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INTRODUCTION
Microscopic analysis of hematoxylin and eosin (H&E) stained 

tissue slides has been the basis for disease diagnosis for decades 
[1]. The diagnosis is based on a visual interpretation of tissue 
structures and other pathological tissue characteristics by human 
interpreters. However, many studies have shown inconsistencies 
in diagnostic decisions, leading to poor reproducibility [2,3]. Be-
cause the interpretation of tissue morphology is often subjective, 
both intra- and inter-observer variations are frequent and can 
lead to misdiagnosis [4]. Thus, many cancer centers encourage 

consensus between multiple observers on oncologic diagnoses 
[5]. Although it is optimal for a slide to be reviewed by multiple 
experts, it is usually very costly and may delay the final decision 
because the histological assessment of tissue slides is time-con-
suming and laborious. Considering the shortage of pathologists 
in hospitals, routine peer-review of tissue slides may be impracti-
cal. Thus, machine learning-based analysis of tissue slides has 
been studied for decades to complement human decisions [6,7].

Machine learning is a method of creating a task-specific com-
putational model from a given dataset [8]. Typically, it requires 
domain-specific features to be extracted from raw data based on 
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ABSTRACT Although microscopic analysis of tissue slides has been the basis for 
disease diagnosis for decades, intra- and inter-observer variabilities remain issues to 
be resolved. The recent introduction of digital scanners has allowed for using deep 
learning in the analysis of tissue images because many whole slide images (WSIs) are 
accessible to researchers. In the present study, we investigated the possibility of a 
deep learning-based, fully automated, computer-aided diagnosis system with WSIs 
from a stomach adenocarcinoma dataset. Three different convolutional neural net-
work architectures were tested to determine the better architecture for tissue classi-
fier. Each network was trained to classify small tissue patches into normal or tumor. 
Based on the patch-level classification, tumor probability heatmaps can be overlaid 
on tissue images. We observed three different tissue patterns, including clear normal, 
clear tumor and ambiguous cases. We suggest that longer inspection time can be 
assigned to ambiguous cases compared to clear normal cases, increasing the ac-
curacy and efficiency of histopathologic diagnosis by pre-evaluating the status of 
the WSIs. When the classifier was tested with completely different WSI dataset, the 
performance was not optimal because of the different tissue preparation quality. By 
including a small amount of data from the new dataset for training, the performance 
for the new dataset was much enhanced. These results indicated that WSI dataset 
should include tissues prepared from many different preparation conditions to con-
struct a generalized tissue classifier. Thus, multi-national/multi-center dataset should 
be built for the application of deep learning in the real world medical practice.
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the knowledge of domain experts, followed by statistical model-
ing and learning steps based on these extracted features. Thus, 
it requires considerable domain expertise and complex feature 
selection steps. In contrast, feature extraction and model learning 
take place in a unified step in deep learning [9]. Deep learning-
based approaches have become very successful in a wide range 
of biomedical analysis tasks [10], including the analysis of retinal 
fundus images [11], radiologic images [12], pathologic tissue im-
ages [13], electrocardiograms [14] and electroencephalograms [15]. 
However, deep learning-based methods generally require large 
annotated datasets compared to traditional machine learning 
[16]. The recent introduction of digitization of whole slide images 
(WSIs) using slide scanners has provided large amounts of digital 
histopathology data for the application of deep learning [6]. Ac-
cordingly, considerable efforts have been made to utilize deep 
learning for the analysis of WSIs [8].

One of the basics of histopathology image analysis is the classi-
fication of tissue slides into normal or diseased tissues, an impor-
tant step in the development of computer-aided diagnosis (CAD) 
systems. In the present study, we developed deep learning-based, 
fully automated classifiers for WSIs of normal/tumor stomach 
tissues obtained from The Cancer Genome Atlas (TCGA) [17]. 
WSIs inevitably contain out-of-focus/blurry areas because the 
autofocusing capability of whole slide scanners are not yet perfect. 
In addition, there are various artifacts, including air-bubbles, 
compression artifacts, over- or under-staining, pen markings, and 
tissue folding [18]. To construct a fully automated classification 
process, these artifacts should be automatically removed. Thus, 
we first constructed a classifier that selected proper tissue regions. 
The selected tissue regions were then classified into normal or tu-
mor regions by another classifier. Since no single network struc-
ture can solve all medical imaging problems [19], we tested three 
different convolutional neural networks (CNNs) to see whether 
specific network structures were more suitable for the analysis of 
histopathology images. When we applied this two-step approach 
for slide level classification, it clearly demonstrated that a deep 
learning-based approach can be used to build a fully automated 
CAD system for frozen tissue slides in the near future. Finally, we 
validated the classifier with our own dataset to assess the general-
izability of the model generated with the TCGA dataset.

METHODS
The TCGA program provides extensive archives of digital pa-

thology slides. The provided WSIs are composed of frozen section 
tissue slides and formalin-fixed paraffin-embedded diagnostic 
slides. The frozen sections directly relate to tissue regions where 
multi-omics information in the TCGA program was analyzed, 
making them more relevant for studies of the relationship be-
tween histomorphology and molecular profiles [17]. Thus, in this 
study, we built a deep learning-based classifier for normal/tumor 

tissues from the frozen tissue slides of stomach adenocarcinoma 
(TCGA-STAD). Informed consent was obtained by the TCGA 
consortium [20,21] and all WSIs were publicly available for re-
search purposes. Accordingly, institutional review board approval 
was not required. There were 755 tissue slides in TCGA-STAD, 
and we omitted 2 slides because of suboptimal quality. Conse-
quently, a total of 753 slides from 432 patients were included in 
the present study. There were 122 normal tissue slides and 631 
tumor slides. These normal or tumor tissues slides consisted of 
almost exclusive normal or tumor tissues which were confirmed 
by the reviewing pathologists of TCGA consortium (Fig. 1A).

Since WSIs are too big to be analyzed by CNNs at once, we seg-
mented the WSIs into non-overlapping 360 × 360 pixels patches 
at 20× magnification (resultant pixel resolution of 0.24 µm/pixel). 
Total patch numbers from a WSI ranged from hundreds to thou-
sands depending on the size of the WSI. Labels for the patches 
were automatically obtained from the identifiers (IDs) of the 
WSIs (Fig. 1A). Every patch in a WSI was labeled as either nor-
mal or tumor based on the slide ID because each tissue slide was 
almost exclusively composed of either normal or tumor stomach 
tissue.

After initial segmentation, there were huge amount of im-
proper patches, including air-bubbles, compression artifacts, pen 
markings, tissue folding, and white background, all of which 
required elimination before classification of normal and tumor 
tissue. Preprocessing such as Otsu thresholding can be used to 
eliminate white background. However, we tried to remove the 
improper patches all at once. Thus, we constructed a simple first 
CNN with three convolutional-pooling layers to classify tissue/
non-tissue patches. The three convolution layers consisted of 12 
[5 × 5] filters, 24 [5 × 5] filters and 24 [5 × 5] filters, each followed 
by a [2 × 2] max-pooling layer. To train the CNN, S.H.L. collected 
10,000 improper and 10,000 proper tissue patches and trained the 
CNN to distinguish patches into non-tissue and tissue, respec-
tively (Fig. 1B, C). Only patches classified as tissue were used for 
the next step. For normal/tumor classification, we implemented 
three well-known CNN architectures, AlexNet, ResNet-50 and 
Inception-v3, which showed good performance in a natural im-
age classification contest [22]. The three CNN architectures were 
trained to distinguish selected tissue patches into normal or tu-
mor patches (Fig. 1C, D).

We adopted ten-fold cross validation to validate the functional-
ity of the classifiers. In the ten-fold cross validation scheme, ten 
exclusive combinations of training/test sets were composed in 
which one tenth of the data are allocated to test sets and the rest 
to training sets. In all folds, training and test sets were split on a 
patient level and no tissue slides from the training patients were 
present in the test set. The results from each fold were concat-
enated to assess the total classification results.

Data augmentation was applied during training to promote 
learning of most robust general features for distinguishing be-
tween normal and tumor tissue. We performed random crop-
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ping of 330 × 330 regions from the 360 × 360 patches, followed 
by random rotations by 90°, random horizontal/vertical flipping, 
and random transformations of contrast and brightness. We used 
mini-batches of size 128 for training. The TCGA-STAD tissue 
slides had an innate class imbalance problem because there were 
more than four times fewer normal patches than tumor patches. 
The average numbers of normal and tumor patches for the train-

ing set in each fold were 318,631 and 1,440,396, respectively. To 
alleviate the deteriorative effect of the class imbalance, we sup-
plied the same number of normal and tumor patches in a mini-
batch. Since we used a mini-batch size of 128, 64 normal and 64 
tumor patches were used for each mini-batch. As another ap-
proach to alleviate the class imbalance, we tested weighted cross 
entropy loss function which gives more weight to loss component 
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Fig. 1. Work flow of a fully automated tissue classifier for whole slide images (WSIs). (A) IDs of The Cancer Genome Atlas Stomach Adenocarci-
noma (TCGA-STAD) tissue slides containing normal/tumor discriminators. Left panel: normal tissue slide. Right panel: tumor tissue slide. All tissues 
were stained with haematoxylin and eosin. (B) Small patches were collected from WSIs at 20× magnification for training. (C) A simple convolutional 
neural network (CNN) was trained to classify improper tissue patches as non-tissue. (D) Three different CNNs, AlexNet, ResNet-50 or Inception-v3, were 
trained to delineate normal or tumor tissue patches. (E) Based on the classification results, a heatmap of the probability for tumor tissue was overlaid 
on the WSI. (F) Summary diagram of the experimental procedures.
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for samples from under-represented class. The output layer used a 
softmax activation function for two nodes to compute an output 
probability distribution over normal and tumor tissue before the 
cross entropy loss function. All the CNN networks were imple-
mented using the Tensorflow library (http://tensorflow.org).

The widely-used classification evaluation criteria including 
accuracy, sensitivity, specificity, and area under the curve (AUC) 
for receiver operating characteristic (ROC) curves are presented 
in this study. Accuracy, sensitivity and specificity were calculated 
with the threshold for normal/tumor discrimination set to 0.5. 
ROC curves plot the true positive (sensitivity) versus the false 
positive (1-specificity) fraction by adjusting the threshold for nor-
mal/tumor discrimination, allowing sensitivity and specificity 
tradeoffs to be evaluated [23]. In this study, to calculate the sen-
sitivity and specificity, tumor tissue was considered positive and 
normal tissue negative. To compare differences between the two 
ROC curves, we applied a permutation test with 1,000 iterations 
[24]. After analyzing classification performance at the patch level, 
we investigated classification performance at the slide level. To do 
this, the probability for each slide was calculated as the average of 
the probabilities of all the patches in the slide. Averaging of patch-
level classification results can be applied to assess the slide-level 
classification because the TCGA-STAD tissue slides were almost 
exclusively composed of either normal or tumor stomach tissue. 
Based on the average value, slide-level ROCs were plotted. A p-
value < 0.05 was considered significant.

To validate the model obtained from TCGA-STAD dataset, we 
built an extra validation dataset of frozen tissue slides obtained 
during surgical procedures in the Seoul St. Mary’s Hospital. 
Tissue collection were conducted in accordance with protocols 
approved by the Institutional Review Board of The Catholic 
University of Korea (KC19SESI0787). The dataset consisted of 
25 normal and 25 tumor slides. The slides which consisted of 
almost exclusive normal or tumor tissues were carefully selected 
by S.H.L., who has been a specialist for gastrointestinal pathology 
in the Seoul St. Mary's Hospital for more than 5 years. We named 
the dataset as SSMH-STAD. At first, whole 50 slides were clas-

sified with network trained with TCGA-STAD. Next, 5 slides of 
SSMH-STAD from each class were co-trained with TCGA-STAD 
dataset. Because SSMH-STAD data in the new training set was 
more than fifteen times fewer than TCGA-STAD data, SSMH-
STAD could be severely underrepresented when mini-batch 
was randomly selected from total training data. Thus, in the co-
training scenario, 30% of data in a mini-batch was intentionally 
selected from SSMH-STAD to promote the learning of features in 
the SSMH-STAD dataset.

RESULTS
To make the classification of tissue slides fully automated, 

white background regions and artifacts should be automatically 
excluded from further processing. In this study, we implemented 
a simple CNN to delineate improper patches regardless of wheth-
er they were background or artifacts (Fig. 1B). When we applied 
the simple CNN for non-tissue/tissue classification, the accuracy 
was more than 98% compared to human annotation. Because the 
classification of improper tissues is a relatively subjective issue, 
we decided that 98% was sufficient to proceed. Next, we trained 
AlexNet, ResNet-50 and Inception-v3 to distinguish the tissue 
patches into normal or tumor to compare the performance of dif-
ferent CNN architectures. For each fold, we first obtained classi-
fication results on the test patches of the corresponding folds and 
then concatenated all the results from the ten folds to calculate 
accuracy, sensitivity and specificity. ROCs were also plotted on 
the concatenated results.

The classification results for the three architectures are sum-
marized in the upper part of Table 1. The patch-level classification 
results for Inception-v3 (Fig. 2A) was better than ResNet-50 (Fig. 
2C) and AlexNet (Fig. 2E) (p < 0.001 by permutation test). Since 
slide level labels were originally assigned to the WSIs, slide-level 
classification results could easily be compared with the labels. We 
obtained slide level probabilities by averaging patch level classi-
fication probabilities. ROC curve for the slide-level classification 

Table. 1. Summary of classification results

Network
Patch-level results Slide-level results 

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

on TCGA
   Inception with TCGA 0.953 0.958 0.920 0.987 0.990 0.995 0.958 0.998
   ResNet with TCGA 0.949 0.955 0.917 0.983 0.989 0.993 0.958 0.998
   AlexNet with TCGA 0.940 0.946 0.913 0.977 0.985 0.989 0.958 0.996
on SSMH
   Inception with TCGA 0.756 0.932 0.614 0.958 0.780 1.000 0.560 1.000
   Inception with TCGA+SSMH 0.949 0.928 0.961 0.984 1.000 1.000 1.000 1.000

on TCGA: tested on the TCGA-STAD dataset, on SSMH: tested on the SSMH-STAD dataset, with TCGA: trained with the TCGA-STAD 
dataset, with TCGA+SSMH: trained with the mixed dataset of TCGA-STAD and SSMH-STAD. AUC, area under the curve; TCGA, The 
Cancer Genome Atlas; STAD, Stomach Adenocarcinoma; SSMH, Seoul St. Mary’s Hospital.
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did not differ by permutation test between Inception-v3 (Fig. 2B), 
ResNet-50 (Fig. 2D) and AlexNet (Fig. 2F). When cut-off value 
for normal/tumor discrimination was set at 0.5, they all shared 6 
normal tissues falsely classified as tumor. However, the number of 
tumor tissues falsely classified as normal was different as 3, 4 and 
7 for Inception-v3, ResNet-50 and AlexNet, respectively. Based on 
the patch- and slide-level classification results, we concluded that 
Inception-v3 is the most suitable CNN structure for stomach tis-
sue classification between the three CNNs.

Because there were more than four times tumor tissues than 
normal tissues in the TCGA-STAD dataset, we implemented bal-

anced mini-batch approach to alleviate the class imbalance prob-
lem. However, the sensitivity was still higher than the specificity 
for all three CNN architectures (Table 1). As another approach, 
weighted cross entropy approach was tested with Incetion-v3. 
We gave ten times more weight to the loss for the normal class. 
In this case, the specificity was improved from 0.920 to 0.932 but 
the sensitivity was decreased from 0.958 to 0.951, resulting overall 
decrease in the accuracy from 0.953 to 0.947. As the last approach, 
we randomly selected one fourth of the tumor training data to 
match the number of normal and tumor data. This approach 
yielded best specificity of 0.942, but sensitivity and accuracy were 

B
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Fig. 2. Classification results for the three different networks on test sets. (A) Receiver operating characteristics (ROC) curve for the patch-level 
classification with Inception-v3. (B) ROC curve for the slide-level classification with Inception-v3. (C) ROC curve for the patch-level classification with 
ResNet-50. (D) ROC curve for the slide-level classification with ResNet-50. (E) ROC curve for the patch-level classification with AlexNet. (F) ROC curve 
for the slide-level classification with AlexNet. AUC, area under the curve.
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also decreased to 0.941 and 0.941, respectively. Thus, specificity 
can only be improved with the decrease in the sensitivity and ac-
curacy. The patch- and slide-level classification results in Fig. 2 
were all obtained with the balanced mini-batch approach which 
yielded the best overall accuracy.

Next, we overlaid the patch level classification results of Incep-
tion-v3 on the tissue images of WSIs to depict the distribution of 
normal/tumor tissue regions in the slides (Fig. 3). Either binary 
normal/tumor maps (Fig. 3, left panels, blue for normal and red 
for tumor patches) or probability heatmaps (Fig. 3, right panels, 
color gradient changing from blue to red with increased probabil-
ity of tumor) were drawn for comparison. Through this mapping, 
we identified three categories of tissues. The first was clear tumor 
cases, which contained huge aggregated red regions in the tissue 
map (Fig. 3A). The second was clear normal cases, which only 
contained a few dispersed red or green spots without aggregation 
(Fig. 3B). The last was ambiguous cases with lots of aggregated 
red or green spots (Fig. 3C). Thus, tissue properties could be eas-
ily determined by the mapping.

Finally, we validated the Inception-v3 model trained on TCGA-
STAD with our own frozen tissue dataset named SSMH-STAD 
(Fig. 4). The patch-level classification result on SSMH-STAD 
was inferior to the classification results for the TCGA-STAD test 
set (Fig. 4A). Although ROC curve for slide-level classification 
showed perfect curve with AUC of 1.000 (Fig. 4B), there were 11 
normal tissues falsely classified as tumor when the cut-off thresh-
old for normal/tumor discrimination was set to 0.5. The results 
indicated that normal and tumor slide can be clearly demarcated 
by a certain cut-off threshold point other than 0.5. The devia-
tion was thought to be originated from the poor classification 
results on normal tissues because specificity was much lower than 
sensitivity in both patch- and slide-levels (lower part of Table 1). 
Thus, we reviewed the heatmaps of misclassified tissues to clarify 
the reason of poor classification results for normal tissues. We 
found that most misclassified parts of normal tissues were muscle 
structures (Fig. 4C). When we compared the muscle tissues in the 
SSMH-STAD (Fig. 4D) and the TCGA-STAD (Fig. 4E), we con-
cluded that the preparation quality was very different. Although 

A

B

C

Fig. 3. Classification results overlaid on tissue images. Left panels are normal/tumor binary maps and right panels are probability heatmaps. Small 
rectangles represent 330 × 330 pixel patches. White spots are patches classified as non-tissue by the first convolutional neural network. Inset demon-
strates color distribution between normal (N) and tumor (T).
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the muscles in the SSMH-STAD were very densely packed and 
clearly demonstrated their natural structural patterns, muscles 
in TCGA-STAD showed loose degraded patterns. To test if the 

different features of the SSMH-STAD dataset can be incorpo-
rated into the neural network by exposing a small amount of the 
SSMH-STAD data into the original TCGA-STAD training data, 

A B

C

D E

Fig. 4. Classification results of the Seoul St. Mary’s Hospital Stomach Adenocarcinoma (SSMH-STAD) dataset by an Inception-v3 classifier 
trained with The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) dataset. (A) Receiver operating characteristics (ROC) curve for 
the patch-level classification. (B) ROC curve for the slide-level classification. (C) Exemplary normal tissue misclassified as tumor, overlaid with binary 
normal/tumor map (left panel) and probability heatmap (right panel). Insets were enlarged images (20×) for the indicated areas of the tissue stained 
with haematoxylin and eosin. (D) Example image of muscle tissue in the SSMH-STAD dataset. (E) Example image of muscle tissue in the TCGA-STAD 
dataset. AUC, area under the curve.
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we appended 5 normal and 5 tumor slides from the SSMH-STAD 
into the TCGA-STAD training data for fold 1 of the ten-fold cross 
validation set of the TCGA-STAD. Thus, we performed five-fold 
cross validation on the SSMH-STAD dataset with the fold 1 of 
TCGA-STAD dataset. Because the numbers of the SSMH-STAD 
data were much fewer than the TCGA-STAD data, we trained the 
neural network with mini-batches containing 30% of the SSMH-
STAD data to promote the learning of the features unique to the 
SSMH-STAD dataset. The results for patch-level classification 
was greatly improved (Fig. 5A, p < 0.001 by permutation test). 
Furthermore, there were no falsely classified slides even with the 
cut-off threshold of 0.5 in this setting. This improvement did not 
ameliorate the classification performance on the TCGA-STAD 
test data for fold 1 (data not shown). Thus, by supplying a small 
amount of the SSMH-STAD data, we could construct a classifier 
for both datasets.

DISCUSSION
The purpose of this study was to develop a deep learning-based, 

fully-automated classifier for WSIs. With the classifier, we tried 

to explore the possibilities of a decision support system which can 
assist with laborious tissue analysis tasks. Among the many archi-
tectures of deep learning, CNN has become the standard for im-
age classification problems because it outperforms other machine 
learning methods for various image recognition tasks by learning 
spatially invariant features directly from huge image databases 
[25,26]. Thus, we adopted CNNs for the automated classifier of 
tissue slides in the current study.

For automated processing, artifacts and background must be 
eliminated, because these images contain information completely 
irrelevant for the main tasks of normal/tumor tissue discrimina-
tion. Irrelevant images can deteriorate the learning process of 
deep neural networks. To exclude white background, many re-
searchers have adopted the Otsu thresholding algorithm [18,27]. 
A recent study by Senaras et al. [18] was completely dedicated 
to the removal of out-of-focus images. We used a much simpler 
CNN, but achieved acceptable performance for the removal of 
not only out-of-focus images but also all the other irrelevant im-
ages, including air-bubbles, compression artifacts, pen markings, 
tissue folding and white background. Thus, we concisely solved 
the issue of irrelevant tissue removal with a simple CNN.

In general, deep learning requires huge amounts of data for 
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Fig. 5. Classification results of the Seoul St. Mary’s Hospital Stomach Adenocarcinoma (SSMH-STAD) dataset by an Inception-v3 classifier 
trained with the mixed dataset of The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) and SSMH-STAD. (A) Receiver operating 
characteristics (ROC) curve for the patch-level classification. (B) ROC curve for the slide-level classification. (C) Exemplary tissue overlaid with binary 
normal/tumor map (left panel) and probability heatmap (right panel). AUC, area under the curve.
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training. Recently, routine digitization of tissue slides has started 
to supply plenty of data for the application of deep learning to 
a wide variety of applications. Because the US Food and Drug 
Administration approved the use of WSIs for primary diagnostic 
use, efforts to apply computerized analysis to WSIs are expected 
to explode in the near future [16]. One of the most imminent ap-
plications will be in CAD systems that complement human diag-
nosis. Because diagnostic decisions based on histopathology have 
shown inter- and intra-observer variability [2,3], CAD systems 
offer increased efficiency and accuracy.

When we first designed the experiment, we expected the 
performance of the three CNN structures to be very different, 
because they showed substantially different performances in the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
[22]. However, the difference was much smaller than expected, 
although the order of performance was the same as that obtained 
from the ILSVRC, i.e., the performance got better in the order of 
AlexNet, ResNet-50 and Inception-v3. The ILSVRC contained 
about 1,000 to 1,500 image samples per class for a thousand 
classes. In contrast, many more image samples for just two classes 
were classified in the current experiment. We speculate that the 
innate potential of the three CNN structures as classifiers of 
images does not differ much when plenty of image samples can 
be supplied. However, when samples are limited, performance 
gaps can widen. Otherwise, features for the classification of tis-
sue images can be quite different from natural images because 
there are relatively simple repetitive patterns in histologic images. 
Additional considerations in the selection of network structures 
include computational load and memory requirements, which 
differ between the CNN structures. Thus, network structures 
should be selected depending on the nature of the images, sample 
sizes, number of total classes and available computing power.

Another important subject to address is the class imbalance 
problem. In the TCGA-STAD tissue slide dataset, considerably 
fewer normal slides were provided than tumor slides. Ideally, 
deep learning requires a similar amount of training data between 
the classes. If there is a large imbalance between the classes, the 
deep learning model cannot fully learn the characteristics of 
under-represented classes [19]. One of the methods for alleviat-
ing the class imbalance problem is to sample the same amount of 
training data from each class [28]. However, if this method is ap-
plied by random sampling, it inevitably omits some information 
from the majority class. To avoid this, more informative samples 
should be carefully selected. This is a very difficult task, especially 
for a huge amount of tissue image patches. Thus, we chose to 
apply the balanced mini-batch method at first. By supplying the 
same number of data for each class in the mini-batch, preference 
for the majority class could be alleviated. Although we applied 
this method, the sensitivity was much higher, i.e., the CNNs still 
classified tumor patches more correctly. When we applied the 
weighted cross entropy loss function, the specificity was slightly 
improved but accompanied by the decrease in the accuracy and 

sensitivity. The best method to improve the specificity was the 
subsampling method for the tumor training data. In this case, 
the accuracy and sensitivity became much worse. These results 
indicated that there is an innate limitation to solve the class im-
balance problem through sampling methods or modified loss 
function. The best solution is to build a balanced dataset from the 
beginning, if possible.

The purpose of a CAD system is to improve the efficiency, ac-
curacy, and consistency of the diagnostic process, particularly in a 
time-limited clinical setting. The system can improve the age-old 
problem of inter-observer variation, leading to much better clini-
cal outcomes for patients. By drawing heatmaps overlaid on the 
WSIs, we tested the potential of our system for these objectives. 
There were three distinguishable categories of clear normal, clear 
tumor and ambiguous cases (Fig. 3). If heatmaps are provided be-
fore inspection by human interpreters, the clear normal cases can 
be put aside and more time can be given to the ambiguous cases. 
By automatically screening for cases that require more attention, 
this system can guide the pathologists to arrange their time and 
efforts during the routine diagnostic process. Alternately, the sys-
tem can be applied after manual inspection as part of a pathology 
laboratory’s quality management process.

Another application of these heatmaps is confirmation of the 
boundary of tumor regions. Recently, a lot of omics information, 
including genomics, transcriptomics, and proteomics, has been 
integrated into the diagnostic and prognostic evaluation of dis-
ease [5]. Such molecular examination of solid tumor tissue often 
requires the percentage of tumor tissue as a fraction of the entire 
sample. However, assessing this visually can be highly subjective 
and poorly reproducible [29]. Heatmaps can provide clear quanti-
tative and spatial distribution information about the tumor in the 
tissue. In addition, they can assist with the automated sectioning 
of tumor regions for relevant multi-omics testing from the begin-
ning. This approach can improve the confidence of molecular 
tests, because clear tumor regions can be used for the tests in both 
clinical and experimental settings.

One limitation of the TCGA-STAD dataset is that it consists 
of mainly Caucasian patients and collected from the hospitals in 
the United States. Ethnicity is thought to be an important fac-
tor that determines the characteristics of tumor tissues. Thus, a 
classifier trained on Caucasian tissues does not show the same 
performance on tissues of Asian patients [30]. It has not yet been 
established whether training a classifier using mixed tissues from 
different ethnic groups could improve the classifier’s generaliza-
tion ability to distinguish normal/tumor tissues from different 
ethnic groups or not. Thus, we collected frozen tissues slides 
from the Seoul St. Mary's Hospital (SSMH-STAD) to validate 
the model trained with the TCGA-STAD and then compared 
the results with another model trained with both datasets. The 
classification results of TCGA-STAD classifier for SSMH-STAD 
showed that the classifier had issues on the discrimination of nor-
mal muscle tissues with tumor (Fig. 4C), although the high AUC 
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for slide-level classification indicated that the model can generally 
discriminate the difference in the normal/tumor tissues except 
for the muscle structures (Fig. 4B). After reviewing the tissues, 
we speculated that the difference in the tissue preparation qual-
ity may be responsible for the misclassification rather than the 
ethnicity, because the muscles in the TCGA-STAD showed poor 
preparation quality. We speculated that the difference was origi-
nated from the different preparation conditions. The tissues in 
the SSMH-STAD were freshly processed right after the dissection 
for metastasis evaluation. In contrast, the tissues in the TCGA-
STAD underwent retention period before molecular experiment 
was performed. Thus, the difference in the tissue quality might 
be inevitable. When we included a small amount of the SSMH-
STAD data into the original TCGA-STAD training data, newly 
trained model can clearly discriminate both datasets. Because a 
neural network can only learn discriminative features from the 
supplied dataset, the only way to increase the generalizability of 
a classifier for tissue is to supply data collected from many differ-
ent preparation condition as possible. Considering the diversity 
of WSI quality in real world applications, datasets collected from 
various sources will be essential for training classifiers with gen-
eral discriminative power on WSIs prepared under different con-
ditions. Thus, construction of multi-national/multi-institutional 
dataset is urged to build a tissue classifier applicable for general 
purpose. In addition, although our system showed considerable 
performance for the classification of normal and tumor tissues 
from the stomach, it will not necessarily be able to distinguish 
tumors in other organs. Because each type of tumor from differ-
ent anatomical origins will have specific characteristics in tissue 
morphology, specific classifiers for each disease type should be 
developed [4]. Thus, considerable efforts are needed to develop a 
complete CAD system covering major disease types.

Overall, this study demonstrated that a deep learning-based 
tissue classifier could be a very useful supportive tool for assisting 
the analysis of WSIs, when it can be constructed with appropriate 
dataset. Although there is still room for further improvement, 
similar systems will eventually be integrated into routine diag-
nostic workflows. This strategy can make diagnoses of diseases 
more accurate and efficient, and reduce uncertainty in the deci-
sion making process. Furthermore, the ability to integrate histo-
pathology with other clinical, molecular and multi-omics data 
based on deep learning can play an essential role in patient strati-
fication and targeted therapies in the near future [29].
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