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Abstract

Background: Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription
complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of
integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the
latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the
type of producer cells has not yet been characterized.

Results: We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1
cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1
cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of
infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1
replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with
the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17),
cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-
proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained
twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN
were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences
in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-
proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding
and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of
overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins
(MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did
not correlate with the abundance of these proteins in virus producing cells.

Conclusions: Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus
producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral
functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random
packaging into virions in T cells than in mMΦ and mMN.
Background
HIV-1 viral particles released from infected cells have
been shown to incorporate many cellular proteins during
the assembly and budding steps of morphogenesis. Find-
ings from earlier studies, summarized in a web-based
database (http://web.ncifcrf.gov/research/avp/protein_db.
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asp), identified more than three hundred cellular proteins
in HIV-1 particles. HIV-1, as well as other lentiviruses,
incorporates components of the cellular endosomal sort-
ing machinery and cytoskeleton proteins involved in the
process of particle assembly [1-5], surface proteins cap-
tured with the plasma membrane during budding [6,7],
RNA-binding proteins associated with incorporated viral
RNA and RNA-Gag complexes [4,8-10], chaperones [11],
and multiple concomitant proteins (reviewed in [12])
whose functions in viral morphogenesis and infectivity are
still unknown.
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Upon fusion of an HIV-1 particle with a target cell,
viral cores are released into the cytoplasm and rear-
ranged into sub-viral particles called reverse transcrip-
tion complexes (RTCs), which subsequently mature into
pre-integration complexes (PICs). These nucleoprotein
structures support reverse transcription and also protect
and transport viral cDNA to the site of integration.
RTCs are composed of both viral and cellular proteins.
Since RTCs are formed from the viral cores, their initial
composition is identical to that of viral cores. Other than
the key enzymatic components, reverse transcriptase
(RT) and integrase (IN), at least five other viral proteins
involved in structural organization, cytoplasmic traffick-
ing and nuclear import (matrix [MA], nucleocapsid
[NC], capsid [CA], Nef and viral protein R [Vpr]), have
been identified as components of HIV-1 RTCs [13-19],
reviewed in [20-22].
Although the key early steps of HIV replication, re-

verse transcription and integration, are relatively auto-
nomic, the participation of cellular proteins in early
infection events has been demonstrated in previous
studies [23-25]. After release from the viral particles,
RTCs are still encapsulated in the shells formed by
p24CA molecules which are stable in the cytoplasm for
at least several hours [26,27]. The shell is believed to
protect the reverse transcription machinery and all
encapsulated proteins from the cytoplasmic environment
to provide optimal conditions for their functional activ-
ity [28] and may contribute to the nuclear import of
PICs [19,29-31]. The shell likely limits the access of host
cell proteins to the RTC interior. Thus, most cellular
factors which may contribute to the functional compe-
tence of early RTCs should be expected to get into the
complexes from the cores of infecting virions.
The cellular proteins, which are known to be hijacked

by assembling virus particles from virus-producing cells
and are involved in the early post-entry stages of HIV-1
infection, can be grouped into the following categories.
(1) Factors involved in the spatial organization and cor-
rect folding of viral proteins in the virion and probably
RTC: clathrin [5,32] and heat shock proteins (Hsp70,
Hsc70, Hsp60) [11,33] are probably critical for spatial
organization of Gag and Pol proteins and regulation of
proteolytic processing and folding of the Pol products –
RT and integrase; thioltransferase is found in HIV-1 vir-
ions and may be important for dimerization and activa-
tion of the viral protease [34], (reviewed in [12]);
staufen1, an RNA-binding protein is packaged into vir-
ions and is involved in incorporation of HIV-1 RNA [8].
Interaction of staufen1 with Pr55Gag zing finger motifs
may also be important for Gag multimerization and for-
mation of the viral capsids [35]. (2) Proteins which have
an effect on cDNA synthesis/accumulation: lysyl-tRNA
synthetase is incorporated through the interaction with
Gag and is critical for the priming of reverse transcrip-
tion [36]; uracil DNA glycosylase 2 (UNG2), a cellular
DNA repair enzyme that binds HIV-1 integrase and Vpr
[37,38] . The role of this enzyme in early post-entry
steps of infection remains controversial. The hypothesis
that the catalytic activity of Vpr-associated UNG could
modulate virus mutation rate and APOBEC3G-mediated
G-to-A hypermutations [39-41] was not supported by
subsequent studies [42]. However, recently published
work of Guenzel and co-authors showed that the virion-
incorporated nuclear form of UNG2 facilitated reverse
transcription through a non-enzymatic mechanism in-
volving direct interaction with the p32 subunit of the
replication protein A (RPA) complex [43]. RNA helicase
A (RHA or DHX9) is packaged into HIV-1 virions prob-
ably through the interaction with an RNA or Gag poly-
protein and facilitates reverse transcription [10]. The
protein INI1/hSNF5, a member of SWI/SNF chromatin
remodeling complex, has been shown to be packaged
into virions through the direct binding to integrase [44],
and is involved in the synthesis of reverse transcription
products [45]. Later studies demonstrated that INI1/
hSNF5 selectively recruits into HIV-1 virions the com-
ponents of Sin3a-HDAC1 cellular complex, whose pres-
ence is critical for the early reverse transcription stage
[46]. Furthermore, interaction of HIV-1 integrase with
INI1 has been shown to be essential for the nucleosome
remodeling of host chromatin and hence overcoming
the structural nucleosome barrier for viral integration
[47]. (3) Proteins involved in RTC formation, protection
and transport: cyclophilin A, which is incorporated into
virions via binding to the CA domain of Pr55Gag [23].
The role of CA-bound cyclophilin A in the viral life
cycle is still unclear [48] Recently published data showed
this protein to be critical for protection and stabilization
of HIV-1 cores [49]. It may also be involved in PIC nu-
clear transport [31]. (4) Restriction factors of the early
stages of HIV-1 infection: members of the APOBEC3
family of DNA/RNA editing cytidine deaminases, APO-
BEC3G (A3G) and APOBEC3F (A3F), are incorporated
in Vif-negative virus particles (a small amount of these
factors may be present also in Vif-positive virions) and
then restrict reverse transcription by carrying out hyper-
mutation of newly synthesized HIV-1 DNA [41,50-52].
Numerous studies have shown that A3G molecules from
the target cell have no effect on cDNA deamination, and
only virion-incorporated A3G affects viral DNA
(reviewed in [53]), suggesting that the cDNA synthesis
and accumulation machineries are effectively isolated
from the environment of the target cell cytoplasm, but
can be affected by factors which are encapsulated in
cores and found within RTCs. Initiation of uncoating or
disintegration of the capsid shell is believed to be
dependent on the completion of reverse transcription
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[27,28]. Uncoated complexes containing viral cDNA are
capable of interacting with numerous factors of the tar-
get cell, which are necessary for nuclear import and
probably facilitation of viral genome integration
(reviewed [21,54]).
Although numerous studies, including recently pub-

lished proteomic analyses of whole highly-purified retro-
viral virions or virus-like particles, contain broad
information about profiles of cellular proteins in viral
particles [4,10,55,56], the host proteins associated specif-
ically with the cores of mature HIV-1 virions have not
been characterized. To identify the proteomic profiles of
HIV-1 cores , we performed LC-MS/MS analysis of the
cores isolated from virus particles of HIV-1 NL4-3 pro-
duced by Sup-T1 cells (T lymphocytes), PMA and vita-
min D3 activated THP1 (model of monocyte-derived
macrophages), and non-activated THP1 cells (model of
monocytes), and Western blot analysis of selected pro-
teins in the cores and producer cells. Potential involve-
ment of identified proteins in the early stages of HIV-1
infection was assessed using gene ontology information
and data from published genome-wide screens on pro-
teins important for HIV-1 replication [57-59]. Our study
revealed 202 proteins associated with HIV-1 cores. More
than 20% of these proteins were detected in the cores of
virions from all cell types, suggesting that this group
contains cellular proteins potentially involved in viral
replication. We found that some members of this group,
which belong to subfamilies of RNA and DNA helicases,
are packaged into the virions from producing T cells
more efficiently than into virions from monocyte or
MDM model cells, indicating that the mechanism of
their incorporation is nonrandom.

Results
Preparation of HIV-1 core structures for proteomic
analysis
Since HIV-1 is a highly variable virus, its different sub-
types and individual variations may interact differently
with cellular proteins [60]. Therefore, we selected the
NL4-3 isolate of HIV-1 subtype B as a model virus for
infection of different cell types: T lymphocytes and the
model of monocytes and MDM. NL4-3 is a CXCR4-
tropic isolate of HIV-1 that normally does not infect
monocytes and macrophages, so to infect THP1 cells we
used virus pseudotyped with amphotropic murine
leukemia virus (MLV) Env glycoprotein. For isolation of
viral cores and subsequent LC-MS/MS analysis, we used
the virus particles produced by infected Sup-T1 cells (T
lymphocyte cell line), THP1 (monocytic leukemia cells)
and THP1 cells treated with phorbol 12-myristate 13-
acetate (PMA) and vitamin D3. This treatment activates
cell differentiation that results in acquisition of the bio-
chemical and morphological characteristics of MDM.
Thus, the activated THP1 cells may be considered as a
model of macrophages [61,62].
To isolate core structures from HIV-1 virions pro-

duced by infected cells, we engaged a technique of
“spin-thru” equilibrium density gradient sedimentation
described earlier [63-66]. This method of ultra-speed
centrifugation of previously concentrated HIV-1 virions
through a sucrose density gradient overlaid with a deter-
gent layer (1% Triton X-100) allows for the purification
of mature lentiviral cores whose density varies from 1.23
to 1.27 g/ml [67,68] (Figure 1A, lower panel), whereas
intact viral particles display buoyant density 1.18-
1.20 mg/ml (Figure 1A, upper panel). To establish the
purity of our viral core preparations from cellular vesi-
cles, which have density similar to that of virions (1.14-
1.20 g/ml) and may contaminate virus preparations [69],
and to compare maturation of capsid cores in the viruses
produced by T lymphocytes and MDM model cells, we
engaged electron microscopy and Western blot analysis.
Examination of the negatively stained concentrated vir-
ion samples in a transmission electron microscope
revealed the presence of both extracellular vesicles and
viral particles with diameter from 120 to 130 nm
(Figure 1B1-B3). Analysis of ultrathin sections of the
viral particles used for core isolation showed that the
population represented a mix of immature (Figure 1B4,
black double arrows) and mature virions (Figure 1B4,
single arrow). The lipid membrane-covered structures
were not found in purified viral core preparations. Only
the conical-shape and oval structures with length about
80–110 nm were found in the samples of purified viral
cores, indicating that the preparations after “spin-thru”
purification contained only mature capsid cores
(Figure 1B5-B8). Previous studies of cores from HIV-1
[64] and HIV-2 virions [63] isolated by “spin-thru” cen-
trifugation method showed the presence of mature pro-
ducts of Gag and GagPol proteolytic processing (CA,
MA, Vpx [for HIV-2] and RT with high enzymatic activ-
ity). Immunoblotting of our core preparations obtained
after “spin-thru” purification of the same amounts of
Sup-T1- and THP1-derived viral particles, carried out
with human IgG prepared from pooled plasma of HIV
antibody positive donors, revealed similar amounts of
major products of Gag and GagPol processing, such as
MA, CA, IN and RT proteins (Figure 1C). The Pr55Gag

and Pr41Gag (MA+CA) have also been identified in the
core samples from both viruses, suggesting that mature
cores may contain some amounts of unprocessed Gag
polyprotein. Taken together, our data indicate that the
selected method of purification allows for the isolation
of mostly mature cores from the pools of virions pro-
duced by both T lymphocytes and MDM model cells.
We also performed Western blotting of our samples

using the anti-CD45 antibody (Figure 2A). CD45 is
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Figure 1 “Spin-thru” purification isolates mature cores from HIV-1 virions. The cores were isolated from the HIV-1 virions concentrated from
culture media of infected Sup-T1, PMA-activated and non-activated THP1 cells by the “spin-thru” purification. A – CA p24Gag profiles of 30-70%
sucrose gradients after centrifugation of concentrated HIV-1 virions (upper panel) and “spin-thru”purified viral cores (lower panel). The 0.4 ml
sucrose gradient fractions were collected, dialyzed against PBS and subjected to p24 ELISA. B – Electron microscopy of uranyl acetate negatively
stained HIV-1 virions concentrated through 30% sucrose cushion (B1-B3), ultrathin sections of virions harvested from infected Sup-T1 cells (B4)
and negatively stained core preparations after “spin-thru” purification (B5-B8). The negatively stained viral particles are indicated by single white
arrows; extracellular vesicle contaminants in the preparations of concentrated virions are indicated by double white arrows; mature virions in the
sections of viral preparatins are indicated by single black arrows, immature particles – by double black arrows. C. The cores of viruses produced
by Sup-T1 and activated THP1 cells do not have differences in the profile of the GagPol processing products. The “spin-thru” purified and p24Gag

normalized cores were analyzed by Western blotting using the human HIV immunoglobulin (HIV-IG) from NIH AIDS Research & Reference
Reagent Program. The bands of HIV-1 Gag and Pol processing products are indicated on the left.
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known to be abundant in microvesicles, but is appar-
ently excluded from HIV-1 virions [70]; the lack of this
protein in our core preparations would confirm their
purity from the vesicular fraction. Indeed, we did not de-
tect CD45 in the samples of cores from HIV-1 virions
produced by both Sup-T1 and THP1 cells (Figure 2A,
two right lanes), whereas the specimens of culture media
from these cells concentrated only through a 30%
sucrose cushion contained detectable amounts of CD45.
Western blotting of the samples of culture media from
untransfected and NL4-3 proviral clone-transfected
293 T/17 cells using anti-RNA helicase A (RHA or
DHX9) antibody showed presence of this DEAD box
RNA helicase in the preparations of media from both
transfected and untransfected cells after purification
through 30% sucrose. However, in the “spin-thru”
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purified samples, RHA was detected only in the prepara-
tions of media containing HIV-1 (Figure 2B). Since RHA
is known to be present in both vesicles [71] and HIV-1
virions [10,72,73], our analysis confirmed that the
method of “spin-thru” centrifugation removed extracel-
lular membranous structures from the 30% sucrose-
concentrated cell culture supernatants, but retained
intravirion core structures.
To further prove that “spin-thru” centrifugation puri-

fies cores from intact virions, we tested the presence of
VSV-G envelope protein in the samples of VSV-G-
pseudotyped HIV-1 produced by co-transfected 293 T/
17 cells after concentration through 30% sucrose cush-
ion and “spin-thru” centrifugation (Figure 2C). The
VSV-G was clearly detected in the samples of concen-
trated pseudotyped virus, but was not found in the core
samples after “spin-thru” purification, confirming purity
of the core preparations from the envelope
glycoproteins.
The SDS-PAGE separation of our core preparations

(Figure 2D) revealed major bands corresponding to pro-
teins with molecular weights of 24 and 31 kDa (corre-
sponding to HIV-1 CA and IN, respectively), indicating
the presence of mature viral Gag and GagPol products
in the analyzed core structures. On the other hand, mul-
tiple bands corresponding to the polypeptides of differ-
ent molecular weights, which do not represent known
HIV-1 proteins, suggest incorporation of many cellular
proteins in the core structures of the viral particles pro-
duced by different cell types. The data of proteomic ana-
lysis (shown below) confirmed this suggestion. The
staining of SDS-PAGE with Coomassie also revealed
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multiple protein bands in the control preparations, sug-
gesting that the culture media from uninfected THP1
and especially Sup-T1 cells contained protein-rich, non-
viral, non-membranous particles with buoyant density
≥1.23 mg/ml, probably the products of disintegrated
dead cells (Figure 2D). Thus, to obtain proteomic pro-
files of the host proteins associated with HIV-1 viral
cores, both viral cores and uninfected control prepara-
tions from each cell type were subjected to SDS-PAGE
protein separation, trypsin digestion and subsequent LC-
MS/MS analysis. The protein profile of each viral core
sample was then compared with the corresponding con-
trol sample. Overlapping proteins were eliminated from
the protein spectra of the viral cores, except the proteins
whose scores were >5-fold higher in the preparations of
viral cores than in control samples (proteins such as
chaperones Hsp70 and Hsp90, and cytoskeletal proteins
β actin, α and β tubulin, whose presence in core samples
was confirmed by Western blot [Figure 4A]). As a result,
a total of 202 cellular proteins were found to be asso-
ciated with the cores of HIV-1 virions.

Proteomic profiling of HIV-1 viral cores
The proteins obtained from LC-MS/MS analysis of pep-
tide preparations and filtered as described above and in
Materials and Methods were categorized according to
their functions and subcellular localization using NCBI
protein database (http://www.ncbi.nlm.nih.gov/sites/entrez?
db=Protein), NCBI RefSeq database (www.ncbi.nlm.nih.
gov/RefSeq/) and DAVID Bioinformatics Resources 6.7
(NIAID NIH) (http://david.abcc.ncifcrf.gov). We compared
our data with published results of the genome-wide ana-
lyses of cellular proteins involved in HIV-1 infection
[57-59,74] and with global network of HIV-human pro-
tein–protein interactions [75] to assess the potential
role of identified proteins in HIV-1 infection and puta-
tive mechanisms of their incorporation into the virion.
The HIV-1 proteins identified in the viral cores are
summarized in Table 1, the cellular proteins – in
Tables 2 and S1 in Additional file 1.

Viral proteins
The major proteins constituting the HIV-1 nucleocapsid
core, CA, NC, IN and RT (both p51 and p66 subunits)
were identified in the preparations from virions gener-
ated by all cell types (Table 1). All core samples also
contained MA protein, which is located in retroviral vir-
ions mostly outside the capsid and forms a matrix be-
tween the viral capsid and envelope [76,77]. However,
presence of MA in the RTCs and PICs [13,14,17,78,79]
suggests that this protein is physically associated with
the cores of HIV-1 virions. Comparison of our list of
identified viral proteins with the MS/MS analysis data of
whole MDM-produced HIV-1 particles [4] shows
characteristic differences between the protein profiles of
viral cores and whole virions. The gp120Env glycoprotein
detected in whole virions is absent in our samples; how-
ever, the gp41 transmembrane (TM) Env product was
identified in the cores from virions assembled in T lym-
phocytes and MDM-like activated THP1 cells. Since
gp41 has been found to be associated with MA during
virion assembly and probably in mature viral particles
[80,81] (reviewed in [82]), a low amount of this glyco-
protein in detergent-purified core preparations was
expected. The fact that we could not identify gp41 in the
cores of virions from non-activated THP1 cells by LC-
MS/MS confirms our suggestion that the concentration
of this glycoprotein in our preparations is negligible. The
absence of gp120Env in our samples confirms purity of
isolated core structures from the viral envelope and in-
tact virions, shown also in Figure 2C.
The Tat, Nef and Vif proteins were identified earlier in

the viral particles produced by infected MDM using
proteomic methods [4]. We did not detect Tat in our
core preparations, but MS/MS analysis revealed Nef in
the viral cores from all analyzed cell types. Earlier stud-
ies indicated that Nef is incorporated into viral particles,
stably associates with virion cores and facilitates reverse
transcription and early steps of replication [16,64,83,84].
The Vif and Rev proteins were identified with low scores
only in the cores from T lymphocyte-derived virus, sug-
gesting their very low concentrations in the cores. HIV-
1 Vif has been shown to interact with Pr55Gag and viral
protease during the assembly of virus particles [85]. Rev
protein can be incorporated into cores in the complex
with viral RNA. Surprisingly, we did not identify Vpr in
the viral core samples. Numerous studies revealed Vpr
in HIV-1 virions [86-88] and RTCs [15,89-91]. However,
while traditional methods of identification using specific
antibodies recognize Vpr in HIV-1 particles, LC-MS/MS
analysis performed by Chertova and co-authors [4] also
did not reveal this protein in the preparations of whole
highly-purified virions. The visibility of protein for LC-
MS is defined by a few factors, including affinity to C18
column (hydrophobicity) and ionization efficiency of the
peptides. Typically, about 10% of tryptic peptides of a
long protein are visible. Thus, some proteins could be
invisible for LC-MS/MS in spite of overall high sensitiv-
ity of a method. Moreover, although trypsin cleaves Vpr
to 14 peptides, most of them are not charged or have a
negative total charge in solution with neutral pH (ana-
lyzed using Innovagen Peptide property calculator tool
[http://www.innovagen.se/]), which may cause additional
problem with their detection by mass spectrometry.
HIV-1 protease (PR) was observed in all our core pre-

parations. At the same time, detection of Gag and Gag-
Pol polyprotein-precursors in respective gel fractions
suggests that not all precursor molecules are subjected

http://www.ncbi.nlm.nih.gov/sites/entrez?db=Protein
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Protein
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://david.abcc.ncifcrf.gov
http://www.innovagen.se/
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(See figure on previous page.)
Figure 3 Profiles of host proteins associated with the cores of HIV-1 virions from different producer cells – data of LC-MS/MS analysis.
A, B – Venn Diagrams depicting the number of overlapping cellular proteins within viral cores among the three producer cell types (A) and
within the cores of viruses produced by the same cell type (Sup-T1) infected with HIV-1 NL4-3 strain pseudotyped with MLV Env (yellow) or VSV-
G (green) envelope glycoproteins (B). The number of non-overlapping proteins and percent of these proteins within all cellular proteins identified
in the core are shown as a numerator and denominator respectively. C – Categories of cellular proteins (by function) depicted as a percentage of
the total proteins that were identified within the cores of virions produced by Sup-T1 (C1, n = 125), THP1 cells activated with PMA and vitamin D3

(C2, n = 110), and non-activated THP1 cells (C3, n = 90). The diagram of overlapping cellular proteins detected in all core preparations is shown
on C4 (n = 42).
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to the proteolytic cleavage during the virion assembly
and a subset of unprocessed polyproteins is present in
the mature viral cores.

Cellular proteins
Within 202 unique cellular proteins revealed in our pre-
parations of purified cores from HIV-1 virions, the samples
from Sup-T1-derived virus included 125 proteins, while the
virion cores from activated and non-activated THP1 cells
contained 110 and 90 proteins, respectively (Table 2). A
similar number of common proteins was found between
cores from viruses produced by activated and non-activated
THP1 cells (51), non-activated THP1 and Sup-T1 cells
(63), and activated THP1 and Sup-T1 (52) (Figure 3A).
Forty two proteins were common to all viral cores, which
equates to 34%, 38% and 47% of the proteins found in the
Table 1 Viral proteins that were detected in viral cores of the

Protein

Pr 160GagPol polyprotein-precursor (MA, CA, NC, p6, PR, RT, IN domains)

Pol TF (p6*, PR, RT, IN domains)

Pol TF (PR, RT domains)

RT p66 subunit

Pr55Gag polyprotein-precursor ( MA, CA, sp2, NC, sp1, p6 domains) and
polyprotein (MA, CA, sp2, NC domains)

RT p51 subunit

gp41TM Env glycoprotein

Gag 41 kDa partially-processed polyprotein (MA, CA, sp2 domains)

IN p31Pol

CA p24Gag

Nef

Vif

MA p17Gag

RNase H 15 kDa Pol polypeptide

15 kDa partially-processed Gag precursor (NC, sp1, p6)

Rev

PR p10Pol

NC p7Gag

aProteins are indicated as being within the core from a specific producer cell type b
Pol TF, polymerase trans-frame.
cores of viruses derived from Sup-T1, activated and non-
activated THP1 cells, respectively.
We identified 125 host cell proteins in the cores of vir-

ions assembled in Sup-T1 cells; cores of the viruses from
activated THP1 cells contained 12% less host proteins,
whereas the number of host proteins in the cores of
non-activated THP1-derived virus was 28% less than in
the cores of virus from Sup-T1. Interestingly, only 20%
of all cellular proteins identified in the cores of virus
from non-activated monocytic cells were unique, other
proteins were also found in the cores of the virions
derived from Sup-T1 or activated THP1 cells. The cores
of activated THP1 and Sup-T1-derived viruses, in con-
trast, contained 45% and 42% of unique host proteins,
respectively (Figure 3A). Since the T lymphocytes and
MDM (activated THP1 is a model of MDM) naturally
virions produced by different types of infected cellsa

Contained in samples
from:

Sup-
T1

Act.
THP1

Non-act.
THP1

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

probably partially-processed Gag 48 kDa ✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓

✓ ✓ ✓

✓ ✓ ✓

✓

✓

✓ ✓ ✓

✓ ✓ ✓

y a check symbol (✓).



Table 2 Cellular Proteins in HIV-1 coresa

Locationb Gene
Namec

Accession
Numberd

Protein Namee Contained in cores
produced by:

SupT1 Act.
THP1

N-Act.
THP1

DNA Binding: Chromatin Organization, Replication, Topoisomerases

N,C RUVBL1 4506753 TATA binding protein interacting protein 49 kDa ✓ ✓ ✓

M,C,N MCM5 1232079 Minichromosome maintenance complex component 5 ✓ ✓ ✓

N RCC2 11360295 Regulator of chromosome condensation protein 2 ✓ ✓

N,C RUVBL2 5730023 TBP-interacting protein, 48-KD ✓ ✓

N TOP2B 288565 DNA topoisomerase II ✓

N,C SSRP1 4507241 Structure specific recognition protein 1 ✓

N H2AFY 32492946 H2A histone family, member Y ✓

N,C ERVK-6 3600071 Reverse transcriptase encoded by human endogenous HERV-K retrovirus ✓

N,C MCM7 2134885 Replication licensing factor MCM7 ✓

N,M TEP1 1848277 telomerase-associated protein 1; TP-1 ✓

N HIST1H1B 4885381 H1 histone family, member 5; H1b ✓

N HIST1H1C 4885375 H1 histone family, member 2; H1d ✓

Number of Proteins per Cell Type: 6 3 4

DNA Damage Repair

N XRCC5 35038 Nuclear factor IV - KU80, ATP-dependant DNA helicase II ✓ ✓ ✓

N PRKDC 1362789 DNA-activated protein kinase ✓ ✓

N DDB1 12643730 DNA damage binding protein 1 ✓

Number of Proteins per Cell Type: 1 3 2

DNA Binding: Transcription Regulation

N POLR2B 23270691 Polymerase (RNA) II (DNA directed) polypeptide B ✓

N RHOX11 27715523 Similar to Paired-like homeobox protein OTEX ✓

Number of Proteins per Cell Type: 1 0 1

RNA Binding: Structure Organization, Modification, Transport, Splicing

N UPF1 1575536 Regulator of nonsense transcript stability ✓ ✓ ✓

N DHX9 3915658 ATP-dependent RNA helicase A - DEAD box protein 9 ✓ ✓ ✓

N EFTUD2 24474791 Small nuclear ribonucleoprotein component ✓ ✓ ✓

N SNRNP20014043179 Helicase hBrr2 200 kDa ✓ ✓ ✓

N HNRNPM 14141154 Heterogeneous nuclear ribonucleoprotein M isoform b ✓ ✓

N,C EIF3A 32449796 Eukaryotic translation initiation factor 3, subunit A ✓ ✓

N,C PABPC1 29743688 Poly(A) binding protein, cytoplasmic 1 ✓ ✓

N PRPF8 17999537 U5 snRNP-specific protein ✓ ✓

N,C HNRNPH1 5031753 Heterogeneous nuclear ribonucleoprotein H1 ✓ ✓

N PDCD7 4416183 ES18 - U12-type spliceosome component ✓ ✓

N,C FLII 2135121 Flightless-I homolog ✓ ✓

C DDX3X 13514813 Helicase like protein 2 - DEAD/H box polypeptide 3 ✓

N,C,Mit DDX17 5453840 RNA-dependent helicase p72 - DEAD box polypeptide 17 isoform 1 ✓

N RENT1 1575536 Rregulator of nonsense transcript stability ✓

N,C SYNCRIP 26454828 Synaptotagmin-binding, cytoplasmic RNA-interacting protein ✓

N,C PABP2 12229876 Polyadenylate-binding protein 2 ✓

N,C HNRNPR 13629286 Heterogeneous nuclear ribonucleoprotein R ✓

N SNRNP200 14043179 Small nuclear ribonucleoprotein 200 kDa (U5) ✓
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Table 2 Cellular Proteins in HIV-1 coresa (Continued)

C ACO1 9802308 Iron regulatory protein 1 ✓

C,M FHL1 6942193 Four and a half LIM domains 1 protein isoform C ✓

N PCBP1 444021 Poly(rC) binding protein 1 ✓

N,C HNRNPF 16876910 Heterogeneous nuclear ribonucleoprotein F ✓

N,C SRSF3 4506901 Splicing factor, arginine/serine-rich 3 ✓

N RALY 27689091 Autoantigenic RNA binding protein ✓

N DDX21 11890755 RNA helicase II/Gu protein - DEAD box polypeptide 21 ✓

N,C,Mit RTCD1 4506589 RNA 3'-terminal phosphate cyclase ✓

N,C HNRNPA1 30157273 Heterogeneous nuclear ribonucleoprotein A1 ✓

V,N,C EIF5A2 9966867 Eukaryotic translation initiation factor 5A2; eIF-5A2 protein ✓

N,C SNUPN 6730226 D3b subcomplex of human core snRNP domain ✓

Number of Proteins per Cell Type: 24 11 9

Cytoskeleton

C MYH10 1346640 Cellular myosin type B, heavy chain ✓ ✓ ✓

C MYH9 29436380 Cellular myosin, heavy polypeptide 9 ✓ ✓ ✓

C TUBA1A 135395 Tubulin α 1 ✓ ✓ ✓

C TUBA1C 1438930 Tubulin α 6 ✓ ✓ ✓

C TUBB 1280489 Tubulin β 5 ✓ ✓ ✓

C TUBB3 1204535 Tubulin β 3 ✓ ✓ ✓

C ACTBL2 2973662 β Actin ✓ ✓ ✓

C TUBB4 2748197 β Tubulin 4Q ✓ ✓

C TUBB1 13562114 Tubulin β 1 ✓ ✓ ✓

C TEKT1 16753231 Tektin 1 ✓

C DYNC1H1 30581065 Dynein Heavy Chain, cytosolic ✓ ✓

C MYO1F 1924940 Myosin-IF ✓ ✓

N,M MYO1G 14269502 Unconventional myosin IG valine form ✓

C,M TUBG1 31543831 Tubulin γ 1 ✓

C TPM2 6573280 Tropomyosin 2 (β) ✓

Number of Proteins per Cell Type: 10 11 12

Cytoskeleton Regulation

C HSPB1 662841 Heat shock protein 27 ✓ ✓ ✓

M,N MSN 14625824 Moesin ✓ ✓ ✓

C CORO1A 5902134 Coronin, actin binding protein, 1A ✓ ✓ ✓

M,C,V CNP 180687 2',3'-cyclic-nucleotide 3'-phosphodiesterase; CNPase ✓ ✓

N,C FLII 2135121 Flightless-I homolog ✓ ✓

M,C TTLL10 27663488 Tubulin tyrosine ligase-like family, member 10 ✓

C ACTR2 27500905 Human ARP2 actin-related protein 2 homolog (yeast) ✓

C,N 8-SEP 12654963 SEPT11 - Septin filament-forming cytoskeletal GTPase family member 11 ✓

N,C PFN1 3891601 Human platelet profilin chain A ✓

C,N ACTR3 5031573 Human ARP3 actin-related protein 3 homolog (yeast) ✓

C DNAJA1 219588 DnaJ (Hsp40) homolog, subfamily A, member 1 ✓

C RHOA 12654251 RAS homolog gene family, member A ✓

ARPC4-
TTLL3

10436409 Actin related protein 2/3 complex, subunit 4-tubulin tyrosine ligase-like family, member 3
read-through fusion protein

✓

C ARPC4 15214920 Actin related protein 2/3 complex, subunit 4 ✓
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Table 2 Cellular Proteins in HIV-1 coresa (Continued)

C RAC2 4506381 RAS-related C3 botulinum toxin substrate 2 ✓

M,V,C TLN1 6739602 Talin ✓

M,C FLNA 1203969 Filamin ✓

M SPG8 20070788 Strumpellin ✓

C NCKAP1L 32425702 HEM1 protein ✓

C TBCD 13111855 Tubulin folding cofactor D ✓

M,C CAP1 29739285 Human adenylyl cyclase-associated CAP protein homolog 1 (S. cerevisiae, S. pombe) ✓

Number of Proteins per Cell Type: 9 10 10

Cell Signaling

N,C GNB2L1 5174447 Guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 ✓ ✓ ✓

MYADM 27730943 Myeloid-associated differentiation marker ✓ ✓

C,V PTPRC 10999057 Protein tyrosine phosphatase ✓ ✓

M SEMA7A 3551779 Semaphorin L ✓

M,C PKN1 1085381 Serine/threonine protein kinase ✓

C,M MMP14 1705985 Matrix metalloproteinase 14 ✓

C TIMP3 1304484 Tissue inhibitor of metalloproteinases-3 ✓

Number of Proteins per Cell Type: 3 5 3

Nuclear Import

N,C TNPO1 27681051 Karyopherin β2; importin β 2; transportin; transportin 1 ✓ ✓

V,N TNPO3 6912734 Transportin-SR; importin 12; transportin-SR2 ✓

N,C KPNB1 19923142 Karyopherin β1; importin 90; importin β-1 ✓

N KPNA2 1354365 Karyopherin α2; RAG cohort 1, importin α1 ✓

Number of Proteins per Cell Type: 1 1 3

Nuclear Export

N XPO5 12407633 RANBP21/exportin 5 ✓ ✓

N,C XPOT 17367977 Exportin T (tRNA exportin) ✓ ✓

Number of Proteins per Cell Type: 2 0 2

Apoptosis

C HP95 13375569 Programmed cell death 6 interacting protein ✓ ✓ ✓

Number of Proteins per Cell Type: 1 1 1

Extracellular Signaling

V,C,M PTPRC 10999057 Protein tyrosine phosphatase, receptor type, C ✓

C AIMP1 27065983 Aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 ✓

M CLEC1A 30159086 C-type lectin domain family 1, member A ✓

Number of Proteins per Cell Type: 2 1 0

Intracellular Transport

C,M CLTC 30353925 Clathrin, heavy chain (Hc) ✓ ✓ ✓

M,C RAB8A 234746 RAB8A, member RAS oncogene family ✓ ✓ ✓

M CPNE1 4503013 Copine I ✓ ✓

C,N TNIP1 1800305 TNFAIP3 interacting protein 1; HIV-1 Nef interacting protein ✓

M,N,C GC 18655422 Vitamin D binding protein ✓

M,C AP2B1 33504652 Adaptor-related protein complex 2, β1 subunit ✓

Number of Proteins per Cell Type: 3 4 4
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Table 2 Cellular Proteins in HIV-1 coresa (Continued)

RNA Stability Regulation

C,N RNH1 15029922 Ribonuclease/angiogenin inhibitor 1 ✓

Number of Proteins per Cell Type: 1 0 0

Nuclear Lamina, intranuclear components

N LMNB1 15126742 lamin B1 ✓

N NCL 21750187 Nucleolin ✓

N DKC1 14602859 Dyskerin; dyskeratosis congenita 1 ✓

N RPL3 18606060 Ribosomal protein L3 ✓

Number of Proteins per Cell Type: 4 0 0

Cell adhesion

M,C PCDHGA7 14196477 Protocadherin gamma subfamily A, 7 ✓

M HABP2 4758502 Hyaluronan binding protein 2 ✓

Number of Proteins per Cell Type: 2 0 0

Mitochondria

Mit SLC25A6 113463 Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 6 ✓

Number of Proteins per Cell Type: 0 1 0

Lipid Biosynthesis

C,N FDFT1 11514495 Farnesyl-diphosphate farnesyltransferase 1 ✓

M,C FASN 15779138 Fatty acid synthase ✓

Number of Proteins per Cell Type: 1 1 0

Transmembrane Ion Transport

N,M SLC4A10 7513341 Sodium bicarbonate cotransport protein 2 ✓

C,M ATP6V0E2 542837 ATPase, H + transporting V0 subunit e2 ✓

Number of Proteins per Cell Type: 1 1 0

Cell-Cell Transport

M,C ESYT1 7512911 Extended synaptotagmin-like protein 1 ✓

Number of Proteins per Cell Type: 0 1 0

Ribosomal

R RPL7A 4506661 60 S-L7A ✓ ✓ ✓

R RPL18A 11415026 60 S-L18A ✓ ✓ ✓

R RPL7A 17456110 60 S-L7 ✓ ✓

R 27483402 40 S-S2 ✓ ✓

R RPL7L1 27498574 60 S-L7Like1 ✓ ✓

R RPL13 15431295 60 S-L13 ✓ ✓

R RPL24 4506619 60 S-L24 ✓ ✓

R RPS8 4506743 40 S-S8 ✓

Number of Proteins per Cell Type: 7 5 5

Ubiquitin/Proteasome

C,N UBA1 24485 Ubiquitin-like modifier activating enzyme 1 ✓ ✓ ✓

C BFAR 27675450 Bifunctional apoptosis regulator ✓ ✓ ✓

N,C PSMC3 107855 Proteasome (prosome, macropain) 26 S subunit, ATPase, 3 ✓ ✓ ✓

C PSMD7 2134660 Proteasome (prosome, macropain) 26 S subunit, non-ATPase, 7 ✓

M,C PSMB1 12653473 Proteasome (prosome, macropain) subunit, β type, 1 ✓

N,C PSMD11 2150046 Proteasome (prosome, macropain) 26 S subunit, non-ATPase, 11 ✓

C,N PAAF1 33150632 Proteasomal ATPase-associated factor 1 ✓
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Table 2 Cellular Proteins in HIV-1 coresa (Continued)

C,N RPN1 14124942 Ribophorin I ✓

N,C PSMD3 16550621 Proteasome (prosome, macropain) 26 S subunit, non-ATPase, 3 ✓

Number of Proteins per Cell Type: 6 6 3

Metabolism, Metabolism Regulation

M PFKP 11321601 Phosphofructokinase, platelet ✓ ✓ ✓

C,N,M ACLY 13623199 ATP citrate lyase ✓ ✓

M,C PYGL 10120741 Chain A, Human Liver Glycogen Phosphorylase A ✓ ✓

N,C GPT 1507680 Glutamic-pyruvate transaminase (alanine aminotransferase) ✓

C,M PKM2 125604 Pyruvate kinase, M2 isozyme ✓

C SLC2A1 3387905 Solute carrier family 2 (facilitated glucose transporter), member 1 ✓

N,C TPI1 16877874 Triosephosphate isomerase 1 ✓

Number of Proteins per Cell Type: 4 4 3

Cell Cycle Regulation/Cell Differentiation

N CCNB3 14719420 Cyclin B3 isoform 3 ✓ ✓ ✓

C PPP2R1A 21749746 Protein phosphatase 2A, regulatory subunit A, α ✓ ✓

C,M RAP1B 12751117 RAP1B, member of RAS oncogene family ✓ ✓

C,N PPP2R3B 7019501 Protein phosphatase 2A, regulatory subunit B'', β; PP2A B'' ✓

N,C CDK11A 16357490 Cyclin-dependent kinase 11A ✓

C PRDX3 32483377 Peroxiredoxin 3 isoform b ✓

C TIMP3 1304484 TIMP metallopeptidase inhibitor 3 ✓

Number of Proteins per Cell Type: 4 4 3

Nucleotide Biosynthesis

C CAD 18105007 Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase ✓

Number of Proteins per Cell Type: 1 0 0

Amino Acid Biosynthesis

M,C,N PHGDH 5771521 3-phosphoglycerate dehydrogenase ✓

C ASS1 16950633 Argininosuccinate synthase 1 ✓

C GCN1L1 2282576 HsGCN1; GCN1 general control of amino-acid synthesis 1-like 1 (human homolog of yeast) ✓

Number of Proteins per Cell Type: 1 1 1

Vesicular Transport

C,M CLTC 30353925 Clathrin ✓ ✓ ✓

C,M,V COPA 4758030 Coatomer protein complex, subunit α; alpha coat protein; xenin ✓ ✓ ✓

V,C MVP 19913410 Major Vault Protein ✓ ✓ ✓

C,V TFRC 4507457 Transferrin receptor (p90, CD71) ✓ ✓ ✓

C,V RAB7A 1709999 RAB7A, member RAS oncogene family ✓ ✓ ✓

C PDCD6IP 13375569 Programmed cell death 6 interacting protein, HP95, AIP1/ALIX ✓ ✓ ✓

C RAB5C 4759020 RAB5C, member RAS oncogene family ✓ ✓

C,V EHD4 7212811 EH-domain containing 4 ✓

C SAR1A 21634445 GTP-binding protein Sara; SAR1 homolog A (S. cerevisiae) ✓

M,V ARFRP1 1065361 Chain A, Human Adp-ribosylation factor related protein 1 ✓

V,N ATP6V0A1 1638835 ATPase, H + transporting, lysosomal V0 subunit a1 ✓

C RAB11A 4758984 RAB11A, member RAS oncogene family ✓

Number of Proteins per Cell Type: 5 10 7
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Table 2 Cellular Proteins in HIV-1 coresa (Continued)

Aminoacyl tRNA synthetases

C,N IARS 31873336 Isoleucyl-tRNA synthetase ✓ ✓ ✓

C,N MARS 15929104 Methionyl-tRNA synthetase ✓ ✓

C,N RARS 2118344 Arginyl-tRNA synthetase ✓

C,N GARS 3845409 Glycyl-tRNA synthetase ✓

C,Mit WARS 8439415 Tryptophanyl-tRNA synthetase ✓

C,N DARS 4557513 Aspartyl-tRNA synthetase ✓

C,N QARS 11493441 Glutaminyl-tRNA synthetase ✓

Number of Proteins per Cell Type: 5 3 2

Translation and Translation Regulation

N,C EIF3A 32449796 Eukaryotic translation initiation factor 3, subunit A ✓ ✓

C EEF2 4503483 Eukaryotic translation elongation factor 2; polypeptidyl-tRNA translocase ✓

C CC2D1B 27715655 Coiled-coil and C2 domain containing 1B ✓

C CYFIP1 24307969 Cytoplasmic FMR1 interacting protein 1 (Sra1) ✓

C AIMP2 27662300 Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 ✓

V,N,C EIF5A2 9966867 Eukaryotic translation initiation factor 5A2; eIF-5A2 protein ✓

Number of Proteins per Cell Type: 3 4 0

Protein Post-Translation Modification

C,M PAFAH1B 4505587 Platelet-activating factor acetylhydrolase 1b, catalytic subunit 3 ✓

N,C PARP1 130781 Poly [ADP-ribose] polymerase-1 ✓

C USP14 4827050 Ubiquitin specific protease 14 ✓

C,N SERPINC1 4502261 Serpin peptidase inhibitor, clade C (antithrombin), member 1 ✓

M,C LPL 15030193 Lipoprotein lipase ✓

M,C NMT1 345862 N-myristoyltransferase 1 ✓

C,M CPD 21903712 Carboxypeptidase D ✓

Number of Proteins per Cell Type: 4 3 0

Protein Degradation (non-proteasomal)

M ANPEP 28678 Alanyl (membrane) aminopeptidase ✓

Number of Proteins per Cell Type: 0 1 1

Chaperones/Molecular Folding

C DNAJC13 7513063 DnaJ (Hsp40) homolog, subfamily C, member 13 ✓ ✓ ✓

C HSP90AB120149594 Heat shock protein 90 kDa α (cytosolic), class B member 1 ✓ ✓ ✓

C,N HSPA8 24234686 Heat shock 70 kDa protein 8 ✓ ✓ ✓

C,M, N CCT3 2136253 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit 3 (γ); TCP1 ring
complex protein TRiC5

✓ ✓ ✓

C,M CCT6A 4502643 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit 6A (ζ1) ✓ ✓ ✓

C,M CCT6B 22654293 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit ζ2 ✓ ✓ ✓

C HSPB1 662841 Heat shock 27 kDa protein 1 ✓ ✓ ✓

C PPIA 2624881 Human Cyclophilin A ✓ ✓ ✓

N NAP1L4 5174613 Nucleosome assembly protein 1-like 4; nucleosome assembly protein 2 ✓ ✓

N,M,C TCP1 13540473 t-complex polypeptide 1 (TCP1) ✓ ✓

N,C CCT5 12804225 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit 5 (E) ✓

C P4HB 20070125 Prolyl 4-hydroxylase, β polypeptide ✓

C CCT7 5453607 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit η ✓

C SERPINH1 123576 Serpin peptidase inhibitor, clade H (heat shock protein 47), member 1 ✓

Santos et al. Retrovirology 2012, 9:65 Page 14 of 28
http://www.retrovirology.com/content/9/1/65



Table 2 Cellular Proteins in HIV-1 coresa (Continued)

C HYOU1 5453832 Oxygen regulated protein 1 ✓

C CANX 10716563 Calnexin ✓

Mit HSPA9 12653415 Heat shock 70 kDa protein 9 (mortalin) ✓

C,N CCT4 2559008 Chaperonin containing t-complex polypeptide 1 (TCP1), subunit δ ✓

Number of Proteins per Cell Type: 10 13 10
a Cellular proteins were detected in the cores from the virions produced by different types of infected cells. Proteins are listed by functional category and
indicated as being within the core from a specific producer type by a check symbol (✓). Bolded proteins were found in viral cores produced by all producer cells.
b The locations of listed proteins are abbreviated as follows: C – Cytoplasmic, N – Nucleus, M – Plasma Membrane, Mit – Mitochondria, R – Endoplasmic Reticulum,
V – Vesicles.
c Official Gene Symbol as listed by HGNC.
d Swiss-Prot Protein Accession number.
e Full Protein name as listed in NCBI Protein Database (http://www.ncbi.nlm.nih.gov/protein).
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support productive HIV-1 infection, whereas the non-
differentiated monocytes may serve as HIV-1 reservoirs,
but do not support active replication (reviewed in [92]),
the incorporation of a smaller number of cellular pro-
teins by the virions released from non-activated THP1 is
probably related to the lower efficiency of virion assem-
bly in this type of cells.
To validate the credibility of differences in protein

composition between viral cores from different cell lines,
we performed proteomic analysis of two core prepara-
tions purified from the same cell line. Cores of virions
harvested from Sup-T1 cells infected with MLV Env-
pseudotyped and VSV-G-pseudotyped NL4-3 viruses
were digested by trypsin without gel separation and sub-
jected to LC-MS/MS. Per one hundred high scoring
overlapping proteins we found only 18 unique cellular
proteins incorporated in the viral cores from the MLV
Env-pseudotyped virus-infected Sup-T1 (15% of all
incorporated host proteins) and 10 proteins (9%) in
cores of the virus from Sup-T1 cells infected with VSV-
G-pseudotyped NL4-3 strain (Figure 3B; Additional file
1: Table S1). Since the minimal difference in the spectra
of host proteins between cores of virions harvested from
different cell lines was not less than 20%, and was equal
to 42% and 45% for the viral cores from Sup-T1 and
activated THP1 cells, respectively, relative to cores from
non-activated THP1 cells, we believe that the detected
differences between the profiles of cellular proteins in
the viral cores from various cell lines are significant.
All the cellular proteins in HIV-1 cores were classified

into 31 functional categories (Table 2). The most numer-
ous categories were as follows: RNA-binding proteins
(29), components of the cytoskeleton (15) and cytoskel-
eton regulators (21), chaperones (18), DNA-binding pro-
teins (17), proteins involved in vesicular transport (12)
and components of the ubiquitin-proteasome system (9).
Although these protein groups were numerous in all
preparations, the viruses assembled in different types of
producer cells demonstrated diversity in the protein
spectra and number of proteins within each group
(Figure 3C).
Within the forty two cellular proteins which were
present in all core preparations, the spectra of molecular
chaperones (7), cytoskeleton components (7), and ves-
icular transport-associated proteins (5) were the most
numerous (Figure 3C4). These functional groups of pro-
teins have been shown to be involved in the folding of
viral proteins and HIV-1 virion assembly (reviewed in
[12,93]). Some of these proteins (clathrin, transferrin re-
ceptor 1, RAB7, RAB5C, EHD4, Hsp70, Hsp90, cyclo-
philin A, β actin, tubulin α1) are very typical for HIV-1
virions and were registered earlier in the samples of
purified viral particles (summarized in the database of
Host Proteins in HIV-1 [http://web.ncifcrf.gov/research/
avp/protein_db.asp]). Probably some of these proteins,
such as β actin, α and β tubulin, moesin and major vault
protein 1 are incorporated into HIV-1 virions non-spe-
cifically, due to their close proximity to a budding site,
as suggested earlier [4,94], whereas other cellular pro-
teins may be incorporated due to specific interactions
with viral proteins, such as Gag and GagPol [11,23,33],
viral genomic RNA [8], or tRNALys3 primer [73]. These
host proteins, called “Captives” in a recent review [12],
may be involved in the virion assembly and budding
process or be important for post-assembly steps of HIV-
1 life cycle. Below we attempt to assess the packaging of
selected cellular proteins in the cores of HIV-1 virions
depending on the type of producer cells.

Semi-quantitative analysis of selected cellular proteins
packaging into the cores of HIV-1 virions assembled in
different types of cells
Although the spectra of the cellular proteins incorpo-
rated in the viral cores depended on the type of virus-
producing cells, the quantitative differences within the
group of overlapping proteins could also be observed.
We compared the abundance of certain cellular proteins,
selected from the group of 42 common proteins, in the
viral cores and lysates of the producer cells. Since the
group of 42 cellular proteins identified in all viral cores
included the members which are likely involved in viral
replication (Table 3), we selected 7 proteins from
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(See figure on previous page.)
Figure 4 Incorporation of certain RNA- and DNA-binding cellular proteins into HIV-1 viral cores does not correlate with abundance of
these proteins in infected cells. A – Western blot detection of the cytoskeleton proteins actin and β tubulin in uninfected Sup-T1, activated
and non-activated THP1 cells. Lysates were normalized according to cell counts and then according to the count of β globin DNA using
quantitative real-time PCR, and subjected to SDS-PAGE and Western blot analysis. B – Western blot detection of cellular RNA-binding proteins
(DHX9, SNRNP200), DNA- binding proteins (MCM5, XRCC5, RUVBL1, RUVBL2), cytoskeleton protein β tubulin, and viral protein CA p24Gag in the
lysates of virus-producing cells (left bands) and in “spin-thru” purified viral cores (right bands). Virus was harvested at 72 h p.i. from Sup-T1,
activated and non-activated THP1 cells infected with MLV Env-pseudotyped HIV-1 NL4-3, normalized to CA p24Gag and subjected to the “spin-
thru” core isolation. Lysates of infected cells were normalized according to total protein count and β globin DNA count as described in A. Cellular
and viral core preparations were analyzed by Western blotting. C – Quantification of Western blotting results. Western blotting data were
quantified using ImageJ software. Results are presented as percentage of the peak value for each protein in the cellular and viral core
preparations. D – Quantification of viral genomic RNA in the cores of virions. Viral cores were prepared as described in Figure 1. RNA was isolated
from CA p24Gag-normalized core samples, subjected to reverse transcription with oligo-dT primer and then to quantitative real-time PCR with the
primer set specific for positive-strand HIV-1 DNA. The data represents analysis of three independent preparations. Each point shows mean RNA
copy number ± SD per 1 ng of p24CA in the viral core sample.
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different functional categories for analysis by Western
blot. Within the group of RNA-binding proteins, we
analyzed incorporation of RNA helicase A, because the
function of this protein in HIV-1 replication has been
shown earlier [10,95], and small nuclear ribonucleopro-
tein 200 kDa (U5) (SNRNP200 or HELIC2), which
currently has no known role in HIV replication but has
been detected with a high score in our MS/MS prepara-
tions. Within DNA-binding group of proteins, we
analyzed the Minichromosome maintenance complex
component 5 (MCM5) involved in initiation of DNA
replication, 80-kilodalton subunit of the Ku heterodimer
protein or ATP-dependant DNA helicase II (Ku80 or
XRCC5), which is involved in the repair of DNA double-
strand breaks and telomerase function [96,97], Pontin52
(RUVBL1) and Reptin52 (RUVBL2) DNA helicases, both
being the components of several high molecular weight
protein complexes involved in chromatin remodeling,
transcription regulation, DNA damage sensing and re-
pair [98]. All these DNA-binding proteins were detected
with high scores by LC-MS/MS in the cores of virions
from both Sup-T1 and THP1 cells. Beta tubulin was
selected as one of the major cytoskeletal proteins found
earlier in HIV-1 particles (http://web.ncifcrf.gov/re-
search/avp/protein_db.asp). All preparations were nor-
malized to CA p24Gag; the cell lysates were additionally
normalized by the cell count and β globin DNA count
using quantitative real-time PCR. Cytoskeletal proteins,
such as actin or β tubulin, could not be used for
normalization of the cell lysates, because they are differ-
ently expressed in uninfected Sup-T1 and THP1 cells
(Figure 4A).
Analysis of selected proteins using Western blot with

subsequent quantification of the band intensity using
ImageJ software did not reveal differences in the abun-
dance of β tubulin between the infected cells and the
cores of virions produced by these cells (Figure 4B,C).
The same ratio of protein concentrations between cells
and viral cores was also detected for RUVBL1 and
RUVBL2 DNA helicases. However, other analyzed DNA-
and RNA-binding proteins demonstrated either moder-
ate (XRCC5, SNRNP200) or high prevalence (MCM5,
DHX9) in the cores of virions assembled in Sup-T1 cells,
whereas in the cores of THP1-derived virions (both acti-
vated and non-activated) these proteins were less abun-
dant. Incorporation of these proteins in the viral cores
did not correlate with their abundance in the producer
cells: XRCC5, MCM5 and SNRNP200 were presented in
all types of cells at a similar level, whereas the RNA heli-
case A (DHX9) was abundant in dividing Sup-T1 and
non-activated THP1 cells and decreased in non-dividing
activated THP1 (Figure 4B,C). Interestingly, the incorp-
oration of RNA helicases DHX9 and SNRNP200 into
the cores did not correlate with the packaging of viral
genomic RNA, as quantitative RT-PCR of the RNA iso-
lated from CA p24Gag-normalized purified viral cores
revealed no significant differences in the count of HIV-1
RNA in the cores from Sup-T1 and both THP1-derived
viruses (Figure 4D).

Discussion
The proteomic analysis of the cores isolated from HIV-1
virions assembled in T lymphocytes and activated
(model of MDM) and non-activated monocytic cells
revealed more than thirty cellular proteins which have
been previously shown to be involved in different steps
of HIV-1 replication and/or incorporated in HIV-1 vir-
ions (Table 3). Since HIV-1 is a retrovirus with a RNA
genome of less than 10 kB and encodes only nine poly-
peptides, it engages numerous cellular factors and path-
ways at all stages of its life cycle. Some of the factors,
especially proteins involved in RNA splicing and nuclear
export, multi-vesicular bodies (MVB) and late endoso-
mal pathway, as well as the proteins directly involved in
the HIV-1 budding process, such as AIP1/Alix, may be
incorporated into virions by being associated with the
viral RNA and proteins, but do not play a visible role in
subsequent stages of viral replication [4,125,130]. For
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Table 3 Previously discovered viral proteins with a known role in HIV-1 Replicationa

Proteinb Gene
namec

Score in virion
cores fromd

Known role in HIV-1 replicatione

Sup-
T1

Act.
THP1

N-Act.
THP1

DNA Binding: Chromatin Organization, Replication, Topoisomerases

Regulator of chromosome
condensation 2

RCC2 3.32 1.78 - RCC proteins interact with Rac1 and Arf6 subnetworks and limit signaling required for
membrane protrusion and delivery [99]; RCC2 acts as a Rac1 guanine nucleotide
exchange factor (GEF); RCC1 is involved in HIV-1 RNA nuclear export through
activation of RanGAP [100] and hence facilitates dissociation of RNA nuclear export
complex [101].

RNA Binding: Structure Organization, Modification, Splicing, Transport

Helicase like protein 2 -
DEAD/H box polypeptide 3

DDX3X 2.05 - - Member of DEAD box RNA helicases that is implicated in alteration of RNA secondary
structure such as translation initiation, nuclear and mitochondrial splicing, and
ribosome and spliceosome assembly. RNAi knockdown of DDX3 suppresses HIV-1
viral replication [102]; interaction of DDX3 with Rev/CRM1 is important for nuclear
export of non-spliced HIV-1 RNA [103].

RNA-dependent helicase p72 -
DEAD box polypeptide
17 isoform 1

DDX17 6.36 - - Members of ATP-dependent DEAD box RNA helicases, potentially involved
in interaction with HIV-1 RNA.

RNA helicase II/Gu protein - DEAD
box polypeptide 21

DDX21 - 2.07 -

ATP-dependent RNA helicase A -
DEAD box protein 9

DHX9 6.36 6.09 27.18 RNA helicases that catalyze ATP-dependent unwinding of double-stranded RNA and
DNA-RNA complexes; localize in both nucleus and cytoplasm and function as
transcriptional regulators; may also be involved in expression and nuclear export of
retroviral RNAs, particularly in post-transcriptional regulation of HIV-1 [104]. DHX9 is
packaged in HIV-1 particles and contributes to particle assembly and reverse
transcription [10]; it also facilitates tRNALys3 binding and initiation of reverse
transcription [73]

Heterogeneous nuclear
ribonucleoprotein A1

HNRNPA1- 1.92 - RNA binding proteins that complex with heterogeneous nuclear RNA (hnRNA) and
are involved in pre-mRNA processing in the nucleus: alternative splicing regulation,
polyadenylation, nucleo-cytoplasmic transport and other aspects of mRNA
metabolism and transport; hnRNP-A1 is involved in HIV-1 mRNA splicing [105,106];
hnRNP-A2 is found to be important for trafficking of HIV-1 mRNA out of the nucleus
and through the cytoplasm [105]; hnRNP H and hnRNP K interact directly with HIV-1
RNA and are involved in alternative splicing [107].

Heterogeneous nuclear
ribonucleoprotein F

HNRNPF 3.47 - -

Heterogeneous nuclear
ribonucleoprotein H1

HNRNPH13.04 - 8.26

Heterogeneous nuclear
ribonucleoprotein M isoform b

HNRNPM 1.9 - –

Heterogeneous nuclear
ribonucleoprotein R

HNRNPR 6.31 - –

Nonsense-mediated decay (NMD)
factor

UPF1 5.65 6.48 6.32 ATP-dependent RNA helicase, the HIV-1 RNP component, positively influences HIV-1
RNA translatability. Important for stability of unspliced viral RNA and translation of
Gag polypeptide in producer cells [108]

Cytoskeleton

β Actin ACTBL2 60.1235.05 99.59 Actin microfilaments are important for RTC formation and RTC transport in cytoplasm
[1]; interaction with NC domain of Gag is required for HIV-1 assembly [109].

Tubulin α 1 TUBA1A 69.3958.56 66.49 Microtubules are shown to be important for RTC cytoplasmic trafficking [18,110]
assembly of Gag polyprotein molecules [111] and viral genomic RNA trafficking [112].

Tubulin α 6 TUBA1C 57.1141.39 61.72

Tubulin β 5 TUBB 29.8227.85 49.68

Tubulin β 3 TUBB3 13.849.07 30.56

Tubulin β 1 TUBB1 13.3 - 22.5

Tubulin γ 1 TUBG1 - - 4.96

Dynein DYNC1H1- 11.68 10.11 Dynein motor and late endosomes are involved in viral RNA trafficking [112] and
transport of RTC toward the nucleus [18].

Cytoskeleton Regulation

ARP3 actin-related protein 3
homolog (yeast)

ACTR3 - 9.52 - Major constituent of the ARP2/3, a 7 subunit complex, responsible for actin
polymerization [113]. The complex is required for early phase of HIV-1
replication [114].
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Table 3 Previously discovered viral proteins with a known role in HIV-1 Replicationa (Continued)

Nuclear Import

Transportin 3; importin-SR;
importin 12; transportin SR2

TNPO3 1.0 - - Impotin-β family member, binds catalytic core domain close to the N terminus of IN
and promotes nuclear entry of PICs [115,116]; might serve as a chaperone that
associates with PIC post-entry to guide it through nuclear pore [117].

Karyopherin α2; importin α1) KPNA2 - - 7.91 Directly interacts with central core domain of HIV-1 integrase, facilitates PIC nuclear
import [118-120].

Karyopherin β2; importin β2 TNPO1 - 3.63 1.95 Importin α/β heterodimer interacts with HIV-1 integrase and probably MA protein
and Vpr to translocate PIC into the nucleus [121]

Karyopherin β1; nuclear factor p97;
importin 90

KPNB1 - - 8.02

Nuclear Export

RANBP21/exportin 5 (Exp5) XPO5 5.5 - 6.87 Association of RanBP1 and 2 with Rev-CRM1-RanGTP complex has been shown [122],
thus RanBP is required for dissociation of nuclear export complex during HIV-1
RNA nuclear export [101].

Vesicular Transport

CLTC protein - clathrin CLTC 37.6 7.7 7 Clathrin is incorporated in HIV-1 particles probably through interaction with Pol,
especially IN domain [32]; it facilitates the accurate morphogenesis of infectious
particles probably by contribution to spatial organization of Gag and Pol proteins and
proteolytic processing of virion components during particle assembly [5].

Rab5C GTP protease RAB5C - 6.78 6.58 Rab GTP proteases are important for vesicular trafficking. They are activated by
guanine nucleotide exchange factor (GEF), RCC2 protein revealed in HIV-1 cores can
act as a GEF. Rab11 is important for HIV-1 production [123]; Rab1 potentially
associates with HIV-1 Rev and is involved in nuclear export of viral RNA [124];
Rab9 is required for Gag trafficking to the site of assembly [123]; Rab7-interacting
lysosomal protein promotes vRNA clustering at the MTOC [112]; Rab6 is probably
involved in viral entry [58].

Rab7A GTP protease RAB7A 8.89 9.08 21.97

Rab8A GTP protease RAB8A 7.91 6.78 6.58

Rab11A GTP protease RAB11A - - 9.31

Programmed cell death 6
interacting protein; HP95;
AIP1/ALIX

PDCD6IP 6.43 13.62 29.94 Alix/HP95 is a protein implicated in endosomal organization and virus budding;
overexpression results in cytoplasmic vacuolization, which may be partially
responsible for protection against cell death. AIP1/ALIX is a binding partner for HIV-1
Gag L-domain and other budding network proteins (Tsg101) functioning in virus
budding [125].

Intracellular Trafficking

TNFAIP3 interacting protein 1;
HIV-1 Nef interacting protein; NAF1

TNIP1 1.0 - - An ERK2 binding protein, Naf1, attenuates EGF/ERK2 nuclear signaling, binds HIV-1
Nef and increases cell surface CD4 expression [126]. ERK2 interacts with HIV-1
matrix, packaged into virions and responsible for MA phosphorylation [24].

Chaperones/Molecular Folding

Hsp70 protein 8 HSPA8 7.85 26.4 31.35 Heat shock protein 70 family members are shown to be incorporated in HIV-1
particles. This is important for subsequent viral cDNA synthesis [11,127]; they can also
interfere with Vpr in HIV-1 nuclear import in macrophages [128,129].Hsp70 protein 9 (mortalin) HSPA9 - 5.75 -

Cyclophilin A, CyPA PPIA 22.3520.00 7.68 incorporates into virions via binding to the CA domain of Pr55Gag [23]. The role of
CA-bound CyPA is still unclear [48] It is critical for protection and stabilization of
HIV-1 cores as a chaperone [49] and is probably involved in PIC nuclear transport [31]

a Proteins are listed by function category.
b Full Protein name as listed in NCBI Protein database (http://www.ncbi.nlm.nih.gov/protein).
c Official Gene Symbol as listed by HGNC.
d The Xcorr values of each protein in different viral core samples are shown; if protein was not present in the virion core from a specific producer cell type,
the Xcorr is not shown.
e Protein function within the cell is listed, along with known implicated function(s) in HIV-1 replication.
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the other factors, such as Hsp70, CLTC protein/clathrin
and Rab GTP proteases, their important role in the mo-
lecular organization of mature virions and probably viral
entry into the target cells has been proposed earlier
[5,11,32,33,58]. Here, we focus on the proteins identified
in the core structures of HIV-1 virions assembled in dif-
ferent cell types. These proteins can be potentially
involved in post-entry stages of the viral replication.
The HIV-1 morphogenesis is known to be different in

T lymphocytes and myeloid cells. In T cells, the viral
particle budding and assembly have been shown to take
place directly at the plasma membrane (reviewed in
[131]), whereas in macrophages, earlier studies detected
assembling HIV-1 particles in the late endosomes [132]
(reviewed in [131]) or in internally sequestered plasma
membrane domains that contain late endosomal markers
but are connected to the cell surface [133]. Recent
reports revealed an extensive tubular network and large
sheet-like structures which extended to the cell surface
from vesicular compartments and contained HIV-1

http://www.ncbi.nlm.nih.gov/protein


Santos et al. Retrovirology 2012, 9:65 Page 20 of 28
http://www.retrovirology.com/content/9/1/65
virions, released into the extracellular media [134,135].
Indeed, the cores of model MDM-derived virions con-
tained twelve vesicular trafficking-associated proteins,
whereas only six were detected in the T cell-derived viral
cores. The larger proportion of cytoskeleton and cyto-
skeleton regulatory proteins in the cores of virions
assembled in THP1 cells than in Sup-T1-derived cores
may be dependent on the abundance of these proteins in
producer cells. Uninfected THP1 cells contain larger
amounts of actin and β tubulin than Sup-T1 (Figure 3A),
suggesting that other cytoskeleton and associated cyto-
skeleton regulatory proteins may also be more abundant
in these myeloid cells; hence, increasing the probability
that the virus will hijack this subset of proteins. Our data
suggest that the unique core-incorporated proteins, which
are different in the viruses assembled in different cell
types, are mostly indiscriminately hijacked during virion
assembly and likely not important for subsequent infection.
The group of forty two cellular proteins identified in

the cores of virions produced by all types of cells con-
tains at least thirteen proteins whose involvement in dif-
ferent stages of HIV-1 infection has been shown
previously (Table 2 and 3). On the other hand, many
proteins within this group have never been found to be
implicated in any infection event. Meanwhile, incorpor-
ation of these proteins into the viral cores from different
types of producer cells suggests that at least some of
them may be important for successful infection. For in-
stance, within the functional category of vesicular
trafficking-associated proteins, the member of ESCRT
pathway AIP1/ALIX detected in all our core prepara-
tions has been shown earlier to be interacting with HIV-
1 Gag late domain and to be important for the release of
viral particles [125,136]. Clathrin has also been found to
be abundant in HIV-1 viral particles and important for
the correct assembly and maturation of viral particles
through the regulation of proteolytic processing of virion
components [5,32]. Members of the RAB family of pro-
teins were found to be important for different steps of
HIV-1 particle assembly and probably RNA incorpor-
ation [112,123,124] (Table 3). Available data suggest that
the proteins of this group are important factors of as-
sembly and maturation of the viral particle and get into
the viral cores in association with Gag and GagPol pro-
teins or viral RNA. Some of the factors of vesicular traf-
ficking may be potentially involved in the early stage of
HIV-1 infection: the functional genomic screening of
factors involved in HIV-1 infection showed that the ves-
icular RAB6A protein is important for the late phase of
reverse transcription in infected cells [58].
The cytoskeletal proteins were also abundant in all

core preparations, however, the role of these proteins in
HIV-1 virions is still questionable. The actin microfila-
ments form the plasma membrane cortex, and both
actin and microtubular networks are involved in HIV-1
particle assembly [111,112,137], so that the proportion
of these proteins in viral particles may be up to 15% of
the molar level of Gag [94]. Actin is packaged in the vir-
ions probably in association with the NC domain of Gag
[111,137,138]. Thus, actin and actin-associated proteins
coronin, moesin, filamin, and FLII can get into the viral
cores due to the actin interaction with Gag or GagPol.
However, involvement of these virion-packaged mole-
cules in post-assembly events of the virus life cycle has
not been shown [12]. Our data indicate that the ratio of β
tubulin between the viral cores reproduced the concentra-
tion ratio of this protein between the producer cells, sug-
gesting the capturing, but not specific incorporation, of this
cytoskeletal protein into assembling virions. On the con-
trary, the cytoskeleton regulation proteins were found to be
mostly different in the viral cores from different cell types,
which may reflect variability of the profiles of these proteins
in virus-producing cells. Some of them, particularly Hsp27,
a protein containing a nuclear localization signal [139] and
found in the cores of virions from all cell types, can be po-
tentially involved in post-entry steps of infection, although
the role of this protein in viral replication remains unknown.
The other category of proteins abundant in HIV-1 viral

cores is the molecular chaperones. The profiles of these
proteins are very similar in all analyzed samples. Indeed,
Hsp27, Hsp40 (DnaJ) co-chaperone, Hsp70, Hsp90, nu-
merous members of TCP1 (Hsp60) tetradecameric com-
plex, as well as peptidylprolyl isomerase cyclophilin A
were found in all core preparations (Table 2). Previously,
these proteins were identified in purified samples of whole
HIV-1 virions and Gag preparations [4,10,23]. Hsp70 was
also found in HIV-2, SIVMAC and SIVAGM [11,56]. Since
the major function of these proteins is to regulate folding
of newly synthesized polypeptides, facilitate intracellular
protein transport and assemble multisubunit protein
structures [140,141], they likely play an important role in
HIV-1 particle assembly, processing and folding of the
viral proteins during virion core maturation and maintain
structural integrity of the viral core and RTCs [11,33,49].
The early RTC functions, especially organization of re-
verse transcription, may also depend on the proper activity
of incorporated chaperones.
The RNA-binding proteins represent the most diverse

group of cellular factors in viral cores. Although we
identified 29 RNA-binding proteins in the core prepara-
tions, only four of them were found in all core samples
(Table 2). These are (1) regulator of nonsense transcript
stability (UPF1), (2) ATP-dependent RNA helicase A
(RHA or DHX9), (3) small nuclear ribonucleoprotein
component (Snrp116 or EFTUD2), and RNA helicase
hBrr2 200 kDa (SNRNP200 or HELIC2). The role of the
first two factors in HIV-1 infection was thoroughly char-
acterized before. The UPF1 protein, RNA helicase from the
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SFI superfamily, involved in translation of Gag polypeptide,
was found in virus-producing cells in association with HIV-
1 ribonucleoprotein (RNP) along with Pr55Gag, viral RNA
and cellular protein Staufen 1 [108]. Thus, UPF1 can be
packaged in the virions in association with both Gag and
the viral genomic RNA. RNA helicase A (RHA), a member
of the DEAD family of proteins which are capable of
unwinding the double-stranded RNA structure, was earlier
found to be associated with HIV-1 Gag and incorporated
into HIV-1 virions in an RNA-dependent manner. Pack-
aging of this protein into HIV-1 virions was important for
endogenous reverse transcription [10]. Jeang and Yedavalli
suggested that RHA incorporated into HIV-1 viral cores
might be important for the reverse transcription in RTCs
[95]. A recent study that revealed an important role of this
enzyme in the annealing of tRNALys3 primer [73], con-
firmed this suggestion. Two other proteins, SNRNP200
(member of the family of U5 DEXH-box RNA helicases)
and Snrp116 (U5 snRNP specific protein, 116 kD), are both
members of the U5 group of small nuclear RNA proteins,
the spliceosome components, and have not been detected
in HIV-1 virions before. Since these proteins are known as
important components of splicing machinery required for a
spliceosome catalytic activity [142,143], they can be asso-
ciated with HIV-1 pre-mRNA and remain associated with a
mature viral RNA molecule.
Interestingly, our analysis showed higher level of

DHX9 (RHA) and SNRNP200 (HELIC2) in the cores of
virions assembled in T cells, as compared with the viral
cores from the monocyte and MDM models, which did
not correlate with the abundance of these proteins in
producer cells. Since we did not find significant differ-
ences in the RNA and CA protein count between the
virions from analyzed cells, observed differences suggest
that the mechanism of incorporation of these proteins
into the virions (binding to viral RNA or interaction
with Gag or/and GagPol) is more effective and likely se-
lective in T lymphocytes, than in monocyte and MDM
model cells. Because of importance of RNA helicase A
for the reverse transcription in HIV-1 virions and RTCs,
we expect that SNRNP200 protein may also be involved
in cDNA synthesis or accumulation.
Analysis of earlier published genome-wide screens per-

formed by Warrilow and co-authors [22] to select the
host factors potentially implicated in HIV reverse tran-
scription showed that the proteins involved in DNA rep-
lication, transcription and repair, as well as proteins of
the ubiquitin-proteasome pathway may also be import-
ant. Within the 17 DNA-binding proteins detected in
our core preparations, only two, ATP-dependent DNA
helicase II (XRCC5 or Ku80) and TATA binding protein
interacting protein 49 kDa (RUVBL1 or Pontin52), were
found in the core of all virions. Two other proteins,
minichromosome maintenance complex component 5
(MCM5 or CDC46) and regulator of chromosome con-
densation protein 2 (RCC2), were identified only in Sup-
T1 and activated THP1 cells (Table 2), although Western
blot showed presence of MCM5 also in non-activated
THP1. The protein RUVBL2 (Reptin52) was not identified
by MS/MS in activated THP1, but the fact that in cells this
DNA helicase is complexed with the closely related
RUVBL1 protein in hetero-dodecamers [144] suggests in-
corporation of this protein in the virions from all studied
cells. Our analysis showed that among DNA binding pro-
teins present in the viral cores from different cell types
only XRCC5 and especially MCM5 displayed an increased
level of incorporation from the T cells, similar to RNA-
binding DHX9 and SNRNP200, whereas core incorpor-
ation of RUVBL1 and RUVBL2 reproduced their level in
virion-producing Sup-T1 and THP1 cells. The DNA
helicase MCM5, a member of the MCM family of
chromatin-binding proteins is involved in the initiation of
DNA replication and was found to be upregulated during
the transition from the G0 to G1/S phase of the cell cycle
(RefSeq database). Interaction of this protein with HIV
has not been shown before. Another DNA helicase,
XRCC5 or Ku80, which is involved in repairing DNA
double-strand breaks, was earlier found to be important
for viral cDNA circularization, nuclear import and inte-
gration [145,146]. However, this function was shown for
the protein expressed in the infected target cells, but not
for virion-incorporated Ku80. Packaging of both MCM5
and XRCC5 (Ku80) DNA helicases in all viral cores and
their high levels in the cores of T lymphocyte-derived vir-
ions suggest that the core-incorporated molecules of these
proteins can also be involved in processes associated with
cDNA processing and/or integration during post-entry
steps of infection, especially in T cells.
Within the group of ubiquitin-proteasome pathway

associated proteins a total of 9 proteins were detected;
three of them were identified in viral cores from all produ-
cer cells (Table 2). Earlier, numerous 26 S proteasome-
associated proteins were found in HIV-1 and SIV particles
[4,56]. Involvement of the ubiquitin-proteasome system in
the budding of lentiviral particles was shown earlier
(reviewed in [147]). Since all major domains of the
membrane-associated HIV-1 Gag molecules have been
shown to be ubiquitinated during virion budding [148],
the ubiquitination factors could package into virions in
association with Gag and then get into the viral cores.
However, the role of virion-associated factors of the
ubiquitin-proteasome system in the early steps of HIV-1
infection is unknown.

Conclusions
Taken together, results of our study indicate that the
profile of host cell proteins packaged in the cores of
HIV-1 virions depends on the type of producer cell. High
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abundance of certain proteins in the cell increases the
probability of their capturing by the virions and hence
their presence in the viral cores. However, certain mem-
bers of functional groups of DNA- and RNA-binding
proteins, molecular chaperones, cytoskeletal, vesicular
trafficking-associated and ubiquitin-proteasome pathway-
associated proteins were found in the cores of virions
from all analyzed cells, suggesting that their incorporation
is non-random and that they can be directly or indirectly
involved in either the virus assembly/budding or early in-
fection events. Our findings that the abundance of cellular
proteins DHX9, (RHA) SNRNP200, MCM5, and XRCC5
(Ku80) within virus-producing cells did not correlate with
the abundance seen in cores of produced virions, specific-
ally their unexpected higher packaging in T cells, suggests
that the incorporation of these factors in T lymphocytes is
more efficient than in myeloid cells. These differences
may be associated with variability of localization of these
host proteins relative to the sites of virion assembly in dif-
ferent cell types and/or with different localization of virion
assembly complexes. The host factors abundant in the
viral cores may play a role in subsequent steps of HIV-1
infection, specifically in T cells. Further analysis of the role
of these proteins in viral replication might reveal new
mechanisms of the modulation of HIV infection by the
host proteins and identify new targets for antiretroviral
therapeutic interventions.

Methods
Cells and viruses
The acute monocytic leukemia cell line THP1 (from
S. Tsuchiya) and T lymphoblastoma Sup-T1 cells (from
James Hoxie) were provided by the NIH AIDS Research
& Reference Reagent Program. The human kidney fibro-
blasts 293 T/17 was purchased from ATCC (Manassas,
VA). All cells were maintained at 37°C and 5% CO2 in
75 cm2 tissue culture flasks with RPMI-1640 culture
media supplemented with 10% Fetal Bovine Serum,
penicillin/streptomycin (100 μg/ml), and L-Glutamine.
The stocks of the HIV-1 virus pseudotyped with

amphotropic murine leukemia virus envelope glycopro-
tein (MLV Env) for synchronized infection of THP1 and
Sup-T1 cells were prepared by transfection of 293 T/17
cells with HIV-1 NL4-3 provirus-encoding plasmid [149]
and pcDNA-Env(MLV) plasmid (kindly provided by
Nathaniel Landau) at a 4:1 ratio using Metafectene
transfection reagent (Biontex, Planegg, Germany). The
cells were transfected in 75 cm2 tissue culture flasks; the
plasmid DNA containing media was changed at 5 h
post-transfection. After overnight incubation with fresh
RPMI-1640, the media was changed again and the cells
were cultured in fresh media for an additional 48 h at
37°C and 5% CO2. Then, the supernatants were
harvested, filtered through a 0.45-μm filter and stored
on wet ice at 4°C for 1–4 days.

Infection
The viral suspensions were normalized according to
their RT activity corresponding to 1 × 106 cpm per
1 × 106 cells, mixed with Polybrene (Sigma) to a final
concentration of 8 μg/ml and used for infection of ap-
proximately 200 × 106 viable Sup-T1 or THP1 cells by
spinoculation [150]. Infection was performed in 6-well
plates (5 × 106 cells per well) by centrifugation at 1000xg
for 2 h at 18°C. After a 2 h incubation at 37°C and 5%
CO2, the cells were washed from the virus-containing
media, re-suspended in RPMI-1640 (pre-warmed to 37°
C) and seeded in a regular (Sup-T1 and non-activated
THP1) or polylysine-treated (THP1 for activation)
75 cm2 tissue culture flasks at a concentration of 4 × 106

cells per ml (Sup-T1, non-activated THP1) or of 1 × 106

cells per ml (THP1 for activation). To get activated
THP1 cells, the PMA and vitamin D3 solutions were
added to cells to a final concentration of 100 nM. Then,
the cells were incubated at 37°C and 5% CO2 for 72 h.

Concentration of virus and “spin-thru” isolation of viral
cores
Virus-containing culture media from infected Sup-T1,
activated and non-activated THP1 cells, as well as the
media from the same types of non-infected cells (con-
trol) were harvested at 72 h after incubation with virus
(or equivalent volume of the virus-negative culture
media) and purified from cell debris by being centrifuged
at 2,500 rpm and 4°C for 5 minutes and filtered through
0.45 μm syringe filters. Then, filtered samples were cen-
trifuged at 100,000xg and 4°C for 3 h through 2 ml cush-
ions of 30% sucrose in STE buffer (10 mM Tris–HCl
[pH 7.4], 100 mM NaCl, and 1 mM EDTA) in a Beck-
man SW-41 rotor. The pellets were re-suspended in
300 μl of STE buffer and the viral cores were then
isolated by “spin-thru” purification as described earlier
[63-66]. Briefly, 3.8 ml of a 30-50% linear density gradi-
ent of sucrose in STE buffer was overlaid with 1 ml of
15% sucrose containing 1% Triton X-100 and then cov-
ered with a 0.4-ml cushion of 7.5% sucrose in STE. The
HIV-1 positive and negative samples, concentrated
through 30% sucrose and resuspended in STE (0.3 ml)
were carefully layered on top of the 7.5% sucrose layer
and centrifuged in a Type 100 Ti rotor (Beckman
Coulter) at 100,000xg and 4°C for 16–18 h. The pellets
were re-suspended in 26 μl of STE buffer and replaced
to polypropylene, non-siliconized Eppendorf microtubes;
4 μl aliquots were set aside for the p24CA ELISA assay.
The CA p24Gag–normalized suspensions of HIV-1 cores
and control suspensions were subjected to SDS-PAGE
protein separation for subsequent LC-MS/MS analysis,
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Western blotting, or to In-solution protein digestion
with trypsin for the LC-MS/MS analysis of unseparated
protein samples.
In order to test purity of the “spin-thru” isolated

cores from undestroyed viral particles, 400 μl aliquots
of the suspensions of viral cores and concentrated
whole virions were separately subjected to centrifuga-
tion in a 30-70% sucrose gradient for 5 h at 125,000xg
and 4°C in a SW-60Ti rotor (Beckman Coulter). Ten
fractions of the gradient (each 400 μl) were then col-
lected from the bottom of the tubes and densities were
determined. All fractions were dialyzed versus 1 L of
ice-cold PBS using Tube-O-DIALYZER 1 kDa MEDI
Kit (G Biosciences, St. Louis, MO) according to the
manufacturer’s protocol and then applied for p24
enzyme-linked immunosorbent assay using Alliance
HIV-1 p24 ELISA Kit (PerkinElmer, Waltham, MA).
Additionally, electron microscopy (EM) was applied to

test purity of the viral and core preparations. For EM,
the virions concentrated through 30% sucrose and “spin-
thru”-purified core preparations were resuspended in
20 μl of STE buffer, incubated 20 minutes on formware
carbon film-coated 100 square mesh nickel grids (Elec-
tron Microscopic Sciences) at room temperature, and
then incubated with 4% glutaraldehyde fixing solution
for 10 minutes. After five-time wash in molecular grade
water (Mediatech, Manassas, VA), samples were stained
with 2% uranyl acetate. For analysis of virion structure,
the pellets of virions after centrifugation through 30%
sucrose were washed twice with PBS and then fixed with
4% glutaraldehyde for 4 h. The preparations were further
fixed with 2% OsO4 for 2 h, dehydrated with a graded
series of ethanol dilutions ranging from 25% to 100%
and then embedded in Araldite 502 resin. Ultrathin sec-
tions were contrasted with 2% uranyl acetate in metha-
nol and 1% lead citrate. All preparations were examined
on a JEOL JEM 1200 transmission electron microscope
operating at 100 kV.

Western blot analysis
The aliquots of the lysates of HIV-1 infected Sup-T1 and
THP1 cells, the virus samples and culture media from
non-infected cells taken before and after the “spin-thru”
isolation were subjected to SDS-PAGE, subsequently
transferred to a PVDF membrane and then detected
using anti-HIV-1 p24 (24–3) mouse monoclonal anti-
body and human HIV immunoglobulin (HIV-IgG) from
NIH AIDS Research & Reference Reagent Program;
anti-RNA Helicase A (ab70777) rabbit polyclonal anti-
body from Abcam; anti-CD45, clone F10-89-4 mono-
clonal antibody from Millipore (Temecula, CA);
monoclonal anti-Actin clone AC-40 from Sigma; anti-β
tubulin (D-10), anti-Reptin 52 (D-6), anti-Ku80 (B-1)
and anti-MCM5 (G-1) mouse monoclonal antibodies
from SantaCruz Biotechnology (Santa Cruz, CA); anti-
HELIC2 (N-20) and anti-Pontin 52 (N-15) goat poly-
clonal antibodies also from Santa Criz. Specific bands
were visualized by ECL (Thermo Scientific, Rockford,
IL). Quantification of the Western blotting results was
performed using ImageJ software.

Gel separation of proteins, protein digestion and peptide
extraction
The volumes of viral core suspensions, each containing
400 ng of p24CA protein, and control suspensions taken
in twofold excess were mixed with equal volumes of
Laemmli Sample Buffer (BioRad, Hercules, CA) contain-
ing 5% β mercaptoethanol, heated in boiling water for
2 minutes and applied for SDS-PAGE protein separation.
Separation of proteins was performed in 12.5% Tris–
HCl Criterion Precast Gel (BioRad) at 100 V and 4°C for
2–2.5 h. The gel was stained in 0.1% (wt/v) Coomassie
(BioRad) solution (40% methanol (v/v), 10% acetic acid
(v/v) in water with 1 g/L of Brilliant Blue R-250) for 1 h
at room temperature. After 7–8 washes in de-staining
solution (contains the same components, as staining so-
lution, except Brilliant Blue R-250) the gel was replaced
to water, and each lane was sectioned into 10 contiguous
pieces, which were subjected to the “in-gel” proteolysis
according to the modified previously published protocol
[151] Briefly, acetonitrile (ACN) dehydrated gel pieces
were rehydrated in 10 mM DTT and incubated at 60°C
for 1 h. After cooling at room temperature, the gel slices
were incubated with 50 mM iodacetamide for 1 h at
room temperature in the dark for alkylation of proteins.
After the second dehydration, a 15 μl dose of Trypsin
Gold (Promega, Madison, WI) solution (20 μg/ml) in
40 mM NH4HCO3/10% ACN was added to each of the
gel pieces. After 1 h saturation at 4°C, the pieces were
incubated at 37°C overnight. The resulted peptides were
extracted three times: (1) with 25 mM of NH4HCO3:
ACN (1:1); (2) 5% formic acid (FA); (3) 5% FA:ACN
(1:1). After pooling all the extracts together, samples
were purified through ZipTip pipette tips C18 (Milli-
pore), eluted with 30 μl of 0.1% trifluoroacetic acid
(TFA) in 80% ACN and subjected to HPLC separation
and MS/MS analysis.
For “in-solution” protein digestion, the suspensions of

HIV-1 cores after “spin-thru” centrifugation were treated
with 10 mM DTT (60°C for 1 h) and 150 mM iodaceta-
mide (1 h at room temperature in the dark) in 20 ul of
STE buffer. The protein samples were then mixed with
100 μl of 200 mM ammonium bicarbonate and treated
with 200 ng of Trypsin Gold (Promega) at 37°C over-
night. The resulted peptides were dried in SpeedVac,
resuspended in water, purified through ZipTip pipette
tips C18 as described above and then subjected to HPLC
separation and MS/MS analysis.
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HPLC-MS/MS of tryptic digests and database search
The peptides in each sample were separated by micro-
capillary reversed-phase liquid chromatography (HPLC),
coupled online to an ion trap mass spectrometer Thermo
LTQ Orbitrap XL. The mass spectrometer was operated
in a data-dependent MS/MS mode using a normalized
collision-induced dissociation (CID) energy of 35%. The
CID spectra were compared against those of the EMBL
non-redundant protein database. Only peptides having
cross-correlation (Xcorr) cutoffs of 2.6 for [M+2 H]2+, 3.0
for [M+3 H]3+ and higher charge state were considered.
These SEQUEST criteria thresholds resulted in a 1-2% of
False Descovery Rate. The proteome analysis of the spec-
tra was made by Proteome Discoverer 1.2 software
(Thermo Fisher Scientific). The protein profiles of the
samples of viral cores were compared with identically pre-
pared samples from non-infected cells. The sub-cellular
localization and function of each filtered protein was
determined using gene ontology (GO) information
obtained from cross-referencing each protein’s Swiss-Prot
accession number to the GO localization information
available on the NCBI protein database (http://www.ncbi.
nlm.nih.gov/sites/entrez?db=Protein) and The Human
Protein Atlas database (www.proteinatlas.org). The in-
volvement of the proteins in known cellular pathways
associated with major biological processes such as cell
cycle, intracytoplasmic transport, cytoplasm organization,
nuclear transport, chromatin structure maintenance/regu-
lation, RNA splicing and reorganization, transcription,
apoptosis, proteasomal degradation, etc. were assessed
using NCBI RefSeq database (www.ncbi.nlm.nih.gov/
RefSeq/) and DAVID Bioinformatics Resources 6.7
(NIAID NIH) (http://david.abcc.ncifcrf.gov).

RNA purification and RT reaction
RNA was purified from suspensions of “spin-thru” puri-
fied viral cores containing 250 ng of p24CA using TRI
Reagent-LS (MRC, Cincinnati, OH) according to the man-
ufacturer's protocol. A total of 0.5 μg of RNA from the
RNA fraction was treated with 0.25 mg/ml DNase I
RNase-free (Roche, Mannheim, Germany) for 60 minutes
in the presence of 5 mM MgCl2, followed by the heat in-
activation at 65°C for 15 minutes. A 250 ng aliquot of total
RNA was used to generate cDNA with the GoScript Re-
verse Transcription System (Promega, Madison, WI) using
oligo-dT reverse primers.

DNA isolation and quantitative real-time PCR
Lysates of HIV-1 infected (72 h p.i.) Sup-T1, activated
and non-activated THP1 cells were normalized to the
total protein count using DC Protein Assay (BioRad) fol-
lowing manufacturer’s protocol. The total DNA was iso-
lated using an IsoQuick Nucleic Acid Extraction Kit
(ISC BioExpress, Kaysville, UT) following manufacturer’s
recommendations. After isolation, the cellular DNA
samples were analyzed by quantitative TaqMan real-time
PCR to quantify chrosomal DNA. Set of primers specific
for the β-globin gene has been used: forward primer BGF1
(5’-CAACCTCAAACAGACACCATGG-3’), reverse primer
BGR1 (5’-TCCACGTTCACCTTGCCC-3’), and probe BGX1
(5’-FAM-CTCCTGAGGAGAAGTCTGCCGTTACTGCC-
TAMRA-3’). The 2 μl aliquots of RT reaction mixtures of
the RNA samples from isolated viral cores (see above) were
diluted to 10-fold and 100-fold and subjected to quantita-
tive real-time PCR analysis with the set of primers specific
for late HIV-1 reverse transcription product as described
earlier [152]. The primers FOR-LATE (5’-TGTGTGCCCG
TCTGTTGTGT-3’), REV-LATE (5’-GAGTCCTGCGTCG
AGAGATC-3’), and probe Lt-LTR-Prb (5’-FAM-CAGTGG
CGCCCGAACAGGGA-TAMRA-3’) recognized the positive-
strand DNA, specific for the U5-Ψ LTR region. PCR
reactions were performed with PerfeCTa qPCR FastMix,
UNG (Quanta Biosciences, Gaithersburg, MD) using 300
nM of each primer and 200 nM of probe according to the
manufacturer protocol. Serial dilutions of DNA from 8E5
cells (CEM cell line containing a single copy of HIV-1
LAV provirus per cell) were used as the quantitative stan-
dards. Real-time PCR reactions were carried out at least in
triplicate using the PTC-200 Peltier Thermal Cycler with
Chromo4 Continuous Fluorescence Detector (both from
MJ Research) and Opticon Monitor 2.03 software.

Additional file

Additional file 1: Table S1: Overlapping and unique high scored
cellular proteins within viral cores isolated from the virus produced by
Sup-T1 cells infected with HIV-1 NL4-3 strain pseudotyped with MLV Env
(blue symbols) or VSV-G (green symbols) envelope glycoproteins.
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