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Abstract

Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is 

a glucocorticoid-activated transcription factor that regulates gene expression and controls the 

development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard 

treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by 

kidney diseases. These include minimal change disease (MCD), focal segmental 

glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy 

(IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, 

unwanted side effects and steroid-resistance remain major issues for their long-term use. 

Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in 

podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells 

that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes 

leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have 

begun to explore the mechanism of GC action in podocytes. This review will discuss progress in 

our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte 

physiology and their renoprotective activity in nephrotic syndrome.
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1. GR Signaling

Glucocorticoid receptor (GR) is a founding member of the nuclear hormone receptor 

(NHRs) that control homeostasis, differentiation, proliferation and animal development. 

NHRs bind their cognate hormones and regulate the expression of a complex genetic 
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network, in which their coordinated activity defines the physiological, hormonal responses. 

A key function of NRs is to mediate transcriptional regulation in response to hormones and 

other metabolic ligands through the recruitment of an array of positive and negative 

regulatory proteins, referred to as co-activators or co-repressors.

GRα is composed of four functional domains, the N-terminal ligand-independent 

transactivation domain (NTD) or activation function 1 (AF-1), the DNA-binding domain 

(DBD), the flexible hinge region and the ligand-binding domain (LBD). The LBD contains 

12 helices including the ligand-binding pocket (helices 3, 4, 5 and 12) and the AF2 domain 

(Figure 1). Glucocorticoid binding to the hydrophobic pocket of the LBD triggers a 

conformational change, thereby unmasking the LBD from the AF2 domain followed by 

subsequent co-activator binding [1, 2]. The AF1 and AF2 domains have been shown to 

activate transcription through its interaction with the basal transcriptional machinery and 

transcriptional co-activators [3].

Glucocorticoid signaling is primarily dependent on GR-mediated transcription and protein 

synthesis [4]. In the absence of hormone, the GR resides in the cytoplasm as part of a large 

multiprotein complex that includes chaperone proteins such as HSP90 [5, 6]. Upon ligand 

binding, GR dissociates from the chaperone proteins and translocates into the nucleus, 

where it regulates transcription through multiple distinct modes of action (Figure 2). As a 

homodimer, it binds a cognate DNA sequence present in enhancers containing 

glucocorticoid response elements (GREs) to activate gene expression [7, 8]. In addition to 

homodimerization, GR also directly interacts with MR or AR to form heterodimers [9]. 

Furthermore, ligand-bound monomeric GR binds composite GC-responsive regions with 

additional transcription factors such as signal transducer and activator of transcription 

(STAT), and cAMP response element-binding protein (CREB) and potently induce 

glucocorticoid-mediated gene expression [10–12]. The recruitment of several coactivators, 

including histone modifying enzymes and chromatin modulators promotes chromatin 

remodeling and subsequent transcription initiation [13–16]. The GR homodimers also bind 

specific sequences called negative GREs (nGREs) in the promoter region of several target 

genes and repress their transcription [17]. Lastly, in contrast to the dimer, ligand-bound GR 

monomeric is capable of transrepressing transcription through its interactions with other 

transcriptional regulators, such as nuclear factor kappa B (NF-κB) and activating protein-1 

(AP-1). These interactions block co-activator recruitment and promote co-repressor 

recruitment, thereby altering chromatin structure and repressing target gene expression [18–

20].

2. Glucocorticoids (GCs)

As a ligand-dependent transcription factor, the physiologic and pharmacologic action of GR 

is primarily mediated by the glucocorticoids (GC). The synthesis and release of GCs are 

under dynamic circadian regulation by the hypothalamic-pituitary-adrenal axis [21, 22].

Synthetic GCs are drugs that mimic the action of natural GCs. Dexamethasone (Dex), 

prednisone/prednisolone, and budesonide are the most commonly prescribed synthetic GCs 

[23, 24]. Synthetic GCs are prescribed for chronic inflammatory diseases, including 
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autoimmune disorders, allergies, asthma and skin infections [25]. In addition to their anti-

inflammatory properties, GCs have been used in conjunction with cancer chemotherapy to 

reduce side effects [26]. Importantly, synthetic GCs, such as Dex and prednisone/

prednisolone, are therapeutically effective in treating nephrotic syndrome [27, 28]. Notably, 

it has been proposed that Dex can directly act on the glomerular podocytes contributing to its 

therapeutic effects [29].

3. GR Target Genes

Genome-wide analyses of GR-regulated genes and GR-binding sites in different cell types 

and tissues have recently been reported [30–32]. These experiments reveal the characteristics 

of genome-wide profiling of GR and genome-wide inventory of GR-binding sites. These 

results provide an exciting global view of the GR target genes and tissue-specific modes of 

GR action and potentially contribute to our understanding of glucocorticoid action. ChIP-seq 

studies showed that GR binding sites are not present in isolation but are often surrounded by 

binding motifs for other transcriptional factors such as AP-1 [33].

It is striking that GR selectively regulates transcription in a cell-specific manner. Chromatin 

accessibility is a significant contributor to the determination of the tissue-specific GR 

binding profiles and the primary determinant for tissue-specific chromatin accessibility is 

the cell type-specific expression of other transcription factors. Most GR target genes are 

involved in metabolism, signal transduction, inflammation and the immune response [34–

36]. These GR target genes include both induced and repressed genes that are associated 

with known GC functions. Consistent with their ability to modulate the expression of 

inflammation-associated genes, GCs are widely used in medical therapy for 

immunosuppression and anti-inflammatory agents. However, GCs’ broad effects on different 

tissues can cause unwanted side effects such as bone loss and glucose dysregulation. It is 

hopeful that the information extracted from ChIP-seq and RNA-seq data in different tissues 

will provide mechanistic insights into a better understanding of GCs’ global effects and 

ultimately help develop agents that alleviate unwanted side effects.

4. Podocytes and Nephrotic Syndrome

4.1. Glomerular podocytes

One of the crucial functions of the kidney is to remove toxins and metabolic waste while 

preventing proteins larger than albumin from entering the urine. The glomerulus is the 

functional unit required for blood plasma filtration and primary urine production [37]. Four 

distinct cell types assemble to form the glomerulus: glomerular endothelial cells, mesangial 

cells, podocytes, and parietal epithelial cells (PECs) (Figure 3, [38]). Podocytes are fully 

differentiated epithelial cells covering the outer surface of the glomerular basement member 

(GBM) and are critical for maintaining the integrity of the glomerular filtration barrier 

(GFB) [39]. The podocyte has a unique cell architecture that consists of an arborized cell 

body, primary processes, and secondary foot processes [40]. The long-interdigitated foot 

processes wrap around glomerular capillaries between adjacent podocytes and form the 

filtration slits, which are spanned by the slit diaphragms (SD), a highly specialized 

membrane-like cell-cell junctions. The cell body contains a nucleus and most of the 
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cytoplasm, while the foot processes include primarily a dense network of actin filaments 

connected with an array of transmembrane proteins that link the SD and the GBM anchor 

proteins [41, 42]. The unique structure of the cell primary and secondary processes are 

maintained by the highly-organized cytoskeleton (Figure 3).

The highly-specialized podocytes SD structure is in charge of macromolecular filtering and 

connects the podocyte actin cytoskeleton to transmembrane proteins and receptors and 

regulates plasticity of the foot process. As such, SD is a unique structure mediating cell-cell 

interactions, and possibly relaying extracellular signaling stimuli [42]. A growing number of 

molecular components of mature SD have been identified, many of which are components of 

tight and adherent junctions. Both nephrin and podocin are podocyte-specific proteins that 

are found only in the SD [43–45]. Other proteins associated with this unique structure 

include CD2-associated protein (CD2AP), transient receptor potential channel 6 (TRPC6), 

alpha-actinin 4 (ACTN4), P-cadherin, FAT1, synaptopodin (Synpo), α- and β-catenin, 

zonula occludens-1 (ZO-1), nephrin homologue NEPH-1, and Wilms’ tumour suppressor 1 

(WT1) [46–53] (Figure 4). These podocyte proteins are associated with survival, 

differentiation, and unique cytoskeleton-dependent morphology of the podocytes [54, 55].

4.2. Podocyte injury

Podocytes play a critical role in the preservation of the integrity of the GFB under normal 

conditions and are the target of many forms of physiological stress and pathological states. 

Podocytes respond to genetic, mechanical, reactive oxygen species (ROS), immunological 

stresses, toxins, viral infection and drugs [56, 57]. Podocyte injury occurs when excessive 

stress disrupts homeostasis. The beginning of podocyte injury includes derangement of the 

actin cytoskeleton [58, 59], loss of SD proteins and structural integrity, which lead to 

subsequent foot process effacement and podocyte detachment from GBM or apoptosis [60, 

61]. It is widely accepted that podocyte injury results in proteinuria and nephrotic syndrome 

(Figures 3 and 5).

Upon injury, podocytes undergo apoptosis [62], which lead to a decrease in podocyte 

number. In the classical view, apoptosis has long been considered to be the primary cause of 

podocyte loss. Podocytes undergo apoptosis during the pathogenesis of the glomerular 

disease, as well as in mice exposed to PAN (puromycin aminonucleoside) treatment [62–64]. 

Podocyte detachment from the GBM is a terminal event in podocyte injuries, which can 

promote further glomerular damage [65–67]. The detachment of podocytes from GBM 

occurs in regions of sclerotic lesions of the glomerulus and consequently increases the 

appearance of podocytes and podocyte-associated molecules in urine.

4.3. Nephrotic syndrome

NS represents a term for a collection of conditions [68]. It is a kidney disorder that causes 

the body to excrete too much protein in the urine [69]. The key features of NS are 

proteinuria, hypoalbuminemia, hypercholesterolemia, and edema. In children, proteinuria is 

defined as more than 0.1g of urine protein per square meter of body-surface area per day 

(Note: proteinuria is age-dependent in the child, much higher in the neonate). In adults, the 

nephrotic syndrome is defined as a urine protein level of more than 3.5 g per day [70].
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Based on kidney biopsies, NS patients can be diagnosed more specifically, including 

minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous 

nephropathy and immunoglobulin A (IgA) nephropathy among others [71–74] (Table 1). 

FSGS can be further broadly classified as primary or adaptive. Primary FSGS is caused by 

monogenic alteration events, while adaptive FSGS, also referred to as secondary to FSGS, is 

associated with glomerular dysfunction associated with other diseases. This review will 

focus on primary FSGS. Normally, kidneys clear waste materials from the body and 

maintain a healthy balance of fluids and electrolytes in the blood. Upon the damages of the 

filtering units of the kidney, proteins that are usually kept in the plasma leak into the urine in 

large amounts. Various diseases, such as diabetes mellitus, hypertension, lupus 

erythematosus and viral infections, can damage glomeruli, resulting in proteinuria and NS 

[75–79]. Most NS in young children are idiopathic FSGS or frequently MCD, which is 

considered a less severe form of FSGS [80]. In adults, FSGS is the most common form of 

the glomerular disease [81] and a leading cause of the primary NS. FSGS accounts for 20% 

of NS in children and 40% in adults. FSGS is also the leading cause of glomerulonephritis-

associated end-stage renal disease (ESRD) [82].

FSGS is viewed as a podocyte disease or “podocytopathy” [83, 84]. This is because 

mutations in several genes encoding components of the SD, cell-membrane, actin-

cytoskeleton and signal transduction complexes in podocytes are associated with FSGS [85–

91]. More than 50 genes have also been identified as the disease-causing genes for NS [92–

100]. The goal of NS therapy is to preserve kidney function and achieve remission of 

proteinuria [101, 102]. GCs are more effective for the treatment of MCD, but commonly 

require adjunctive therapy with additional agents for FSGS patients (Table 1). The 

calcineurin inhibitors, such as cyclosporine and tacrolimus, are widely used in the treatment 

of steroid-resistant NS (SRNS), of which the majority are FSGS [103, 104]. The significant 

effects of calcineurin inhibitors are stabilization of the podocyte actin cytoskeleton, and 

subsequent reduction in proteinuria, independent of its impact on the immune system.

Increasing evidence from patients and experimental models have implicated an essential role 

for the immune system in the pathogenesis of idiopathic nephrotic syndrome. Several 

excellent reviews have thoroughly discussed this topic [105, 106]. Indeed, the chimeric anti-

CD20 monoclonal antibody, rituximab, originally used to treat many B cell lymphomas, has 

beneficial effects in ameliorating proteinuria [107]. Taken together, the use of 

immunosuppressive therapy in the treatment of non-genetic forms of NS suggests a role for 

the impaired immunity in the pathogenesis of NS.

The NF-κB transcription factor family of proteins plays a crucial role in the regulation of the 

induction and resolution of inflammation. Accumulated evidence suggests the involvement 

of NF-κB activation induced by pathogenic agents in experimental NS models and NS 

patients. NF-κB activation has been demonstrated in glomerular cells such as podocytes, 

mesangial cells, tubular and endothelial cells upon renal injury or after exposure to 

inflammatory stimuli both in vivo and in vitro [108–110]. Several NF-κB-inducible genes 

and their encoded proteins including angiotensin II and cytokines, such as IL-1, IL-8, E-

selection and MCP-1 are associated with the progression of glomerulonephritis, tissue injury 

in nephrotoxicity and other renal diseases, including glycosylated IgA [111–119]. 
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Dysregulation of the activity of canonical NF-κB, p50/p65 (RelA), in podocytes has 

pathogenic consequences in glomerular diseases [120]. For example, activation of NF-κB 

contributes to HIV-associated nephropathy (HIVAN) [121]. This aberrant NF-κB activation 

specifically has a role in enhancing the effects of the TNF family of receptors on podocytes 

including the activities of Fas/FasL and TNFR2 [122]. Other reports indicate that activation 

of the ERK pathway and subsequent nuclear translocation of NF-κB are necessary for Ang 

II-induced TRPC6 accumulation and podocyte apoptosis [123] and that NF-κB activity 

mediates PAN-induced glomerular injury and proteinuria [124]. Collectively, these 

observations indicate that NF-κB is an important mediator of pathogenic processes in 

glomerulopathies and that balanced NF-κB activity is critical to maintaining glomerular 

integrity and function. Because NF-κB family proteins are present in most renal and the 

immune cells, the ability of GCs to transrepress NF-κB transcriptional activity in these cell 

types contributes to their overall efficacy when treating NS [125, 126].

5. The Effects of Glucocorticoid Therapy on Nephrotic Syndrome

Glucocorticoids have an essential role in podocyte development and treatments for nephrotic 

syndrome [127]. The physiologic and pharmacologic actions of GCs are mediated by GRα 
[128–130]. Ligand-bound GR induces or represses the transcription of target genes through 

direct binding to DNA or association with other transcription factors. Glucocorticoids have 

been used as immunosuppressive drugs for many diseases by reducing inflammation [131]. 

It has been a long-established clinical practice to use GCs to treat kidney disease. Recent 

studies in multiple experimental models have begun to explore the direct and indirect effects 

of GCs in podocytes to better understand its renoprotective activity as well as its unwanted 

effects.

The remission rates of GC therapy of NS vary between patients, depending on age, initial 

renal function, and the pathological features of NS [70, 132]. Based on their steroid 

responsiveness, patients are classified as steroid-sensitive and steroid-resistant. Genetic 

mutations that affect glomerular podocyte function, such as NPHS1, NPHS2, and WT1 
[133–137], account for most steroid-resistant cases and patients with genetic forms of 

steroid-resistance are less responsive to immunotherapeutic drugs. The circulating factor, 

soluble urokinase receptor, has been considered a cause for the development of SRNS [138, 

139]. SRNS in adults has been defined as the persistence of symptoms after a 4-month trial 

of therapy and will inevitably progress to ESRD [140]. Alternative therapeutic strategies, 

including calcineurin inhibitor therapy, alkylating agents, and angiotensin-converting 

enzyme inhibitors, have been used to reduce proteinuria in steroid-resistant patients with 

FSGS [141].

Corticosteroid therapy has been used in childhood NS since the 1950s. GC therapy is more 

effective alone for children with MCD, but usually requires a combination with additional 

agents for adult NS [102, 142, 143] (Table 1). Children with NS are treated with oral 

prednisone for 2 to 3 months [81]. A combination of higher doses and increased duration of 

prednisone therapy can lead to enduring remission. Eighty percent of children with MCD 

respond to steroid therapy [143]. Thus, therapeutic decisions in children with SRNS are 

based on the underlying etiology [80, 144]. In contrast, adults with the NS usually undergo 
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renal biopsy prior to the initiation of therapy. The renal biopsy is essential to determine the 

nature and severity of the glomerular processes and to clarify the type and causes of the 

glomerular nephropathy [145]. Patients whose biopsies demonstrate more cellular lesions 

are associated with a poor therapeutic response [146, 147]. Approximately 35% percent of 

adult patients fail to respond to initial steroid treatment and do not attain remission [102, 

142]. A standard procedure for adults with FSGS is high dose glucocorticoid therapy for a 

significantly longer duration [148]. For patients who have a well-preserved renal function, 

initial high-dose prednisone is given for 3 to 4 months. However, complete remission rates 

for glucocorticoid therapy in adults with primary FSGS was quite disappointing [142, 148]. 

Consequently, there is less evidence to support steroid therapy for adaptive or genetic forms 

of adult FSGS patients. Thus, understanding the mechanism underlying steroid-resistance is 

an urgent matter for NS therapy.

5.1. The mechanisms underlying steroid-resistant nephrotic syndrome (SRNS)

Our current understanding of the mechanism underlying SRNS remains rather limited. This 

is in part due to the broad effects GCs have on multiple cell types through distinct 

mechanisms. Furthermore, the complexity and heterogeneity of SRNS make it difficult to 

establish correlations with genetic alterations. It is estimated that over 50 genes are 

associated with SRNS showing a different spectrum of phenotypes ranging from autosomal 

recessive to dominant and their onset from within 3 months after birth to late in adulthood 

[149]. Mutations in several early onset SRNS genes encode podocyte slit-diaphragm-

associated proteins, indicating an important role for podocytes integrity in the pathogenesis 

of SRNS. Notably, several of these genes including NPHS1 [130], NPHS2 [150], TRPC6 

[151] and CD2AP [152] are induced by Dex. However, Dex may have unwanted effects by 

inducing the expression of genes that promote further injury to glomeruli [153, 154]. 

Furthermore, mutations of ACTN4, which encodes a well-known cytoskeletal protein, are 

tightly associated with steroid-resistant FSGS. Our lab has recently reported that ACTN4 is 

a transcriptional coactivator for GR and FSGS-associated mutations are defective in GR-

mediated transcriptional regulation [153]. Moreover, earlier reports indicated ACTN4 
deficiency is found in multiple human primary glomerulopathies including sporadic FSGS, 

MCD, and IgA nephropathy [155–158]. It will be intriguing to learn whether other SRNS-

associated genes play a physiological role in GR signaling networks or are GR downstream 

targets.

6. The Role of Glucocorticoids in Podocytes

6.1. The direct effects of GCs on podocytes

The glucocorticoid receptor, as well as the major GR transcriptional cofactors, are expressed 

in human podocytes [18, 127, 130]. In order to determine whether podocytes are the key cell 

type that responds to glucocorticoid therapy, recent studies in murine and human podocytes 

have shown that Dex directly regulates podocyte morphology and function (Figure 5). 

Mathieson et al. first evaluated the direct effect of Dex on immortalized human podocytes 

(HPCs) in vitro. Dex treatment (100 nM ~ 10 µM) up-regulated NPHS1 expression, and 

down-regulated VEGF, as well as CDKN1A (cyclin kinase inhibitor p21) and inflammation-

associated cytokines, such as IL6. A proteomic analysis also identified proteins with known 
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roles in protecting podocytes from injury and found them to be up-regulated by Dex in 

cultured murine podocytes [154]. These up-regulated proteins include proteins involved in 

the orchestration of the actin cytoskeleton and stress responses. Using microarray analyses, 

our lab showed that Dex induces SERPINE1 (encoding Plasminogen Activator Inhibitor 

Type 1 or PAI-1) and CCL20 mRNAs [153]. PAI-1 is present in trace amounts in healthy 

kidneys but increases in a wide variety of both acute and chronic diseased kidneys. Reduced 

PAI-1 activity has been shown to be protective of albuminuria and glomerulosclerosis in 

experimental diabetes [159], while CCL20 is upregulated in patients with progressive IgA 

nephropathy [160]. Thus, Dex potentially exhibits unwanted effects by inducing genes 

including SERPINE1 and CCL20, which may cause damage to podocytes or glomeruli. Our 

studies also uncovered that GR crosstalks with a broad range of signaling pathways, 

primarily the NF-κB, STAT and TGFβ, but also the inflammatory response, cell migration, 

and angiogenesis [161]. These data are consistent with the mechanism underlying 

transactivation and transrepression by GCs (Figure 2). GCs are considered to have 

immunosuppressive and anti-inflammatory effects. It exerts the anti-proteinuria effect not 

only by suppressing but also through protecting podocyte integrity. Recently, RNA-seq 

analysis revealed that Dex-regulated genes are linked to cytoskeleton-related processes, 

podocyte differentiation, pro-inflammatory cytokines and growth factors [162]. Collectively, 

these results advance our knowledge of the molecular mechanisms by which GCs exert their 

therapeutic effects on podocytes and potential targets for unwanted effects.

6.2. GCs and podocyte injury

GCs have significant effects on podocytes. Podocytes are therefore an important therapeutic 

target for the treatment of NS caused by genetic mutations or environmental stress. Current 

evidence suggests that GCs protect podocytes from experimental injuries induced by PAN, 

Adriamycin (ADR), or protein-overload [163, 164]. In an experimental podocyte injury 

model, up-regulation of TRPC6 was shown to contribute to Angiotensin II (Ang II)-induced 

podocyte injury [165]. Notably, Dex treatment significantly reduced PAN-induced TRPC6 
expression in rat and cultured murine podocytes [166]. Furthermore, Agrawal et al. showed 

that GCs reduced PAN-induced proteinuria in rats, in part, by elevating the expression of 

glomerular synaptopodin and nephrin, and reduced COX-2 expression in rats [167]. Serum 

albumin overload in rats has also been reported to not only induce structural and 

pathological changes in podocytes [168, 169], but also increase pro-inflammatory genes 

COX-2, MCP-1, CXCL1, and the stress protein HSP25 expression in both rat glomeruli and 

cultured podocytes [170]. Similarly, GCs inhibit serum albumin-induced COX-2 expression 

via its transrepression activity on NF-κB. GCs are also implicated in activating glomerular 

antioxidant enzymes and protecting glomeruli from reactive oxygen species (ROS)-mediated 

injuries in PAN-induced nephrosis in rats [171]. Using zebrafish and cultured HPCs, a recent 

study demonstrated that GCs ameliorate PAN-induced podocyte injury by down-regulating 

caveolin-1 expression and overexpression of caveolin-1 impaired normal podocyte function 

[172]. In summary, podocyte injury can be relieved by GC treatment in animal models and 

cultured human podocytes, in part, through the ability of GCs to regulate its target gene 

expression.
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6.3. GCs and actin-filament stabilization

As mentioned earlier, the podocyte actin cytoskeleton is a key component of the complex 

architecture of the slit diaphragm [37, 40]. GCs protect and enhance recovery of cultured 

murine podocytes through its ability to stabilize actin filaments [128]. Dex treatment induces 

a significant increase in the activity of the actin-regulating GTPase RhoA and thereby 

increases total cellular polymerized actin, stabilizing actin filaments, and blocking PAN-

induced disruption of actin filaments [128, 173–175]. Additionally, a recent study in 

cultured podocytes indicated that Dex could protect podocytes from ADR-induced actin 

rearrangements [163]. These reports imply that the beneficial effects of GCs in treating renal 

disease, at least in part, results from enhancing the stability of podocyte actin filament.

6.4. GCs and podocyte apoptosis

One of the beneficial features of GC action is the prevention of podocyte apoptosis [164]. 

GCs inhibit apoptosis by restoring Bcl-2 expression, reducing p53 levels and inhibiting 

nuclear translocation of apoptosis-inducing factor (AIF) in PAN-treated cultured podocytes 

[164]. These activities are mediated, in part, by the blockade of PAN-mediated reduction of 

extracellular signal-regulated kinase (ERK) phosphorylation in response to Dex treatment 

[176]. PAN also inhibits PI3K/Akt signaling, and Dex treatment restores the PI3K/Akt 

signaling, which promotes the activity of anti-apoptotic proteins [152]. In another study, 

prednisone treatment was shown to reduce podocyte apoptosis. Dex also increased podocyte 

progenitors by activating ERK signaling in an FSGS mouse model induced by a cytotoxic 

anti-podocyte antibody [177]. Thus, GCs not only inhibit podocyte apoptosis but also 

increase the number of podocyte progenitors to prevent podocyte loss.

6.5. Animal knockout models

Renal epithelial cells include podocytes, parietal epithelial cells (PECs), and tubular cells. 

Using Pax8-Cre/GRf l/f l mice, Kuppe et al. generated kidney epithelial cells-specific Nr3c1 
(GR) knockout mice [173]. These animals show no apparent abnormality in kidney 

development, indicating that renal epithelial GR is dispensable for kidney development. In a 

nephrotoxic serum (NTS)-induced glomerulonephritis (GN) mouse model, podocytes are 

injured and PECs become strongly activated. High-doses of GCs significantly improved 

NTS-induced renal dysfunction. Remarkably, Pax8-Cre/GRf l/f l mice are resistant to NTS-

induced GN, showing no or little albuminuria or cellular crescent formation. This 

observation is accompanied by fewer activated PECs, suggesting that GR promotes NTS-

induced activation of PECs. This beneficial effect is also observed in NTS-treated mice 

exposed to mifepristone, a partial GR antagonist. Taken together, these data demonstrate a 

role of GR in the pathogenesis of NTS-induced GN, possibly due to a role of GR in 

activating PECs.

Using a podocin-Cre transgene, Zhou et al. have established podocyte-specific GR knockout 

(pGRKO) mice [174]. Consistent with renal epithelial-specific pGRKO mice, these animals 

showed no developmental phenotype and did not develop proteinuria under physiological 

condition. However, upon a challenge with by lipopolysaccharides (LPS) or NTS, pGRKO 

mice demonstrated severe proteinuria compared to control littermates. These observations 

Zhao et al. Page 9

Nucl Receptor Res. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



support a critical role of podocytes GR in the maintenance of kidney function in response to 

LPS- and NTS-induced glomerular injury.

The recent literature further demonstrates that podocyte Krüppel-Like Factor 15 (Klf15) 

[178] and serum- and glucocorticoid-inducible kinase 3 (SGK3) [179], both of which are 

Dex-inducible genes, play essential roles in GC-mediated beneficial effects in response to 

LPS- or PAN-induced podocyte injury. In summary, these studies demonstrate an essential 

role for podocyte GR in response to injury as well as in the therapeutic effects of GCs.

7. Conclusion

It has been a longstanding accepted protocol to use GCs to treat NS. GCs have beneficial 

effects on patients with NS due to their ability to stabilize actin-filaments and to protect 

podocytes from apoptosis. Nonetheless, steroid-resistance and unwanted side effects 

associated with GC treatments are unacceptable and are an issue that needs to be addressed. 

The fundamentals surrounding this central issue include: 1) the targets of the GCs in 

podocytes, 2) the complexity of the molecular mechanisms underlying pathogenesis of NS 

and how they respond to GCs differently, 3) the benefits of combination therapy and 4) the 

molecular mechanisms by which GCs regulate physiology of different cell types in the 

glomerulus.

With pGRKO mice and the newly developed NUTRAP (Nuclear tagging and Translating 

Ribosome Affinity Purification) mouse strain [180], identification of GR-regulated gene 

networks in podocytes has become possible. A better understanding of the function of 

podocyte GR target genes will undoubtedly provide insight into the pathogenesis and 

treatment of NS.

The Nephrotic Syndrome Study Network (NEPTUNE) is a collaborative consortium that 

aims to develop a translational research framework for NS. This database contains multiple 

molecular and clinical data sets associated with samples collected from adults and children 

with NS that include MCD, FSGS, and membranous nephropathy [181]. This provides an 

unmatched resource to understand the mechanisms and pathways involved in NS. Integration 

of the data sets across the genome-phenome continuum, quantitative histology, rigorous 

clinical phenotypes and clinical outcomes will enable clinicians and researchers to better 

study genetic mutations associated with human kidney diseases [182]. Notably, this clinical 

information including steroid sensitivity will provide a wealth of critical data that will allow 

basic scientists to formulate and test hypotheses and ultimately help develop effective 

treatments for NS patients.
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Figure 1. The GR family proteins
Human GR harbors three functional domains: N-terminal domain (NTD), middle DNA-

binding domain (DBD) and the C-terminal ligand-binding domain (LBD). The DBD and 

LBD are linked by the hinge region (HR). Alternative splicing of the NR3C1 (gene encoding 

GR) gene generates the isoforms GRα, GRβ, GRγ, GR-A, and GR-P, which differ in size 

and sequence of HR and/or LBD.
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Figure 2. Molecular mechanism of GR signaling pathways
Glucocorticoids diffuse across the cell membrane to the cytosol, where they bind GR. 

Glucocorticoid binding promotes dissociation of GR from chaperone proteins (HSPs) and 

subsequent nuclear translocation. Once in the nucleus, GR forms hetero- or homodimers and 

interacts with DNA to control gene transcription. Ligand-bound GR can lead to either 

activation or repression of gene transcription. TF: transcription factor; GRE, glucocorticoid 

response element; nGRE, negative glucocorticoid response element; TFRE: transcription 

factor response element.
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Figure 3. A diagram showing the structure and components of the renal glomerular filtration 
system, from the kidney to podocyte
The glomerular filtration barrier consists of fenestrated endothelial cells, glomerular base 

membrane, and podocytes.
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Figure 4. A schematic diagram depicting components of the podocyte slit diaphragm and foot 
processes and slit diaphragm proteins
Proteins that make up the SD between adjacent foot processes are depicted. Nephrin, 

NEPH1, NEPH2, P-cadherin, and FAT are membrane-spanning proteins that have large 

extracellular domains that are important for signaling events that determine the structural 

integrity of podocyte foot processes. These proteins include the slit diaphragm interact with 

intracellular adapter proteins, including CD2-AP, ZO-1, Synaptopodin, and ACTN4. The 

adapter proteins bind to filamentous actin (F-actin). The adhesion molecules dystroglycan 

and α3β1 integrin anchor the podocyte to the underlying glomerular basement membrane 

(GBM).
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Figure 5. The mechanism of the podocyte injury and the protective effected by glucocorticoids
Several causes are known to contribute to podocyte injury. After the injury, podocytes can 

undergo cytoskeleton derangement, effacement, detachment or apoptosis. The mechanisms 

by which glucocorticoids exerts its renoprotective effect involve several mechanisms that 

protect podocyte from injury.
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Table 1
The pathology and steroid responses for nephrotic syndrome

MCD, minimal change disease; FSGS, only include primary (idiopathic); MN, (primary) membranous 

nephropathy; IgAN, IgA nephropathy; IST, immunosuppressive therapy; Effective, means decreased 

proteinuria and/or slowing the progression of renal function.

Pathology Steroid response

MCD foot processes effacement Very good

FSGS foot processes effacement and perihilar or sclerosis Effective but may need other IST; relapse and resistant 
occurs

MN Subepithelial deposition of the basement membrane on the outer surface 
of the capillary wall.

Effective, in combination with other IST

IgAN IgA immune complex deposition in the mesangium Effective, but with significant adverse effects
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