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This study concerns an attempt to establish a newmethod for predicting antimicrobial peptides (AMPs) which are important to the
immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that
a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles
in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time.
Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is
newly introduced to predict AMPs by integrating sequence alignment and support vectormachine- (SVM-) LZ complexity pairwise
algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28%
in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and
78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may
allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.

1. Introduction

Recently, antimicrobial peptides (AMPs) have been used in
drug design to fight many types of microorganisms such
as bacteria, fungi, parasites, enveloped viruses, and cancer
cells [1]. AMPs kill microorganisms through disruption of
membrane integrity and are believed to be less likely to induce
resistance [2]. It is believed that AMPs can substitute the
traditional antibiotics as AMPs can be used to overcome the
growing problems of antibiotic resistance [3].

AMPs are a group of molecules that form an important
part of the innate immune system. Generally, AMPs consist
of 12 to 100 amino acid residues and can be found among all
classes of life including bacteria, fungi, plants, invertebrates,

and vertebrates [3, 4]. Generally, by referring to their activi-
ties, structural properties, and sequence features, AMPs can
be classified into severalmain categories such as antibacterial,
antifungal, antiviral, antitumor and anticancer [5, 6].

Over the last few decades, as researchers and scientists
are looking in new drugs and drugs targets, AMPs have been
raised as new interest. Due to their short length and rapid and
efficient effect againstmicrobes, AMPshave becomepotential
candidates as peptide drugs. There are some AMPs and
their derivatives which have already passed the clinical trials
successfully and some AMPs are being considered to become
therapeutics [5]. However, the experimental identification
and designing of the AMPs are expensive and also time
and resources consuming [7]. Therefore, it is necessary to
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develop a high accuracy computational method which is able
to predict these AMPs sequences effectively.

Most researchers are concentrating on discovering new in
silico tools for antimicrobial peptide prediction as computa-
tional approaches can accelerate the process of antimicrobial
drug discovery and design [8]. Many computational methods
have been introduced to predict AMPs based on the different
features ofAMPs such asAntiBPmethod [1], CAMPmethods
[5], the combination of sequence alignment and the feature
selection method [9], and the pseudo amino acid composi-
tion [10, 11].

TheAntiBPmethod had been used to predict the antibac-
terial peptides. The N- and C-terminal residues are used
for predicting antibacterial peptides using support vector
machine (SVM), quantitative matrices (QM), and artificial
neural network (ANN). Their training sets are limited to
N and/or C terminal residue peptides. Unfortunately, the
AMPs have much variation in size but these machine learn-
ing methods only work well at fixed lengths [1]. For the
CAMPmethods [5], the AMPs prediction is performed using
random forests (RF), SVM, and discriminant analysis (DA)
based on all classes of full AMPs sequences. The sequence
alignment method [9] enjoys high prediction accuracy but
it is not able to predict all sequences. This is because
the classification concept used in the sequence alignment
relies on HSPs scores which represent the similarity scores
between two sequences using BLASTP. If the test sequence
has no relationship with any training sequence, a HSPs score
cannot be generated; thus the classification concept cannot be
performed on that particular sequence.

To solve the problem of the sequence alignment, in [9],
they utilize the concept of amino acid composition and
pseudo amino acid composition (PseAAC) to represent the
AMPs sequence. Then, the maximum relevance minimum
redundancy (mRMR) method [12] and incremental feature
selection (IFS) method [13, 14] are applied to select the
optimal feature for prediction. Finally, the prediction was
developed using the nearest neighbor algorithm (NNA) [15].
This method has lower performance accuracy than other
methods. Similar to the method proposed in [9–11], the
PseAAC is applied to represent the AMPs sequence. But,
they do not utilize the feature selection method as what was
performed in [9]. Instead, they improve the performance
of the prediction by utilizing the Fuzzy K-nearest neighbor
algorithm (F-kNN) [10] and support vector machine (SVM)
[11]. The performance is improved by utilizing F-kNN and
SVM as the classifiers. However, the problems of using
PseAAC as the feature extraction technique still exist where
the researchers might face difficulty determining the value of
parameter, 𝜆. In order to use the PseAAC for reflecting the
input protein sequences, the value of parameter 𝜆 must be
nonnegative integer and should not be larger than the length
of input protein sequence [16]. Because the length of input
sequences is varied and some of them are equal to 1, the value
of the PseAAC parameter, 𝜆, is difficult to determine for an
optimal result of AMPs prediction.

In short, none of them has successfully identified which
AMPs feature is the most suitable for accurately predicting
AMPs. Therefore, a new computational method must be

proposed to overcome those problems existing in previous
predictors, as well as to predict AMPs accurately and effec-
tively. This will hasten the discovery and design process
of AMPs. Thus, in this study, a new algorithm for AMPs
prediction is proposed by combining the sequence alignment
method, Lempel-Ziv (LZ) complexity [17], and support vec-
tor machines- (SVMs-) pairwise algorithm [18, 19].

The concept of SVM-pairwise algorithm was introduced
by [19] with the aim of detecting remote protein evolutionary
and structural relationships. In [18, 19], BLAST is used to
generate the pairwise similarity scores of each test sequence
against all other sequences of the training set. In this paper,
instead of using the BLAST, we use the LZ complexity
algorithm [17] in the computation of the pairwise similarity
scores. The new proposed concept of SVM-LZ complexity
pairwise algorithm is the combination of LZ complexity and
SVMclassification. To the best of our knowledge, this concept
has never been implemented for AMPs prediction and also
for the other type of bioinformatics applications. By imple-
menting the SVM-pairwise with LZ complexity algorithm
into the proposed algorithm, all training sequences can be
predicted without facing the parameter value selection prob-
lem of the feature selection method. This method provides a
relatively high sensitivity performance for AMPs prediction
compared to CAMP methods [5] and the integrated method
proposed by Wang and colleagues [9].

2. Materials and Methods

2.1. Datasets
Training Sets. There are two types of training set, which are
“normal training set” and “<0.7 training set.” Both of the
training sets were downloaded from the website provided
by Wang et al. [9]. The normal training set consists of 2752
sequences in the positive training set and 10014 sequences
in the negative training set. These training sequences were
downloaded from CAMP [5] and processed by Wang et al.
[9].

The <0.7 training set is the subset of the normal training
set. It is known that the performance of AMPs predictor
will be affected by homologous sequences in the datasets.
Therefore, Wang et al. [9] have prepared a new training
set by eliminating the homologous sequences inside the
normal training set with a cutoff threshold of 70%. The
homologous sequences which have equal to or greater than
70% sequence identity compared to other training and test
sequences have been removed. After the elimination process,
the <0.7 training set has 870 positive training sequences and
8861 negative training sequences.

In [9], the jackknife test and independent test were
performed using two different training sets.The jackknife test
was performed using the <0.7 training set while the normal
training set was used to perform independent test. Unlike
[9], in this study, jackknife test and independent test were
performed on both <0.7 and normal training sets to clearly
present the effectiveness of the proposed algorithm.

Test Sets. There are two types of dataset that have been
used for the independent test,which are “Wang test set”
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Figure 1: The flowchart of the sequence alignment method for stage 1.

and “CAMP test set.” The “Wang test set” was downloaded
from Wang et al. [9] and, after eliminating those sequences
with nonstandard residues, the set consists of 1136 AMPs
sequences. This test set has been used to compare the perfor-
mance of the proposedmethod with themethod proposed by
Wang et al. [9]. As for the “CAMP test set,” the sequenceswere
downloaded from the new release of CAMP database [20].
The updated database contains 2438 AMPs sequences which
are identified without experimental evidences. After elimi-
nating those sequences containing nonstandard residues, this
test set consists of 2420 AMPs sequences. This test set is used
to confirm that our proposed method can be used for the
recently identified peptide sequences.

2.2. Proposed Algorithm. The proposed algorithm for AMPs
prediction in this study is divided into two main stages. The
two main stages include the sequence alignment method
[9] and support vector machines- (SVMs-) LZ complexity
pairwise algorithm [17–19]. First, the sequence alignment
method [9] is used to predict AMPs sequences. Then, the
remaining sequences are predicted using SVM-LZ complex-
ity pairwise algorithm, since the sequence alignment method
cannot predict all peptide sequences [9].

2.2.1. Sequence Alignment Method. The sequence alignment
method [9] is suitable for predicting AMPs sequences as

a peptides function is highly related to its sequential order.
In this study, BLASTP [21] is used as sequence alignment
method to predict AMPs. Figure 1 shows a flow chart of the
method.

The first step of the sequence alignment is the preparation
of databases. In order to predict AMPs, two databases are
needed to represent the sequences from both negative and
positive training sets. The BLASTP is used to predict test
sequences with default parameter based on the databases
in this study. The high-scoring segment pairs (HSPs) scores
are calculated by the BLASTP based on test sequence and
all training sequences in both databases. These HSPs scores
reflect the similarity between the test sequence and all
training sequences in the training sets. Since the test sequence
is compared to both databases, two highest HSPs scores could
be obtained from both databases.

In the final step, both of the maximum HSPs scores
are compared. If the HSPs score from the positive database
is higher than the HSPs score from the negative database,
the test sequence is classified as AMPs. In other words, the
classification of the test sequence depended on the class of
the training sequence with the maximum HSPs score among
all positive and negative training sequences.

However, there are some peptide sequences that have no
relationship with any positive or negative training sequences.
These sequences have zero hits. The HSPs score of those
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sequences cannot be obtained if the sequences have zero
hits. Therefore, those sequences cannot be predicted by the
sequence alignment method. Instead of using the feature
selection method [9], the SVM-LZ complexity pairwise algo-
rithm is proposed to predict those remaining unpredictable
sequences.

2.2.2. Support Vector Machines- (SVMs-) LZ Complexity Pair-
wise Algorithm. Support vector machines- (SVMs-) pairwise
algorithm was introduced in [19] with the aim of detecting
remote protein evolutionary and structural relationships.
This algorithm is the combination of the pairwise sequence
similarity algorithm using BLAST and SVM classification. In
this paper, a new concept of SVM-LZ complexity pairwise
algorithm has been proposed. The SVM-LZ complexity pair-
wise algorithm is the integration of LZ complexity algorithm
[17] and SVM-pairwise algorithm. LZ complexity algorithm
is implemented to compute the pairwise similarity scores.
Based on LZ complexity pairwise similarity scores, SVM
classification is performed to predict AMPs sequences. In
this study, the SVM-LZ complexity pairwise algorithm is
implemented on those test sequences that cannot be pre-
dicted by the sequence alignment method. The flowchart
of the SVM-LZ complexity pairwise algorithm is shown in
Figure 2. Generally, this algorithm can be categorized into
two substages, the generation of LZ complexity pairwise
similarity scores as feature vectors and the prediction based
on SVM classification.

Generation of LZ Complexity Pairwise Similarity Scores as
Feature Vectors. Unlike the pairwise similarity concept pro-
posed in [18, 19], in this study, the generation of pairwise
similarity scores is based on the LZ complexity algorithm
[17]. Figure 3 shows a flow chart of the generation of pairwise
similarity scores substage. A fixed-length vector of real
number, known as a feature vector, is generated by comparing
the test sequence to a group of training sequences. Due to the
requirement of the classifiers [19], the feature vector must be
a collection of fixed-length vectors. In order to fulfill these
requirements, a Fixed Size Training Set needs to be prepared.

The Fixed Size Training Set must contain a fixed number
of training sequences. It is a subset of the downloaded dataset
from [9] and consists of an equal number of positive and
negative training sequences.These sequences have been used
to compare the input test sequence to generate a fixed-
length pairwise similarity scores based on the LZ complexity
algorithm. In this study, the optimal result was obtained
empirically by setting the size of Fixed Size Training Set to
1000 for the normal training set and 500 for the <0.7 training
set, which has similarity of less than 70%.

Asmentioned before, the generation of feature vector of a
peptide sequence is based on the LZ complexity concept [17].
LZ complexity is suitable for calculating the distance between
those AMPs sequences because they have a finite number of
letters in the sequences. In order to obtain the LZ complexity
score of a sequence, the production history of the sequence
needs to be identified by parsing the sequence [17]. After the
parsing process, the number of components in the history of
the sequence can be identified. This number represents an

exhaustive history of the sequence. The LZ complexity of a
sequence 𝑐(𝑆) is shown in

𝑐 (𝑠) = min {𝑐
𝐻 (𝑆)} , (1)

where 𝑐(𝑆) is the value of LZ complexity of sequence 𝑆.
It is also known as the exhaustive history of sequence 𝑆.
The 𝑐
𝐻
(𝑆) is the number of components in the history of

a sequence, 𝑆. Given a test sequence, 𝑋, and a training
sequence, 𝑌, the similarity score between sequences 𝑋 and
𝑌 can be calculated by applying (2), where 𝑐(𝑋), 𝑐(𝑌), 𝑐(𝑋𝑌),
and 𝑐(𝑌𝑋) are the exhaustive histories of sequences𝑋,𝑌,𝑋𝑌,
and 𝑌𝑋, respectively. The exhaustive history of a sequence is
the minimum number of the components in the history of
the sequence that can be identified after the parsing process.
Consider

𝑑 (𝑋, 𝑌) =
max [𝑐 (𝑋𝑌) − 𝑐 (𝑋) , 𝑐 (𝑌𝑋) − 𝑐 (𝑌)]

max [𝑐 (𝑋) , 𝑐 (𝑌)]
. (2)

An example of the parsing process to identify the exhaus-
tive history of a sequence and the calculation of the similarity
score between two sequences are given below. Given a
sequence 𝑋 = 𝑇𝑇𝐶𝐺𝑇𝐴 and a sequence 𝑌 = 𝐴𝐶𝑇𝐺𝐴, the
exhaustive history of sequence 𝑋 can be identified using the
parsing process as follows.

Step 1. Considering the first letter, 𝑇,

since this is the first starting alphabet, 𝑠 and 𝑞 are
unknown so

𝐻
𝐸 (𝑋) = 𝑇 ∙ . (3)

Step 2. Considering the next letter, 𝑇,
𝑠 = 𝑇; 𝑞 = 𝑇; 𝑠𝑞 = 𝑇𝑇; and 𝑠𝑞𝜋 = 𝑇 since 𝑞 ∈ 𝑠𝑞𝜋 so

𝐻
𝐸 (𝑋) = 𝑇 ∙ 𝑇. (4)

Step 3. Considering the next letter, 𝐶,
𝑠 = 𝑇𝑇; 𝑞 = 𝑇𝐶; 𝑠𝑞 = 𝑇𝑇𝐶; and 𝑠𝑞𝜋 = 𝑇𝑇 since
𝑞 ∉ 𝑠𝑞𝜋 so

𝐻
𝐸 (𝑋) = 𝑇 ∙ 𝑇𝐶. (5)

Step 4. Considering the next letter, 𝐺,
𝑠 = 𝑇𝑇𝐶; 𝑞 = 𝐺; 𝑠𝑞 = 𝑇𝑇𝐶𝐺; and 𝑠𝑞𝜋 = 𝑇𝑇𝐶 since
𝑞 ∉ 𝑠𝑞𝜋 so

𝐻
𝐸 (𝑋) = 𝑇 ∙ 𝑇𝐶 ∙ 𝐺. (6)

Step 5. Considering the next letter, 𝑇,
𝑠 = 𝑇𝑇𝐶𝐺; 𝑞 = 𝑇; 𝑠𝑞 = 𝑇𝑇𝐶𝐺𝑇; and 𝑠𝑞𝜋 = 𝑇𝑇𝐶𝐺
since 𝑞 ∈ 𝑠𝑞𝜋 so

𝐻
𝐸 (𝑋) = 𝑇 ∙ 𝑇𝐶 ∙ 𝐺 ∙ 𝑇. (7)

Step 6. Considering the last letter, 𝐴,

𝑠 = 𝑇𝑇𝐶𝐺𝑇; 𝑞 = 𝑇𝐴; 𝑠𝑞 = 𝑇𝑇𝐶𝐺𝑇𝐴; and 𝑠𝑞𝜋 =
𝑇𝑇𝐶𝐺𝑇 since 𝑞 ∉ 𝑠𝑞𝜋 so

𝐻
𝐸 (𝑋) = 𝑇 ∙ 𝑇𝐶 ∙ 𝐺 ∙ 𝑇𝐴. (8)
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The symbol of “∙” represents the separation of the com-
ponents during the parsing process of the LZ complexity
method. For example, for an exhaustive history of sequence
𝑋, 𝐻
𝐸
(𝑋) = 𝑇 ∙ 𝑇𝐶 ∙ 𝐺 ∙ 𝑇𝐴∙, there are four symbols

of “∙” to separate four different components (𝑇, 𝑇𝐶, 𝐺, and
𝑇𝐴). Hence the LZ Complexity of 𝑋 is equal to 4, since
there are 4 components shown by the exhaustive history of
sequence 𝑋. By applying the same procedure, the exhaustive
histories of sequences 𝑌,𝑋𝑌, and 𝑌𝑋 can be obtained as 5,
7, and 8, respectively. After finding the exhaustive histories
of sequences 𝑋,𝑌,𝑋𝑌, and 𝑌𝑋, a similarity score between
sequences 𝑋 and 𝑌 can be calculated by applying (2). In this
example, the similarity score between sequences 𝑋 and 𝑌 is
equal to 0.6.

Once the similarity scores between test sequence and all
sequences in the Fixed Size Training Set are obtained, the
scores are organized into a feature vector. The size of the
feature vector depends on the size of the Fixed Size Training
Set.

SVMPrediction.A support vectormachine (SVM) [18, 19, 22]
is often used as a classifier in the Bioinformatics field. In this

study, a peptide sequence is represented by feature vector that
consists of a list of pairwise similarity scores based on LZ
complexity. As stated in Figure 2, SVM is used to perform
classification of AMPs sequences by applying LIBSVM tool
[22].

Before performing prediction on test sequences, a SVM
training model is generated. Figure 4 shows the steps of
generation of SVM training model for this study. In order to
generate a training model for AMPs prediction, a “General
Training Set” has to be prepared. All sequences in the
General Training Set are formed by the training sequences
that cannot be predicted by the sequence alignment method.
This training set consists of an equal number of positive
training and negative training sequences. Equation (9) shows
the relationship between the size of “General Training Set,”
𝑆GT, and the number of the remaining positive sequences,
𝑆RP:

𝑆GT = 2 × (𝑆RP − 1) . (9)

All the training sequences in General Training Set, which
are represented by feature vectors, need to be categorized



BioMed Research International 7

Create SVM
training model

General Training
Set sequences’
feature vectors

Scaling
feature vectors

Model selection
(RBF kernel)

Cross validation

SVM
training model

Generation of SVM training model

Input

Output

Figure 4: The flowchart of the SVM training model generation.

and labeled with their respective classes. The feature vectors
that represent the positive training sequences are labeled as
“+1” whereas for the negative training sequences the feature
vectors are labeled as “−1.” The feature vectors are scaled into
the range of [−1, 1]. Scaling the feature vectors before applying
SVM for both test and training sequences is very important
as it can improve the accuracy of the AMPs prediction. This
is because the scaling process can help to avoid attributes in
greater numeric ranges dominating those in smaller ranges.
In addition, scaling can also avoid the numerical difficulties
during calculation as kernel values usually depend on the
inner products of feature vectors.

As stated in [22], the radial basis function (RBF) kernel is
suitable to be used to train the SVM model. There are two
parameters, 𝐶 and 𝛾, that need to be considered when the
RBF kernel is used. Therefore, grid search cross validation
[22] is carried out in order to obtain the values of 𝐶 and 𝛾
that can achieve the best accuracy of AMPs prediction. In this
study, the optimal performance of the proposed algorithm for
normal training set is obtained by setting the parameters 𝐶
and 𝛾 to 4 and 3.91 × 10−3, respectively. Meanwhile, for the
<0.7 training set, the optimal value of parameters 𝐶 and 𝛾
are 16 and 4.88 × 10−4, respectively. After attaining the best
parameter, the SVM trainingmodel is trained by applying the
RBF kernel with the best parameters. During the prediction
of the test sequences, the feature vectors that represented the
test sequences also needed to be scaled into the range of
[−1, 1]. The classification for the scaled test feature vectors is
performed based on the trained SVMmodel.

3. Results and Discussion

In this study, the performance of the proposed algorithmwas
analyzed using both the jackknife test [9, 23] and independent
test. In the jackknife test, prediction is done on every training
sequence. During the prediction, each peptide sequence is

singled out to become the test sequence and the remaining
sequences become the training set. As in [9], (10) is used to
reflect the prediction quality:

𝑆
𝑛
=

TP
TP + FN

,

𝑆
𝑝
=

TN
TN + FP

,

AC = TP + TN
TN + TP + FN + FP

,

MCC = ((TP ∗ TN) − (FN ∗ FP))

× ((TP + FN) ∗ (TN + FP)

∗ (TP + FP) ∗ (TN + FN))−1/2 ,

(10)

where 𝑆
𝑛
reflects the sensitivity, 𝑆

𝑝
is the specificity, AC

stands for the accuracy, and MCC represents the Mathews
correlation coefficient. Besides that, TP (true positive) rep-
resents correct predictions of the positive dataset; FP (false
positive) represents incorrect predictions of the negative
dataset; TN (true negative) represents correct predictions
of the negative dataset; and FN (false negative) represents
incorrect predictions of the positive dataset. Applying (10),
the performance of the proposed algorithm can be measured
and compared to previously proposed methods.

Besides the jackknife test, an independent test has also
been used to evaluate the performance of the proposed
algorithm. The independent test is used to demonstrate the
performance of a predictor for practical application [24].
The sequences in the test sets were used to evaluate the
performance of the proposed algorithm.

In the experimental setup stage, the proposed algo-
rithm was performed in Microsoft Windows Operation
System using a modern notebook (Intel i7-2670QM CPU
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@ 2.20GHz, 8GB RAM). The main software language
used to build the predictor was Perl. All the Perl cod-
ing was performed using Active Perl version 5.16.1 with
command prompt windows. To perform the sequence
alignment method, BLASTP [21] was used to calculate
the HSPs scores using default parameter. The version of
BLASTP was 2.2.23. The Perl and LIBSVM [22] were used
to perform the SVM-LZ complexity pairwise algorithm.
The pairwise similarity scores were generated using Perl
(the script is in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/212715) based on the LZ
complexity [17]. The LIBSVM was used to perform SVM
modeling and prediction based on the feature vectors that
were generated by Perl. The version of LIBSVM was 3.14.

In this study, six experiments were conducted to analyze
the performance of the proposed algorithm. First, an experi-
ment was carried out to study the effect of pairwise similarity
concept and SVMas the classifier on our proposed algorithm.
Second, another experiment was executed to observe the
differences between the sequence alignments with different
version of BLASTP. As the version of BLASTP used in [9]
was unknown, this experiment was conducted to compare
the performance of different versions of BLASTP to obtain
the optimal result. Third, an experiment was designed to
study the effectiveness of using SVM pairwise to replace
the feature selection method. The jackknife tests in the first
three experiments were performed using <0.7 training set in
order to compare with the results stated in [9]. To investigate
the effect of sequence homology on the performance of the
methods, the normal training set and the <0.7 training set
were used to perform both jackknife test and independent
test in the fourth experiment. Besides, in this experiment,
the performance of sequence alignment and our SVM-LZ
complexity pairwise algorithm was compared, and the Wang
test set was used in the independent test. In order to compare
the performance between the proposed algorithm with the
previously proposedmethods, an independent test on normal
training set was carried out using the Wang test set in the
fifth experiment. Lastly, to confirm the effectiveness of the
proposed method in the prediction of the newly identified
AMPs, an independent test was performed using the CAMP
test set [20].

Comparison of the Effectiveness of LZ Complexity Pairwise
Similarity Concept and SVM as Classifier with Other Methods
and Classifiers. In the complexity-based distance measure
[25], a test sequence is represented by a single distance
score that is calculated by LZ complexity. For the proposed
algorithm, the LZ complexity was implemented together with
the pairwise concept. The pairwise similarity concept was
implemented to consider the relationship of the test sequence
and the training sequences. The test sequence in this project
is represented by a feature vector that consists of a list of
similarity scores between test and training sequences.

As we can see from Table 1, the 𝑆
𝑛
for the NNA- (nearest

neighbor algorithm-) LZ complexity pairwise and SVM-LZ
complexity pairwise are better than the complexity-based
distance measure in the jackknife test when using <0.7
training set. This demonstrates that the pairwise concept has

Table 1:The effect of pairwise similarity concept and SVMbased on
the Jackknife test.

Method/algorithm 𝑆
𝑛

𝑆
𝑝

AC MCC
Complexity-based distance
measure 64.94% 95.16% 92.46% 0.5663

NNA-LZ complexity
pairwise 76.60% 74.52% 74.63% 0.2537

SVM-LZ complexity
pairwise 85.00% 86.47% 86.37% 0.4624

a significant improvement in the sensitivity measure. It is
believed that the sensitivity measure is an important param-
eter forAMPs prediction as the sensitivitymeasure represents
the total number of AMPs sequences that can be predicted
correctly by the AMPs predictor. Using a high sensitivity
AMPs predictor, the number of correctly extracted AMPs
sequences can be increased. Therefore, the missing proba-
bility of extracting the real AMPs from unknown sequences
could be reduced accordingly.

As we can see from Tables 1 and 2, the SVM-LZ com-
plexity pairwise algorithm depicted a higher overall success
rate compared with the nearest neighbor algorithm- (NNA-)
LZ complexity pairwise. This proves that SVM is a better and
more stable classifier than NNA for AMPs prediction.

Comparison of the Sequence Alignment Method with Different
Version of BLASTP. The sequence alignment method in
the proposed algorithm was performed using BLASTP [21].
However, in this study, it is noticed that the HSPs scores for
the same sequence varied if different versions of BLASTP
were used. Because the version of BLASTP used by Wang
and colleagues was not specified in [9], the BLASTP version
2.2.23 was used in this study. In this study, jackknife test
was used to measure the performance of different version
of BLASTP. As stated in [9], the jackknife test for sequence
alignment was performed using dataset that has less than
70% similarity. To make the comparison more meaningful,
the <0.7 training set was used to perform this experiment.
The prediction results are shown in Table 3 together with
the results of the sequence alignment method performed by
Wang and colleagues. Due to a different version of BLASTP,
the simulation results obtained were different from [9]. The
sequence alignment method cannot deal with all sequences
because there was no hit found between the test and training
sequences. With a total of 9731 training sequences, only 7158
training sequences were predicted, as shown in Table 3. The
values for 𝑆

𝑛
, 𝑆
𝑝
, AC, andMCCwere 92.22%, 79.19%, 80.46%,

and 0.4720, respectively.

Comparison of SVM-LZ Complexity Pairwise with Feature
SelectionMethod. Due to the limitation of the sequence align-
ment method, the feature selection method was introduced
in [9] to predict the remaining sequences. In this study, the
SVM-LZ complexity pairwise algorithm was used to replace
the feature selection method in order to obtain a better
performance. The remaining unpredictable test sequences
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Table 2: The effect of pairwise similarity concept and SVM based on the independent test.

Method/algorithm Number of
predicted sequences

Number of correctly
predicted sequences 𝑆

𝑛

Complexity-based distance measure 1136 880 77.46%
NNA-LZ complexity pairwise 1136 0 0%
SVM-LZ complexity pairwise 1136 870 76.58%

Table 3: The performance comparison between both sequence alignment methods on jackknife test.

Method Number of
predicted sequences 𝑆

𝑛
𝑆
𝑝

AC MCC

Sequence alignment [9] 5855 91.22% 95.55% 95.12% 0.7723
Sequence alignment by BLAST ver. 2.2.23 7158 92.22% 79.19% 80.46% 0.4720

Table 4: The performance comparison between the feature selection method and SVM-LZ complexity pairwise algorithm on jackknife test.

Method/algorithm Number of
predicted sequences 𝑆

𝑛
𝑆
𝑝

AC MCC

Feature selection [9] 3876 56.83% 93.19% 90.58% 0.6426
SVM-pairwise 2573 75.00% 79.10% 78.82% 0.3171

were predicted using the SVM-LZ complexity pairwise algo-
rithm. These sequences were represented by feature vectors.
Each feature vector was a list of fixed length similarity
scores between the test and training sequences.The similarity
score was generated based on the LZ complexity concept by
comparing the test sequence to one of the training sequences.
The test sequence’s feature vector was used to perform SVM
classification. As shown in Table 4, the SVM-LZ complexity
pairwise algorithm was proven to have a better 𝑆

𝑛
value as

compared to the feature selection method.

Comparison of the Performance of Sequence Alignment, SVM-
LZ Complexity Pairwise, and Proposed Algorithm. In the
proposed integrated method, both sequence alignment and
SVM-LZ complexity pairwise have been used to predict
peptide sequence. Besides comparing with the previously
proposed methods, the performance of each standalone
method proposed in this study has been evaluated using
independent test for both training sets. As shown in Table 5
and Figure 5, the sequence alignment method achieved the
highest sensitivity value in the normal training set. However,
as mentioned earlier, the sequence alignment method was
unable to predict all peptide sequences because HSPs score
cannot be generated by the BLASTP. On the other hand,
although the performance of the SVM-LZ complexity pair-
wise is not as good as the sequence alignment method, but it
can predict all peptide sequences. Hence, by combining both
techniques, the limitation of the sequence alignment method
can be solved. As for the <0.7 training set, although the
SVM-LZ complexity pairwise achieved the highest sensitivity
value, it is still lower than the integrated method that used
the normal training set. Hence, in this paper, we propose to
use the integrated method to predict the peptide sequences.

The performance comparison of sequence alignment,
SVM-LZ complexity pairwise, and integrated algorithm

across both training data on independent test

Sequence alignment
SVM-LZ complexity pairwise
Sequence alignment + SVM-LZ complexity pairwise

Normal training set <0.7 training set
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0
91.02%

80.88%76.85% 81.51%

87.59%

78.7%

(%
)

Figure 5: The performance comparison of sequence alignment,
SVM-LZ complexity pairwise, and integrated algorithm across both
training data on independent test using Wang test set.

As stated in [9], in order to achieve the highest accuracy, it is
better to use all training data.

Comparison of the Proposed Algorithm with the Previously
Proposed Methods. By combining the results of the sequence
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Table 5: The performance comparison of sequence alignment, SVM-LZ complexity pairwise, and our integrated algorithm across both
training data on independent test using Wang test set.

Type of training data Algorithm Number of predicted
sequences

Number of correctly
predicted sequences 𝑆

𝑛

Normal training set
Sequence alignment 1025 933 91.02%

SVM-pairwise All (1136) 870 76.85%
Sequence alignment + SVM-pairwise All (1136) 995 87.59%

<0.7 training set
Sequence alignment 1004 812 80.88%

SVM-pairwise All (1136) 926 81.51%
Sequence alignment + SVM-pairwise All (1136) 894 78.70%

Table 6: The performance comparison of both integrated algorithms on jackknife test.

Algorithm Type of training set Number of predicted
sequences 𝑆

𝑛
𝑆
𝑝

AC MCC

Sequence alignment + SVM-LZ complexity pairwise Normal 12766 95.28% 87.25% 88.98% 0.736
<0.7 9731 88.74% 79.17% 80.02% 0.437

Sequence alignment + feature selection [9] <0.7 9731 80.23 % 94.59 % 93.31 % 0.7312

alignment and the SVM-LZ complexity pairwise algorithm,
the overall success rate for this integratedmethod is shown in
Table 6. As presented in Table 6, the jackknife test performed
using normal training set has a very high overall success
rates. The values for 𝑆

𝑛
, 𝑆
𝑝
, AC, and MCC were 95.28%,

87.25%, 88.98%, and 0.736, respectively. When <0.7 training
set was used, the values for 𝑆

𝑛
, 𝑆
𝑝
, AC, andMCCwere 88.74%,

79.17%, 80.02%, and 0.437, respectively. As per Table 6, the
sensitivity of the proposed algorithm in this project is 8%
higher than the integrated method proposed by Wang et al.
[9] for jackknife test using <0.7 training set. Therefore, the
optimal performance of AMPs predictor can be obtained by
combining the sequence alignment and SVM-LZ complexity
pairwise algorithm.

Besides the jackknife test, the independent test was also
used to evaluate the performance of the proposed algorithm.
An independent test is used for demonstrating the perfor-
mance of a predictor for practical application [24]. Table 7
and Figure 6 show the results of the independent test for
the proposed algorithm and previously proposed methods
from CAMP and Wang et al. [9]. As stated in [9], the
normal training set is used to perform the independent test
because all training data must be used in order to have a
better performance upon testing. Per Table 7, the proposed
algorithm in this project had the highest sensitivity at 87.59%.
This results indicate that the proposed algorithm in this
project is suitable to be used as an AMPs predictor.

Comparison of the Proposed Algorithm with the Previously
Proposed Methods Using CAMP Test Set. As mentioned
earlier, recently CAMP database has a major update [20]. To
confirm the effectiveness of the proposed algorithm in the
prediction of the newly identified AMPs, it was evaluated
and compared with the methods proposed in [20] using the
CAMP test set. As we can see from Table 8 and Figure 7,
our proposed algorithm achieved the highest sensitivity at
90.25%. The experimental results show that the proposed

The performance comparison of previously proposed methods
with the proposed algorithm on independent test
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Figure 6: The performance comparison of previously proposed
methods with the proposed algorithm on independent test using
Wang test set.

algorithm consistently outperforms themethods proposed in
[20].

4. Discussion

It has been reported that the diversity of the amino acid
sequence, structure, and biological activity of AMPs are high.
This is because the AMP genes are evolved for the survival
of the organisms in different microbial environment [26].
Hence, a single threshold of similarity might not be effective
to predict the antimicrobial peptides. In this aspect, our
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Table 7: The performance comparison of previously proposed methods with the proposed algorithm on independent test using Wang test
set.

Method/algorithm Number of predicted
sequences

Number of correctly
predicted sequences 𝑆

𝑛

CAMP-SVM [9] 1136 866 76.23%
CAMP-random forest [9] 1136 852 75.00%
CAMP-discriminant analysis [9] 1136 881 77.55%
Sequence alignment + feature selection [9] 1136 965 84.95%
Complexity based distance measure 1136 880 77.46%
Sequence alignment + SVM-pairwise 1136 995 87.59%

Table 8: The performance comparison of CAMP methods with the proposed algorithm on independent test using CAMP test set.

Method/algorithm Number of predicted
sequences

Number of correctly
predicted sequences 𝑆

𝑛

CAMP-SVM [20] 2420 2030 83.88%
CAMP-random forest [20] 2420 1978 81.74%
CAMP-artificial neural network [20] 2420 1648 68.10%
CAMP-discriminant analysis [20] 2420 1967 81.28%
Sequence alignment + SVM-pairwise 2420 2184 90.25%

Comparison of CAMP methods with the proposed
algorithm on independent test using CAMP test set
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Figure 7:The performance comparison of CAMPmethods with the
proposed algorithm on independent test using CAMP test set.

proposed method considers a profile of pairwise similarities
to both AMPs and non-AMPs sequences. The generated
feature vectors, which consist of pairwise LZ-complexity
scores, amplify the similarities and differences between the
antimicrobial and nonantimicrobial peptides. As we can
see from the experimental results, the concept of pairwise
similarity scores helps to increase the prediction accuracy.
Our findings are consistent with what had been reported in
[18], where they also utilize the concept of pairwise similarity
scores to improve the prediction accuracy of allergen from
the primary sequence of protein.

5. Conclusion

In this study, the proposed algorithm was the combination
of the sequence alignment method and SVM-LZ complexity
pairwise algorithm.

The sequence alignment method was developed using
BLASTP to calculate the HSPs scores between test and
training sequences. The classification of the test sequence
depended on the class of the training sequence that has
the highest HSPs score. However, the sequence alignment
was unable to deal with all sequences as there were some
sequences which had no relationship with the training
sequences.Thus, the SVM-LZ complexity pairwise algorithm
was newly introduced to predict the remaining sequences.
In the SVM-LZ complexity pairwise algorithm, the peptide
sequences were represented by the fixed length feature
vectors. These feature vectors consisted of a list of pairwise
similarity scores.TheLIBSVM tool was used to perform SVM
classification on the test sequence based on the feature vector.
As we can see from the experimental results, the proposed
algorithm was proven to have the best performance on both
jackknife and independent tests based on sensitivity. The
proposed algorithm obtained a sensitivity of 95.28% in the
jackknife test and 87.59% in the independent test for normal
training set. When <0.7 training set was used, the sensitivity
obtained for the jackknife test and that for the independent
test are 88.74% and 78.70%, respectively.

By applying the proposed algorithm, it is believed that
the researchers were able to effectively predict AMPs from
unknown protein peptide sequences with higher sensitivity.
These AMPs predictors are believed to be able to help
scientists or researchers to understand the task of peptides in
antimicrobial activity, identify the natural AMPs, and develop
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and design new synthetic AMPs to replace currently available
antibiotics in order to fight against microorganisms.

For the future works, the proposedmethod can be further
improved by replacing the support vector machines (SVMs)
classifier with sparse representations classifier (SRC) [27–
29] or fuzzy k-nearest neighbour method [30]. Besides,
we also believe that, by implementing the manifold fitting
approach proposed by Zhang et al. [31], the performance of
AMPs predictor can be enhanced. In this study, the proposed
method is used to predict AMPs sequences from unknown
peptide sequences. In the near future, the concept of this
new proposed integrated method can be implemented to
classify AMPs sequences based on the biosynthetic machine,
biosynthetic sources, biosynthetic functions, or molecular
properties or molecular targets [32].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Many people have helped the authors to complete this study
and they could not have completed it without them. First of
all, the authors would like to express their gratitude to Wang
and colleagues [9] and CAMP [5] for supplying datasets to
support this research. They would also like to thank Mr. Loo
Yue Lin for his hard work on the study of complexity-based
distance measure method. This work is supported by MOE
Prototype Research Grant Scheme no. 203/PELECT/
6740019.

References

[1] S. Lata, B. K. Sharma, and G. P. S. Raghava, “Analysis and pre-
diction of antibacterial peptides,” BMC Bioinformatics, vol. 8,
article 263, 2007.

[2] Y. Sang and F. Blecha, “Antimicrobial peptides and bacteriocins:
alternatives to traditional antibiotics,” Animal Health Research
Reviews, vol. 9, no. 2, pp. 227–235, 2008.

[3] Z. Wang and G. Wang, “APD: the antimicrobial peptide data-
base,” Nucleic Acids Research, vol. 32, pp. D590–D592, 2004.
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