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SUMMARY

There are concerns that artificial intelligence (AI) algorithms may create underdiagnosis bias by mislabel-
ing patient individuals with certain attributes (e.g., female and young) as healthy. Addressing this bias is
crucial given the urgent need for AI diagnostics facing rapidly spreading infectious diseases like COVID-
19. We find the prevalent AI diagnostic models show an underdiagnosis rate among specific patient pop-
ulations, and the underdiagnosis rate is higher in some intersectional specific patient populations (for
example, females aged 20–40 years). Additionally, we find training AI models on heterogeneous datasets
(positive and negative samples from different datasets) may lead to poor model generalization. The
model’s classification performance varies significantly across test sets, with the accuracy of the better per-
formance being over 40% higher than that of the poor performance. In conclusion, we developed an AI
bias analysis pipeline to help researchers recognize and address biases that impact medical equality
and ethics.

INTRODUCTION

Since the emergence of the coronavirus disease 2019 (COVID-19) outbreak in late 2019, the viral infection has exhibited a remarkably high

level of transmissibility. This unprecedented incident has attracted profound attentions across various sectors of society. During the initial

stages of the outbreak, the implementation of reverse-transcription polymerase chain reaction (RT-PCR) technology in clinical settings proved

to be effective in the disease identification and the remission of further transmission, but it has the limitations of low sensitivity1 and easy

contamination.2 On the other hand, artificial intelligence (AI)-assisted diagnosis technology demonstrates the ability to identify and capture

imaging characteristics such as groundglass and solid pulmonary opacity in COVID-19 cases.3,4 In addition, AI can also reduce the shortage of

radiologists who have experience on this emergent disease and reduce their work burden.3,5 Under the urgent demand, relevant AI-assisted

diagnosis classification models have mushroomed, with good classification performance, including classification model based on computed

tomography (CT) images,6,7classification model based on X-rays,8,9 and classification model based on CT/X-ray two modes,10 etc.

AlthoughAI systems are expected to improve diagnosis and prognostic decision support for diseases, we have found that in other areas of

disease diagnosis, AI systems may be biased and discriminatory across different social population groups, according to the various studies.

One hospital created an AI model that included clinical and social variables to predict patient discharge times but then realized that doing so

would favor affluent white patients over poorer African Americans.11 Obermeyer et al. found racial bias in one of the more commonly used

diabetes detection algorithms.12 In cardiology, heart attacks are overwhelmingly misdiagnosed in women, a phenomenon discovered by

Nancy et al.13 Brendan et al. investigated the bias of facial recognition algorithms for different participants. The facial recognition system

used for law enforcement performed differently to different subjects; for example, the performance of black, female, and young subjects

was worse than that of other subjects. Furthermore, the study observed a gradual escalation of this phenomenon over time.14 There are

some studies of bias in other disease domains, but there is a lack of generalized bias studies in disease domains.

This bias results in the false negative, potentially leading to a lower priority for treatment when it is most crucial. The failure to receive timely

treatment can have severe medical implications, surpassing the significance of the misdiagnosis rate, which refers to falsely identifying a pa-

tient as ill.15 Although the pandemic has been suppressed, a retrospective summary of the widespread biases in previous studies is an impor-

tant warning for us to avoid similar problems in the future, such as health inequalities for certain subgroups, and to better help us copewith the

corresponding challenges16 in the future.17,18 However, in the specific context of COVID-19, the comprehensive validation of the bias in AI
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Figure 1. Flowchart diagram of the proposed pipeline

(A and B) The model is trained using the COVID-19 X-rays and CT datasets.

(C) The underdiagnosis rate (FNR, that is the false-negative rate of the COVID-positive label) of this model is then compared in different subpopulations and cross

subpopulations(such as sex, age.) to examine the algorithm’s underdiagnosis rate. TP, true positive; FP, false positive; TN, true negative. Symbol colors indicate

different ages of male and female patients.

(D) Using internal and external datasets for proof training models with heterogeneous datasets can lead to problems with poor model generalization.
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diagnostic classification algorithms is less explored. Furthermore, we found that most of the datasets used to train AI classifiers were heter-

ologous datasets, and the accuracy of the classifiers was generally high,19–24 while, the generalization ability of the model trained on such

heterogeneous datasets still needs to be validated. We need to look at a series of issues that have been overlooked in existing AI model

articles in the field of COVID-19, such as underdiagnosis bias, model generalization ability, and AI universality.

Our research team has developed a generalized AI bias discrimination pipeline. We applied it to the field of COVID-19 to identify and

analyze underdiagnosis bias in AI classification models. This can help researchers conduct more systematic in-depth research and provide

technical support for solving these problems. This pipeline can also be used in other disease areas to help researchers further their analysis.

The model pipeline is shown in Figure 1.

The contributions of this paper are as follows.

(1) This paper proposes a generalized AI bias discrimination pipeline and applies it on the twomainstream imagingmodalities of COVID-

19, X-ray and CT, to verify its performance.

(2) This paper points out the problem of insufficient diagnostic bias of AI algorithms in the field of COVID-19 diagnosis and explores its

causes.

(3) This paper raises the issue that the COVID-19 AI systems that have emerged in the past three years can lead to poor model general-

ization when using heterogeneous samples (positive and negative samples from different sources).

The rest of the paper is organized as follows. Chapter 2 introduces the experimental results. Chapter 3 discusses the results. Chapter 4 is

‘‘STAR methods’’; key resources table, resource availability, experimental model and study participant details, method details, and quantifi-

cation and statistical analysis are shown in turn. At the end of the article are five chapters: supplemental information, funding, author contri-

butions, declaration of interests, and references.

RESULTS

Our study design

In this study, five COVID-19 diagnostic classifiers (seemethod details – experimental design section) were trained on three X-ray datasets and

one CT dataset. These four datasets are detailed in method details – datasets section. The area under the receiver operating characteristic

curve（AUC）and accuracy (ACC)metrics were used to demonstrate themodel’s performance in the entire population and subgroups. Then,

according to the classification results, the underdiagnosis rates (according to Seyyed-Kalantari’s study,15 the false-negative rate [FNR]
2 iScience 27, 109712, May 17, 2024



Table 1. X-ray dataset

2D-Model AUC G 95% CI ACC G 95% CI

ResNet18 0.999 G 0.001 0.993 G 0.001

ResNet34 0.999 G 0.001 0.995 G 0.001

ResNet50 0.999 G 0.001 0.996 G 0.001

DenseNet121 0.999 G 0.001 0.996 G 0.001

DenseNet169 0.999 G 0.001 0.996 G 0.001

The performance indicators of the two-dimensional classifier for X-ray dataset.

The models trained on X-ray-dataset uses the same training-validation-test split, resulting in a calculated reported AUCG 95% confidence interval (CI) and the

ACC G 95% confidence interval (CI).
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predicted by the binarized model with ‘‘positive’’ label was used to represent the underdiagnosis rate) of subpopulations and cross subpop-

ulations in the general population were compared, and the model decision bias was evaluated. We also discuss the problem that training

models with heterogeneous datasets can lead to poor model generalization.

Underdiagnosis in specific subpopulations of patients

The performance results of the classifier trained using the X-ray dataset and the CT dataset are shown in Tables 1 and 2. The data show good

classification ability.

The AUC values of the five models in Table 1 are all close to 1, and the ACC values are also unrealistically high. DenseNet has achieved a

very high accuracy of 99.60%. The performance of the five models for X-ray image classification is nearly perfect.

The fivemodels in Table 2 all achieved good results in CT image classification performance, amongwhich shufflenetv2 obtained an AUCof

0.87 and an accuracy of 87.32%. Although its AUC value was the highest, its accuracy was 1.09% lower than that of 3D-ResNet18.

Then, based on the classification results, we calculated the underdiagnosis rates. We found that underdiagnosis rates differed across sub-

populations. In Figures 2 and S5–S7, we show the underdiagnosis of subpopulations specificity of X-ray dataset/X-ray-Test2/X-ray-Test3/CT

dataset in terms of sex, age, other comorbidities, and country, respectively.We observed higher rates of algorithmic underdiagnosis in female

patients, patients aged 20–40, Iranian patients, and patients with malignancies, cancer, or other lung diseases than in other populations.

These subpopulations are less likely to receive timely treatment by relying on these AI models. In addition, the underdiagnosis rate of

COVID-19 patients who had never or previously smoked was higher than that of current smokers (Figure S5A). High or low blood pressure

does not affect the underdiagnosis of COVID-19 patients (Figure S5A). The incidence of underdiagnosis is higher in patients with type I or

type II diabetes (Figure S6A). The results of hypertension, diabetes, and smoking are subject to further discussion. We found consistent pat-

terns of bias in the X-ray, X-ray-Test3, and CT datasets (i.e., women and younger patients had the highest rates of underdiagnosis). However,

in the X-ray-Test2 dataset, the rates of underdiagnosis were the same for male and female patients, and the rates were the same for patients

aged 60–80, 80-, and 0–60. The results presented by the gender attributemay be due to the unbalanced ratio of male to female patients (3:1),

and the results presented by the age attribute may be due to the limitations of the dataset itself. Its age distribution (80-/60-80/0-60) is incon-

sistent with the distribution of other datasets (0–20, 20–40, 40–60, 60–80, 80-), amongwhich the subset of 80- has a large sample size, account-

ing for 17%, compared with less than 10% of other datasets.

Underdiagnosis in cross subpopulations of patients

We studied the cross subpopulation, defined here as patients belonging to two subpopulations, such as Iranian female patients. We found that

cross subpopulations (Figures 2B, S5B–S5G, S6B–S5F, and S7B–S7D) frequently had compound bias in terms of algorithmic underdiagnosis.

For example, in the X-ray-dataset, female patients aged 20–40 years had the highest rate of underdiagnosis (was 0.011% higher than in female pa-

tientsaged60–80 yearsas shown inFigure 2B). In theX-ray-Test2dataset, the rateof underdiagnosis in femalepatientswithmalignancieswas twice

as high as that in male patients with malignancies (Figure S5D). In the X-ray-Test3 dataset, women with cancer had a 0.005% higher rate of under-

diagnosis than women without cancer (Figure S6B). In the CT dataset, the rate of underdiagnosis among Iranian women was about twice that of

Frenchwomen (Figure S7B), andwomen aged 20–40 years had a 0.02% higher rate of underdiagnosis than women aged 40–60 years (Figure S7B).

We observed that patients belonging to two specific subpopulations had a greater rate of underdiagnosis. In other words, not all female

patients have the same rate of misdiagnosis (for example, Iranian women have a higher rate of underdiagnosis than French women).

Poor model generalization caused by heterogeneous datasets

However, the AUC and ACC values shown in Table 1 are both close to 100%, which leads us to think: the X-ray dataset in this paper is

composed of multiple datasets with positive and negative samples from different datasets (heterogeneous datasets). Training model on a

heterogeneous dataset will lead to the poor generalization ability of the model. Table 3 shows the dataset statistics used by some

COVID-19 AI systems in the past three years.

From the data in Table 3, it can be concluded that the ACC values of the heterogeneous X-ray datasets used by the AI classification system

(positive and negative samples from different datasets) are close to 100%. Since most X-ray training datasets are mixed. we need to explore
iScience 27, 109712, May 17, 2024 3



Table 2. CT dataset

3D-Model AUC G 95% CI ACC G 95% CI

3D-ResNet18 0.795 G 0.001 0.884 G 0.001

3D-ResNet34 0.711 G 0.001 0.877 G 0.001

mobilenet 0.627 G 0.001 0.873 G 0.001

shufflenetv2 0.875 G 0.001 0.873 G 0.001

squeezeNet 0.778 G 0.001 0.866 G 0.001

The performance indicators of the 3D classifier for CT dataset.

The models trained on CT dataset uses the same training-validation-test split, resulting in a calculated reported AUC G 95% confidence interval (CI) and the

ACC G 95% confidence interval (CI).
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whether training amodel on a heterogeneous dataset will lead to poormodel generalization ability. In view of this phenomenon, we redivided

several X-rays datasets introduced in Table 4 and did some comparative experiments as shown in Table 5 to analyze this point. There we give

each small dataset an abbreviation (see Table 4 for the column ‘‘Divide abbreviations’’).

These datasets are redivided into four design schemes (see Table 5), and the details of the division are as follows.

(1) Covid-19 X--ray Severity Scoring dataset is represented by A. COVID-19 Chest X-rays (NY-SBU) dataset is represented by B. Covid-19

Chest X-rays for Mortality Prediction and covid-chestxray-dataset are uniformly represented in C. Positive samples in the COVIDx

CXR-3 dataset are represented by D, and negative samples are represented by E. ChestX-ray8 dataset is represented by F. ABC is

all positive sample datasets; F is negative sample dataset.

(2) The internal dataset (the training set) in experiment design 1 is made up of DE, and the external dataset (the test set) is made up of

FABC. The purpose of this division is to ensure that the training set is a homologous dataset and the test set is an additional heter-

ologous dataset.

(3) The internal dataset (the training set) in experiment design 2 is made up of FADE, and the external dataset (the test set) is made up of

FADE. The purpose of this division is to ensure that the training set and the test set are from the same heterologous dataset.

(4) The internal dataset (the training set) in experiment design 3 ismade up of EA, and the external dataset (the test set) ismade up of EBC.

The purpose of this division is to ensure that the training set is a heterogeneous dataset and the test set is a heterogeneous dataset

(having some of the same data sources as the training set but not duplicating them).

(5) The internal dataset (the training set) in experiment design 4 is made up of EA, and the external dataset (the test set) is made up of BC.

The purpose of this division is to ensure that the training set is a heterologous dataset and the test set is an additional heterologous

dataset.

In experimental design 2 in the table, the ACC values for the training set (internal) and the ACC values for the test set (external) are similar

because the training and test sets are from the same heterologous dataset. In the experimental design in Table 3, the ACC value of the

training set (internal) is nearly 50% higher than that of the test set (external) because the training and test sets are not exactly from the

same heterologous dataset. In experimental design 4 in the table, the ACC value of the training set (internal) is nearly 90% higher than

that of the test set (external). This is because the training set and the test set are completely from different heterogeneous datasets, which

also indicates that models trained with heterogeneous datasets are less generalizable. In experimental design 1 in the table, because the

model was trained on a homologous dataset, the ACC values for the test set (internal) and test set (external) remained around 95%, even

though the test set was from a heterogeneous data source, indicating that the model had good generalization.
Figure 2. Underdiagnosis analysis of sex, age, and cross subpopulations in X-ray dataset

(A) The underdiagnosis rate, as measured by the no-finding FNR, in the indicated patient subpopulations.

(B) Intersectional underdiagnosis rates for female patients and patients of different age groups. The results are averaged over five trained models with different

random seeds on the same train-validation-test splits.

4 iScience 27, 109712, May 17, 2024



Table 3. Statistics on datasets used by artificial intelligence systems for COVID-19

Whether heterogeneous datasets AUC ACC Dataset type Study

No 0.950 0.860 CT Song et al.25

– 0.815 CT Kabir et al.26

– 0.878 CT Bougourzi et al.27

Yes 0.990 – CT Alhadad et al.19

0.970 0.957 X-rays Afshar et al.20

0.991 0.960 X-rays Chetoui et al.21

0.992 0.996 X-rays Ghose et al.22

1.000 0.996 X-rays Siddhartha et al.23

– 0.930 CT Pathak et al.24

Table 3 shows the work of others using homologous datasets and heterologous datasets, as well as the types of datasets and classification performance indi-

cators (ACC and AUC), respectively.
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DISCUSSION

We have shown the same trend of underdiagnosis across multiple X-ray and CT public datasets in the COVID-19 field, with AI algorithms

exhibiting systematic underdiagnosis bias in specific subpopulations (e.g., female patients, Iranian patients, young patients, patients withma-

lignancies, cancers, or other lung diseases). We found that these effects persisted in cross subpopulations, such as Iranian female patients.

The specific subpopulations with high rates of underdiagnosis in the X-ray-Test2 dataset are different, especially sex and age attributes, which

should be further explored. In this section, we need to discuss and research from four aspects to gain a comprehensive understanding of the

underdiagnosis bias in AI algorithms for COVID-19 diagnosis, as well as the discussion of generalization ability of models trained on heter-

ologous datasets.

First, considering the amplification of bias, unintended biases in AI medical algorithms can be exacerbated by the phenomenon of devi-

ation amplification. These biases can arise from inherent biases present in the data used to train the algorithms, such as underdiagnosis biases

related to sex13 and race12,16 that have been observed in other clinical fields. When AI algorithms are trained on datasets that contain these

biases, they have the potential to amplify and perpetuate these biases. This phenomenon has serious implications for the fairness and accu-

racy of AI algorithms in healthcare settings. During the epidemic of COVID-19, a large number of AI diagnostic models have emerged, so

whether they show underdiagnosis has to attract our attention and further research.
Table 4. Summary statistics for X-ray dataset

Dataset

No. of images

Labels

Divide

abbreviationsCOVID-19 Normal

Covid-19 X--ray Severity Scoring(Alberto et al.)28 4,695 – Sex, Age A

COVID-19 Chest X-rays (NY-SBU) (Saltz et al.)29 6,215 – Sex, Age, Malignancies,

Other-lung-disease,

Smoking-status,

SBP.above139

B

Covid-19 Chest X-rays for Mortality Prediction

(Larxel) Covid-19 Chest X-rays for Mortality

Prediction [https://www.kaggle.com/datasets/

andrewmvd/covid19-xrays-mortality-prediction]

196 – Sex, Age, Race, CANCER,

CURRENT REGNANT,

DIABETES TYPE I,

DIABETES TYPE II

C

covid-chestxray-dataset (Joseph et al.)30 408 – Sex, Age

ChestX-ray8(Wang et al.)31 – 10,405 Sex, Age F

COVIDx CXR-332 16,194 14,192 – D(Positive)

E(Negative)

(1) The healthy chest X-ray scans used for training in this study were extracted from the public chest X-ray database provided by the NIH Clinical Center.31 We

randomly selected 10,405 images of 7,187 patients from a patient scan pool labeled "no findings" to achieve an overall healthy COVID-19 ratio of about 1:1 and

avoid lopsided data issues.

(2) To expand the training set by an order of magnitude, 30,386 images fromCOVIDx CXR-3 with no patient information labels such as gender and age have been

added to the training set for better results.

(3) The second dataset33 and the third dataset5 are specifically used as test sets (described in detail in Table S3) and are not placed in the X-ray dataset in Table S1.

It is placed here for statistical convenience.
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Table 5. Experiments to explore the generalization ability of the model on X-ray dataset

Model

Experiment design 1 Experiment design 2 Experiment design 3 Experiment design 4

internal

AUC

external

AUC

internal

ACC

external

ACC

internal

AUC

external

AUC

internal

ACC

external

ACC

internal

AUC

external

AUC

internal

ACC

external

ACC

internal

AUC

external

AUC

internal

ACC

external

ACC

Resnet18 0.989 0.992 0.967 0.953 0.999 0.999 0.994 0.993 0.984 0.824 0.959 0.475 0.984 – 0.959 0.085

Resnet34 0.989 0.987 0.967 0.935 0.999 0.999 0.996 0.995 0.987 0.868 0.967 0.469 0.987 – 0.967 0.074

Resnet50 0.985 0.991 0.958 0.959 0.999 0.999 0.996 0.996 0.988 0.856 0.500 0.447 0.988 – 0.500 0.037

Densnet121 0.993 0.992 0.975 0.965 0.999 0.999 0.995 0.996 0.987 0.882 0.960 0.501 0.987 – 0.960 0.132

Densnet169 0.989 0.983 0.965 0.931 0.999 0.999 0.996 0.996 0.987 0.882 0.967 0.467 0.987 – 0.967 0.070

There is no external AUC value in experiment design 4 because the test set is all positive samples. We designed four sets of experiments to explore the impact of heterologous datasets on the generalization

ability of the model. In each set of experiments, we used internal data to train the model and external data to test the generalization ability of the model and calculated the ACC value and AUC value.
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Second, at present, there are some solutions to achieve relative diagnostic fairness, but there are certain defects. For example, one

possible approach is to use appropriate data pre-processing techniques to harmonizedata to some extent and/or use hyperparameter tuning

to train deep networks whose machine learning models have no bias in their predictions across different subpopulations.34 However, if the

bias is derived from other sources, such as diagnostic bias between different ethnic groups, the bias cannot be eliminated by this method.12

Another possible post-processing approach is to select different thresholds for different subpopulations that correspond to the operating

points of their receiver operating characteristic (ROC) curves from calibration perspective, thus making FNR equal across the subpopula-

tions.35 However, due to a large number of unknowns caused by the small population of some cross subpopulations, it may be difficult to

obtain an accurate approximation of the thresholds, so it is not practical to use different thresholds for each group. In addition, achieving

equal FNR may require randomly and systematically deteriorating model performance in specific subpopulations, and it is unclear whether

it is ethical to deteriorate the global model representation of a subpopulation to realize equity in a medical context.15

Third, in order to address the issue of underdiagnosis bias, it is recommended that relevant regulatory bodies and healthcare institutions

undertake thorough and impartial evaluations. Our study highlights the necessity for comprehensive assessments of AI-based emergent

healthcare algorithms in background of super-contagious disease spread. Certain models leveraging AI can extract demographic informa-

tion, including age, sex, and ethnicity, from chest X-ray images.3 The underdiagnosis bias can potentially lead to delays in patients receiving

timely and appropriate care. Given the increasing prevalence of medical algorithms, before deploying these algorithms, it is crucial for de-

velopers and clinical practitioners tometiculously evaluate keymetrics associatedwith health disparities, such as underdiagnosis rates, during

multiple stages of decision model development and subsequent to deployment. This proactive approach will help mitigate the detrimental

impact of underdiagnosis bias on specific patient subpopulations.

Fourth, from the analysis of our study, we can see that AI models trained using heterologous datasets (positive and negative samples from

different datasets) have poormodel generalization.We believe that thismay be becausewhen themodel is trainedwith heterogeneous data-

sets, the system learns the differences between different datasets, not just the differences caused by lesions, so that its accuracy is falsely high,

and the generalization power of the trained model is also very limited. When using homologous datasets to train the model, the system

learned more focal features, and the model performance was also proved to be stable. We suggest that in the process of AI model training,

a more reasonable method, that is, using homologous datasets to train the model, will make it easier for the model to learn the disease-

related feature differences, and the model performance will be more stable.

In summary, we found that AI diagnostic algorithms trained on COVID-19 X-ray and CT datasets were inadequate in diagnosing specific

subpopulations. Patients in intersecting subpopulations (e.g., Iranian female patients) are particularly vulnerable to algorithm-based under-

diagnosis. Underdiagnosis leads to undiagnosedCOVID-19 patients not receiving timely treatment to control the source of infection, and this

problem is extremely frightening in the clinic. Our findings suggest that, without robust auditing of performance differences between

different subpopulations and AI models trained under multi-source datasets, deployed algorithms may overstate actual accuracy and exac-

erbate existing systemic health inequalities. Relevant staff and departments must consider the issue of equitable access to health care for

specific subpopulations and howAI-based diagnostic models can be usedmore effectively. In addition, we also found that training themodel

with heterogeneous datasets would lead to poormodel generalization, and we recommend using homologous datasets for training to obtain

a classifier with more stable performance.

Wewill then extend the work of this study to other currently unstudied disease areas to better understand how algorithmic bias permeates

medical algorithms and provide more robust evidence for addressing the issue of related bias.
Limitations of the study

Although our work can effectively assist researchers in analyzing AI underdiagnosis bias in specific patient populations, this study has limita-

tions.On theonehand, there are limitations in thedata sources.Due to theprivacy security of patients, we cannot access comprehensive large-

scale datasets containingmore labels such as the social status of patients, which prevents us fromexploringAI underdiagnosis bias in subpop-

ulations from various perspectives.More collaborations, for example, trying to invitemore expert doctors to create datasets withmore patient

label information for us to study this kind of problem, are needed.On the other hand, the images in existing homogeneous datasetsmostly do

not come fromthe same imagingdevices, and the resolutionofmostX-raydatasets is low,whichmayaffect our ability toachieveoptimal exper-

imental results. We can also involve manufacturers as the bias variables in the future study, for further exploring its potential bias.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

the COVIDx CT-3A Public access https://www.kaggle.com/datasets/hgunraj/covidxct

the Covid-19 X--ray Severity Scoring dataset Public access https://www.kaggle.com/datasets/

andrewmvd/covid19-xray-severity-

scoring?select=metadata.csv

the COVID-19 Chest X-rays (NY-SBU) dataset Public access https://www.kaggle.com/datasets/

toxite/covid-19-cxr-ny-sbu

the Covid-19 Chest X-rays for Mortality

Prediction dataset

Public access https://www.kaggle.com/datasets/

andrewmvd/covid19-xrays-mortality-prediction

the covid-chestxray-dataset Public access http://github.com/ieee8023/covid-chestxray-dataset

the COVIDx CXR-3 dataset Public access https://www.kaggle.com/datasets/andyczhao/covidx-cxr2?

the ChestX-ray8 dataset Public access https://www.kaggle.com/datasets/nih-chest-xrays/data

Source Code This paper https://github.com/Liu-Ya-nan/COVID-19_code.git

Software and algorithms

Python (version 3.8) Python software https://www.python.org/

Cuda (version 11.6.0) Nvidia https://developer.nvidia.com/

PyTorch (version 1.12.0) Pytorch software https://pytorch.org/

Numpy (version 1.23.5) Numpy package https://scipy.org/install/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Tao Tan (taotanjs@gmail.com).

Materials availability

All the data comes from public datasets as explained in Section experimental model and study participant details-datasets.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� All original code have been deposited at Github (https://github.com/Liu-Ya-nan/COVID-19_code.git), and are publicly accessible as of

the date of publication.DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of thework are

appropriately investigated and resolved.

Datasets

In disease centers in COVID popular regions, imagingmethod is widely used for inspections of suspicious COVID-19-infectedpatients. There-

fore, three-dimensional volume computed tomography (CT) and two-dimensional projected chest X-ray (X-ray) have been used on an unprec-

edented scale in the diagnosis of COVID-19.36,37 Among them, chest CT can more clearly display the typical imaging features of COVID-19

patients, such as ground-glass opacity and consolidation around the lung.38,39 Due to the slight deficiency of CT imaging scanning cost and

high patient dose, X-ray imaging scanning cost is low, the speed is fast, the radiation amount is low, and the audience is wider.40,41 It is also

highlighted in the diagnosis.42

Combining their respective advantages, this paper will conduct a detailed study through the COVID-19 datasets using both CT and X-ray

imaging modes (as shown in Figure S1).
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X-Ray image dataset

The underdiagnosis studies in this paper focus on individuals and cross-sectional subpopulations across sex,43,44 age,45 ethnicity,43,46 and

multiple common diseases,47 which were selected by reference to the history of medical and AI bias studies.43–46 Multiple labels are involved,

and the existing single public dataset cannot meet the expected subpopulation labels, so multiple COVID-19 open-source datasets (see Ta-

ble 4 for details) are integrated as X-ray image datasets in this study.

After data integration (label screening and deletion of blank values), the distribution of the X-ray image dataset (hereinafter referred to as

X-ray-dataset) in this study is shown in Table S1 (Individual partitions are in parentheses by patient level). In the test set, the image count at the

intersection of sex and age is shown in Table S2. Since there is no patient label information in the expanded data, Therefore, the data dis-

tribution statistics of Age rows and Sex rows in the table are the statistics of the dataset before the training set is expanded.

We used 47,074 publicly available chest X-ray images from 29,342 patients in a dataset with roughly equal proportions of male and female

patients, most of whomwere between 20 and 80 years of age, and divided it into a training set, a validation set, and a test set on an 8:1:1 ratio

(TheCOVIDxCXR-3 dataset is all used as a training set), as shown in Figure S2.Examples of positive images for each X-ray dataset are shown in

Figure S3.

In Table 4, two datasets, COVID-19 Chest X-rays (hereinafter referred to as X-ray-Test2) and Covid-19 Chest X-rays for Mortality Prediction

(hereinafter referred to as X-ray-Test3), due to the abundant subgroup labels, after data integration (label screening and deletion of blank

values), the data distribution of the test set is shown in Table S3 (Individual partitions are in parentheses by patient level).In the test sets

of X-ray-Test2 and X-ray-Test3, the image count at the intersection of sex and age are shown in Tables S4 and S5.

CT image dataset

This study introduced COVIDx CT-3A (Gunraj et al.), an open-access CT dataset from a large curated benchmark multi-country cohort from

China’s National BioInformation Center (CNCB). This dataset has been clinically validated extensively.48 This study focuses on the binary clas-

sification of COVID-19 (COVID-19 andNormal) and therefore only COVID-19 positive andNormal data in this dataset are used as the CT data-

set in this study (hereinafter referred to as CT-dataset). Chest CT images of a cohort of 2760 patients were included and divided into a training

set, a validation set, and a test set according to a ratio of 8:1:1, as shown in Figure S4.

The data distribution is shown in Table S6 (note that the data are partitioned at the patient level).In the test sets, the image count at the

intersection of sex and age are shown in Table S7.

METHOD DETAILS

Experimental design

In this paper, we used several proposed advanced COVID-19 diagnostic classifiers to train the model on the two modal datasets to demon-

strate the model performance of the entire population and then compared the underdiagnosis rates of each subpopulation in the total pop-

ulation to evaluate the model decision bias of underdiagnosed patients.

The COVID-19 diagnostic classifiers used in this paper include ResNet49 (ResNet 18, ResNet 34, ResNet 50, 3-D ResNet18 and 3D-Re-

sNet34), DenseNet50 (DenseNet121 and DenseNet169), mobilenet,51 shufflenetv252 and squeezeNet.53 The complexity of the models is

shown in Table S8.

Medical images preprocessing

All images are normalized using mean and standard deviation according to standard convention.15

Labels preprocessing

For each image, if it is positive for COVID-19, it is labeled as ‘‘1’’ and if it is normal, it is labeled as ‘‘0’’. The classifier is trained by binary clas-

sification, and the underdiagnosis and other fairness indicators on label ‘‘1’’ are statistically analyzed.

Model training

We use the method described in the Datasets chapter to divide the dataset into training sets, verification sets, and test sets. The data is split

randomly, with no overlap of patients between the partitions. The train–validation–test set sizes for the X-ray-dataset are 23473–2934–2935

and for the CT-dataset they are 2208–276–276 (Partition at the patient level). We applied Gaussian filter and random horizontal flip and mild

rotation data augmentation for model training. We trained the models on a server with six Nvidia TITAN RTX GPUs using the PyTorch 22

framework. We used the Adam optimizer with default parameters. We set the initial learning rate to 5-4 and automatic learning rate sched-

uling during the training process – if the loss is not improved in 3 epochs, the learning rate will be halved; On X-ray-dataset, Binary

CrossEntropy Loss was used due to the balanced ratio between positive and normal categories. On CT-dataset, FocalLoss54 was used

due to the unbalanced ratio between positive and normal categories (87:13) to address data imbalances.

All reported metrics, such as AUC, ACC, and FNR, were evaluated separately in five models (the same model was trained five times with

five different random seeds),15 and the training-validation-testing segmentation remained constant across the fivemodels. Random seeds are

chosen randomly from a range of 0–100. For each dataset, the reported results in this study: FNR (Figures 2 and S5–S7), represent

the average G 95% confidence interval of the results from the five models (with different random seed initializations). AUC and ACC
iScience 27, 109712, May 17, 2024 11
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(Tables 1 and 2) represent the average G 95% confidence intervals for the results from the five models (with different random seed initiali-

zations). Following best practices in FNR estimation, we select a single threshold for all groups, thus maximizing F1 scores.
QUANTIFICATION AND STATISTICAL ANALYSIS

Accuracy

The higher the accuracy, the better the classifier performance. The equation explaining the aforementionedmetrics are shown in Equation 1,26

below.

Accuracy =
TP+TN

TP+TN+FP+FN
(Equation 1)

Where true positive (TP) represents the number ofmalignant samples correctly predicted, true negative (TN) represents the number of normal

samples correctly predicted, false positive (FP) represents the number of normal samples incorrectly predicted, and false negative (FN) rep-

resents the number of malignant samples incorrectly predicted.
Underdiagnosis rate (FNR)

We predict the definition and quantification of underdiagnosis rates based on binarized models. We calculated and compared the underdi-

agnosis rates of subpopulations in the general population to assess the underdiagnosis bias of patients in the model. We use the false-nega-

tive rate (FNR) predicted by a binarized model of the ‘‘positive’’ label to represent the underdiagnosis rate, with and FNRsi;j indicating the

probability of undiagnosed disease at the level of subgroup sj (e.g., female) and cross-identity si, j (e.g., black and female), respectively.

The equation explaining the aforementioned metrics are shown in Equation 2,15 below.

FNRsj = P
h
Y
^

= 0
���sj;Y = 1

i
(Equation 2)
FNRsi;j = P
h
Y
^

= 0
���si;j; Y = 1

i

Where i and j represent subpopulations with different attributes, Y are true labels, and Y
^
are predicted labels.
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