuronal fluctuations

(Leonardi & Van De Ville, 2015). In addition, it would be valuable to

combine the FC approach with simultaneous EEG measurements to

quantify the arousal level during rs-fMRI scanning via EEG.

5 | CONCLUSION

Using a sliding-window correlations approach, we demonstrated that

the prolonged wakefulness remarkably reduced the occurrences of a

globally hypoconnected state reflecting self-focused processing but

increased amounts of a FC pattern representing light sleep/drowsi-

ness. Moreover, sleep-loss induced alterations of connectivity states

were associated with increased sleepiness and impaired cognitive per-

formance. Taken together, the results facilitate our knowledge in

understanding how the specific brain states and their corresponding

dFC characteristics are affected by sleep loss levels and offer potential

biomarkers to reflect the individual's vulnerability.
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