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Abstract

The spreading of bacterial populations is central to processes in agriculture, the environ-

ment, and medicine. However, existing models of spreading typically focus on cells in

unconfined settings—despite the fact that many bacteria inhabit complex and crowded envi-

ronments, such as soils, sediments, and biological tissues/gels, in which solid obstacles

confine the cells and thereby strongly regulate population spreading. Here, we develop an

extended version of the classic Keller-Segel model of bacterial spreading via motility that

also incorporates cellular growth and division, and explicitly considers the influence of con-

finement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this

extended model demonstrate how confinement fundamentally alters the dynamics and mor-

phology of spreading bacterial populations, in good agreement with recent experimental

results. In particular, with increasing confinement, we find that cell-cell collisions increasingly

hinder the initial formation and the long-time propagation speed of chemotactic pulses.

Moreover, also with increasing confinement, we find that cellular growth and division plays

an increasingly dominant role in driving population spreading—eventually leading to a tran-

sition from chemotactic spreading to growth-driven spreading via a slower, jammed front.

This work thus provides a theoretical foundation for further investigations of the influence of

confinement on bacterial spreading. More broadly, these results help to provide a framework

to predict and control the dynamics of bacterial populations in complex and crowded

environments.

Author summary

The spreading of bacteria through their environments critically impacts our everyday

lives; it can be harmful, underlying the progression of infections and spoilage of foods, or

can be beneficial, enabling the delivery of therapeutics, sustaining plant growth, and reme-

diating polluted terrain. In all these cases, bacteria typically inhabit crowded environ-

ments, such as soils, sediments, and biological tissues/gels, in which solid obstacles

confine the cells and regulate their spreading. However, existing models of spreading typi-

cally focus on cells in unconfined settings, and thus are frequently not applicable to cells

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010063 May 9, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Amchin DB, Ott JA, Bhattacharjee T, Datta

SS (2022) Influence of confinement on the

spreading of bacterial populations. PLoS Comput

Biol 18(5): e1010063. https://doi.org/10.1371/

journal.pcbi.1010063

Editor: Dominik Wodarz, University of California

Irvine, UNITED STATES

Received: August 5, 2021

Accepted: March 28, 2022

Published: May 9, 2022

Copyright: © 2022 Amchin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This work was supported by National

Science Foundation (NSF) grants CBET-1941716

and DMR-2011750 (to S.S.D.), the Project X

Innovation fund (to S.S.D.), a distinguished

postdoctoral fellowship from the Andlinger Center

for Energy and the Environment at Princeton

University (to T.B.), the Eric and Wendy Schmidt

Transformative Technology Fund at Princeton (to

S.S.D.), the Princeton Catalysis Initiative (to S.S.

https://orcid.org/0000-0002-1557-0984
https://orcid.org/0000-0001-6832-0658
https://orcid.org/0000-0003-2400-1561
https://doi.org/10.1371/journal.pcbi.1010063
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010063&domain=pdf&date_stamp=2022-05-19
https://doi.org/10.1371/journal.pcbi.1010063
https://doi.org/10.1371/journal.pcbi.1010063
http://creativecommons.org/licenses/by/4.0/


in more complex environments. Here, we address this gap in knowledge by extending the

classic Keller-Segel model of bacterial spreading via motility to also incorporate cellular

growth and division, and explicitly consider the influence of confinement. Through

numerical simulations of this extended model, we show how confinement fundamentally

alters the dynamics and morphology of spreading bacterial populations—in particular,

driving a transition from chemotactic spreading of motile cells to growth-driven spread-

ing via a slower, jammed front. These results provide a foundation for further investiga-

tions of the influence of confinement on bacterial spreading, both by yielding testable

predictions for future experiments, and by providing guidelines to predict and control the

dynamics of bacterial populations in complex and crowded environments.

1 Introduction

The ability of bacterial populations to spread through their surroundings plays a pivotal role in

our everyday lives. It can be harmful, underlying the progression of infection in the body [1–8]

and the spoilage of foods [9, 10]. In other cases, it can be beneficial, enabling bacteria to deliver

drugs to hard-to-reach spots in the body [11, 12], move toward and protect plant roots in soil

[13–17], and degrade environmental contaminants [18–22]. Therefore, the development of

accurate models of spreading is critically important for the prediction and control of bacterial

populations in medicine, food, agriculture, and the environment.

One common way in which many bacteria spread is through active motility using, for

example, flagellar propulsion in liquids or pili-mediated propulsion on solids. Populations of

cells can thereby direct their spreading via chemotaxis: as the cells continually consume a sur-

rounding chemoattractant, such as a nutrient or oxygen, they collectively generate a local gra-

dient that they, in turn, bias their motion along. This biased motion leads to the spectacular

formation of a coherent pulse of cells that continually propagates, enabling populations to

escape from harmful conditions and colonize new terrain [23–28]. Building on the seminal

work of Keller and Segel in 1971, continuum-scale models have been developed that can suc-

cessfully capture the key features of this chemotactic spreading in bulk liquids [26, 27, 29–33];

hence, such models form a cornerstone of theoretical studies of emergent phenomena and col-

lective behavior in biology.

However, while such models and the lab studies that they describe typically focus on cells in

unconfined environments, bacteria often inhabit more crowded settings—such as porous gels

and tissues in the body, micro- and meso-porous foods, and soils, sediments, and subsurface

formations in the environment—in which a solid matrix obstructs and confines the motion of

cells. Depending on the degree of confinement, bacterial populations may still be able to

spread via chemotaxis [28, 34], but with two notable differences, as revealed by recent experi-

ments. First, as confinement increases, collisions with the solid matrix increasingly impede the

spreading of individual cells [35–38]. Second, also as confinement increases, the amount of

free space available for cells to move through decreases, promoting cell-cell collisions that fur-

ther impede cellular spreading [28]. Indeed, if the cells are sufficiently confined and their local

density is sufficiently high, cell-cell collisions dominate and they ultimately become jammed,

unable to self-propel at all [39, 40]—abolishing chemotaxis entirely. In this case, the popula-

tion instead spreads solely through cellular proliferation, referred hereafter as ‘growth’ for

brevity, in which metabolically-active cells grow, divide, and push each other to new locations

[41, 42]. Hence, confinement—which is an inherent feature of many bacterial habitats—is a

strong regulator of population spreading.
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Despite its widespread use, the classic Keller-Segel model of chemotactic spreading treats

cells as being non-contacting, does not explicitly incorporate confinement, and does not con-

sider population spreading via growth. Previous work took a useful first step toward extending

this model by modifying the underlying transport parameters to incorporate the influence of

cell-solid collisions [34]. Nevertheless, due to the limited understanding of single-cell motility

in confinement at the time, this approach necessarily relied on ad hoc approximations; more-

over, it did not incorporate cell-cell collisions/jamming or growth. While a previous study [43]

has addressed some aspects of the role of growth in a slow-moving front, it did not examine

the influence of confinement or crowding—which can influence the relative importance of

motility versus growth in driving spreading. As a result, there remains a need for models that

can more accurately describe the spreading of bacteria, both by motility and growth, in

crowded and highly-confining environments.

Here, we present an extended version of the classic Keller-Segel model that takes a first step

toward addressing these gaps in knowledge: it describes bacterial spreading via both motility

and growth, and explicitly incorporates the influence of confinement on spreading by consid-

ering both cell-solid and cell-cell collisions, motivated by recent experimental observations.

We identify key dimensionless parameters emerging from this extended model that describe

bacterial spreading. Furthermore, by numerically solving the model, we show how confine-

ment fundamentally alters the dynamics and morphology of spreading bacterial populations.

In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder

the initial formation and the long-time propagation speed of chemotactic pulses. Moreover,

also with increasing confinement, growth plays an increasingly dominant role in driving popu-

lation spreading compared to cellular motility—eventually leading to a transition from chemo-

tactic spreading to growth-driven spreading via a slower, jammed front. Thus, our work

provides a foundation for future investigations of the influence of confinement, and yields

quantitative principles that could guide the prediction and control of bacterial spreading in

crowded and complex environments.

2 Methods

2.1 Classic Keller-Segel model, also incorporating growth

Two forms of the Keller-Segel model have been explored in the prior literature to describe two

distinct biophysical processes: one describes cellular aggregation and pattern formation in

response to chemoattractant produced by the cells themselves [44–46], while the other

describes cellular spreading in response to an exogenous chemoattractant that is not produced,

but just consumed, by the cells [26, 27, 29–33]. Here, we focus on the latter case. Before consid-

ering confinement, we first describe how chemotactic spreading is typically modeled using this

form of the classic one-dimensional Keller-Segel model—which does not incorporate the

influences of growth and confinement, but can successfully capture the key features of experi-

ments on dilute populations of bacteria in bulk liquid [25–27, 29–34]. We also introduce

growth into this model.

To directly connect the model to many experiments [24, 26, 28, 34], we consider a sole

nutrient that also acts as the chemoattractant—as is conventionally done [24, 29, 32]—repre-

sented by the continuum variable c(x, t), where x is the position coordinate and t is time. The

number density of bacteria, in turn, is given by the continuum variable b(x, t). Furthermore,

given the experimental conditions, we assume that the cells do not excrete their own chemoat-

tractant or other diffusible signals, as is sometimes the case in low-nutrient conditions and for

specific strains. Recent extensions of this model have also considered the case in which
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nutrient and attractant are separate chemical species, which leads to fundamentally different

behavior that would be interesting to explore using our framework in future work [27, 47].

As the nutrient diffuses through space with thermal diffusivity Dc, it is consumed by the

cells at a rate bκg(c); here, κ is the maximum consumption rate per cell and the Monod func-

tion g(c)� c/(c + cchar), with the characteristic concentration cchar, quantifies the reduction in

consumption rate when nutrient is sparse [27, 34, 48–52]. Therefore, the nutrient dynamics

are given by

@c
@t
¼ Dcr

2c � bkgðcÞ: ð1Þ

The bacterial dynamics have two contributions: a motility-driven flux~Jm and cellular prolif-

eration. The flux arises from the combination of the undirected spreading of cells, a diffusive

process with an active diffusivity Db0 [53], and directed chemotaxis with a drift velocity

~vc � w0rf ðcÞ that quantifies the ability of the bacteria to logarithmically respond to the local

nutrient gradient [29–31]. The well-established function f(c)� log[(1 + c/c−)/(1 + c/c+)] quan-

tifies the ability of the cells to sense nutrient with characteristic bounds c− and c+ [26, 27, 54–

62], while the chemotactic coefficient χ0 quantifies the ability of the cells to bias their motion

in response to a sensed nutrient gradient. Therefore, the motility-driven flux

~Jm ¼ � Db0rbþ b~vc. Proliferation, on the other hand, is given by bγg(c), where γ is the maxi-

mal growth rate per cell and g(c) reflects the reduction in growth rate when nutrient is sparse

—circumventing the need to introduce an ad hoc “carrying capacity” of a logistically-growing

population, as is sometimes done. However, as we detail further in §2.3, the added feature of

confinement does introduce a maximum cell density at which purely growth-driven spreading

dominates. Here, in the absence of confinement, the bacterial dynamics are therefore given by

@b
@t
¼ Db0r

2b � r � ðbvcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� r�~J m

þ bggðcÞ:
ð2Þ

Together, Eqs 1 and 2 represent the classic Keller-Segel model that describes the coupled

dynamics of nutrient and bacteria, also including the added influence of cellular growth. In

particular, they successfully capture the key features of chemotactic spreading in unconfined

liquid, in which cells collectively generate a local gradient of nutrient that they in turn bias

their motion along—leading to the formation of a coherent pulse of bacteria that continually

propagates, sustained by its continued consumption of the surrounding attractant [23–26].

2.2 Characteristic dimensionless parameters

Non-dimensionalizing Eqs 1 and 2 yields useful dimensionless parameters for characterizing

population spreading. We rescale {c, b, t, x} by the characteristic quantities {c1, b0, tc,0, z},

where c1 is the initial nutrient concentration taken to be constant everywhere, b0 is the maxi-

mal initial cell density, tc,0� c1/(b0κ) is a characteristic time scale of nutrient consumption,

and z0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
Db0tc;0

p
is the characteristic extent of cellular diffusion over the duration tc,0. This

process yields the non-dimensional equations

@~c
@~t
¼ d0

~r2~c � ~b~g ð3Þ

@~b
@~t
¼ ~r2~b � a0

~r � ð~b ~r~f Þ þ b0
~b~g ; ð4Þ
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where the tildes indicate non-dimensionalized variables. Three dimensionless parameters

emerge:

• The diffusion parameter δ0� Dc/Db0 compares the thermal diffusion of nutrient to the active

diffusion of bacteria. When δ0� 1, variations in nutrient are localized to the leading edge of

the bacterial population, whereas when δ0� 1, nutrient levels vary over large spatial extents.

• The directedness parameter α0� χ0/Db0 compares the influence of chemotaxis to active dif-

fusion in driving cellular spreading. When α0� 1, diffusion dominates and cells do not

appreciably direct their motion in response to a nutrient gradient, whereas when α0� 1,

motile cells strongly direct their motion in response to a gradient.

• The yield parameter β0� γ/(b0κ/c1) compares the rates of cell growth and nutrient con-

sumption, γ and t� 1
c;0 , respectively. It therefore quantifies the yield of new cells produced as a

population consumes nutrient. When β0� 1, nutrient consumption is much faster than

proliferation, whereas when β0� 1, many new cells are produced in the time required to

consume the available nutrient.

The quantity Λ0� α0/(β0δ0) = γ−1 � χ0/(Dctc,0) therefore characterizes the interplay between

chemotatic and growth-driven spreading of bacterial populations. In particular, [χ0/(Dctc,0)]−1

is a characteristic time scale needed to spread via chemotaxis over the nutrient diffusion length
ffiffiffiffiffiffiffiffiffiffi
Dctc;0

p
, while γ−1 is the time scale over which cells grow. Previous studies in bulk liquid

focused solely on chemotactic spreading, which is characterized by the limit Λ0� 1 [25, 26,

29, 31, 33]. Other studies of non-chemotactic cells focused solely on growth-driven spreading,

characterized by the opposite limit Λ0 = 0 [41, 42, 63–66]. However, experiments performed in

semi-solid agar [34] as well as in defined packings of particles [28] indicate that confinement

in such crowded media introduces new cell-cell and cell-medium interactions that are not

incorporated in the classic Keller-Segel model. Hence, in this paper, we describe a first step

toward incorporating these complexities, which not only tune Λ0 over a broad range, but also

fundamentally alter spreading dynamics—as described hereafter.

2.3 Keller-Segel model incorporating confinement

As a model system, we consider bacterial populations confined in media with close-packed,

rigid, and immovable obstacles surrounding a free space that is sufficiently large for cells

to move through. This form of confinement alters bacterial spreading dynamics in three

ways:

(i). Collisions with the surroundings impede cellular spreading [35–38], reducing the trans-

port parameters Db0 and χ0, as quantified in recent experiments in 3D porous media [28,

38] as well as in semi-solid agar [34];

(ii). The presence of surrounding obstacles reduces the free space available to cells to move

through, increasing cellular crowding and promoting cell-cell collisions that further

truncate the motility parameters, observed experimentally using in situ microscopy [28];

(iii). When the number density of cells is sufficiently high, this reduction in free space causes

the cells to be jammed; hence, they are able to spread only through proliferation, which

pushes cells outward, as quantified in experiments using single cell visualization [39, 40].

Notably, (ii)-(iii) are absent from the classic Keller-Segel model, which treats cells as non-

contacting, and require modifications beyond simply changing the transport parameters Db0

and χ0.
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(i). Impeded spreading of isolated cells. Bacterial spreading is typically modeled as a random

walk with directed steps of characteristic length ℓ and characteristic duration τ that are

punctuated by reorientation events [53]. Consequently, both transport parameters Db0,

which describes the unbiased component of the random walk, and χ0, which describes

the biased component, are set by� ℓ2/τ. In bulk liquid, the directed steps are known as

runs, which extend along straight-line paths ℓ� 40 μm long, punctuated by rapid tum-
bles. In tight confinement, however, a cell collides with an obstacle and becomes tran-

siently trapped well before it completes such a run. Therefore, as established in recent

experiments [37, 38], runs are truncated by collisions with surrounding obstacles, and

the directed steps of the random walk are instead set by the geometry of the available

free space; thus, for isolated cells, ℓ� ℓc, the mean length of straight line chords [67] that

fit in the free space [37]. Moreover, because the trapping process induced by collisions

with obstacles occurs over a duration τt that is longer than that of the truncated runs,

τ� τt. As a result, for cells confined in tight media, both transport parameters Db0 and

χ0 are instead/ ‘
2

c=tt—and because increasing confinement both decreases ℓc and

increases τt [37], it concomitantly decreases both Db0 and χ0, as confirmed experimen-

tally [28]. Within the context of prior work investigating diffusion in porous media [68],

we note that while the volume fraction of free space (porosity) ϕ is known to influence

diffusion, it alone does not determine the diffusion coefficient because the geometry of

the free space plays a key role as well. Thus, in our model, ϕ influences cellular transport

(active diffusion and chemotaxis) indirectly through its effect on the chord length ℓc,

which characterizes the length scale associated with straight paths that fit within the free

space—and therefore determines the length scale over which cells can move in a directed

manner.

(ii). Crowding-induced collisions between cells. Confinement also reduces the free space avail-

able to cells. Our definition of the number density of bacteria b quantifies the number of

cells per unit total volume of space, which includes the volume of surrounding obstacles;

hence, the local density of cells is given by b/ϕ, where ϕ< 1 is the volume fraction of free

space that is reduced by the presence of obstacles. This increase in the local density of

cells increases the propensity of neighboring cells to collide as they move, further trun-

cating ℓ. Single-cell imaging in a porous medium confirms this expectation [28]: when

the available free space is so tight that multiple cells cannot fit side-by-side, cells are nec-

essarily restricted to end-on collisions between each other as they move, also inducing

reorientations akin to those induced by collisions with surrounding obstacles. Therefore,

as a first step toward incorporating this behavior into the model described in §2.1, we

adopt a mean-field treatment of cell-cell interactions in which cells truncate each other’s

directed steps in a density dependent manner, inducing transient trapping events again

of duration τt akin to collisions with obstacles.

In particular, wherever the local density b/ϕ is larger than a threshold value b�/ϕ such

that the mean separation between the surfaces of neighboring cells, ℓcell, decreases below

the mean chord length ℓc, we expect that cell-cell collisions truncate ℓ from ℓc to ℓcell

(schematized in the middle inset of Fig 1). Because the diffusion and chemotactic coeffi-

cients both vary as/ ℓ2, we therefore multiply both density-independent parameters Db0

and χ0 that characterize isolated cells by the density-dependent correction factor

μcrowd(b) = (ℓcell/ℓc)
2, where the cell separation is approximated as the mean value ℓcell�

(3ϕ/4πb)1/3 − d; here, d� 1 μm is the characteristic size of a cell, and therefore b� � 3ϕ/

[4π(ℓc + d)3]. As b increases further, it eventually reaches the jamming density bjammed�

3ϕ/(4πd3) at which cells cannot move at all, and ℓcell = 0; in this case, both transport
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parameters are zero, and the bacterial population can only spread via growth. Therefore,

in Eq 2, Db0 and χ0 are replaced by the corrected values

DbðbÞ ¼ Db0 � mcrowdðbÞ ð5Þ

wðbÞ ¼ w0 � mcrowdðbÞ ð6Þ

where the crowding correction factor μcrowd(b) is piecewise defined as

mcrowdðbÞ ¼

1 when b � b�

3�

4pb

� �1=3

� d

‘c

2

6
6
6
4

3

7
7
7
5

2

when b� < b < bjammed

0 when b � bjammed

8
>>>>>>>>>><

>>>>>>>>>>:

ð7Þ

Fig 1. Summary of the cell density-dependent crowding correction μcrowd, which we use in the model to

incorporate the influence of confinement on cell-cell collisions. In particular, the cellular transport parameters are

multiplied by μcrowd, this case shown for the prototypical case of intermediate confinement. (Left) At low densities,

spreading of cells (green) is impeded only by collisions with surrounding solid obstacles (grey), not with neighboring

cells, so μcrowd = 1. This impeded spreading is quantified by the transport parameters Db0 and χ0, whose values are

regulated by the characteristic chord length ℓc characterizing the amount of free space between obstacles. (Middle)

When the local density of cells is so large that the characteristic separation between neighboring cells ℓcell is less than

the characteristic chord length ℓc, cell-cell collisions further truncate the transport parameters. This effect is quantified

by μcrowd < 1. (Right) At the maximal density b = bjammed, the cells are jammed and have no free space to move.

Therefore, μcrowd = 0, and the population spreads solely through growth and division of cells. Note that our definition

of the number density of bacteria b is as the number of cells per unit total volume of space, which includes the volume

of surrounding obstacles.

https://doi.org/10.1371/journal.pcbi.1010063.g001
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as shown in Fig 1; the limits b� and bjammed are indicated by the left and right vertical

dashed lines, respectively. This way of correcting the diffusive term in Eq 2 represents a

simplifying approximation; strictly speaking, one cannot simply commute the diver-

gence operator with the diffusion coefficient, given that Db depends on b(x, t) via the

crowding correction factor. However, as we describe further in S1 Text, this simplifica-

tion does not appreciably influence our results and conclusions. We term cases with low

cell density (b< b�) the obstacle collisions limited regime described in (i) above; cases

with intermediate cell density (b� � b< bjammed) the cell collisions limited regime; and

cases with the highest possible density of cells (b = bjammed) the jammed growth spreading
regime described in (iii) below. Because we take the cells and surrounding obstacles to

be incompressible, b cannot exceed bjammed.

(iii). Jammed growth spreading. When they are jammed, cells form a contact network that

holds them in place and prevents motion by active propulsion. However, these cells

can continue to proliferate if supplied with nutrient; based on the experiments in [28],

we assume that the maximal growth rate γ is not affected by confinement. Thus, in this

case, their high body stiffness enables growing cells to push outward on their neigh-

bors; the bacterial population can then be treated as an incompressible “fluid” in which

the added stress due to cellular growth relaxes rapidly via spreading, as is convention-

ally done in models of growing immotile populations [41, 69–71] and supported by

experiments [39, 40]. Because we treat the obstacles comprising the medium as being

rigid and immovable, and the interstitial free space large enough for cells to move

through without being deformed, this process leads to jammed growth spreading. We

incorporate this behavior into the Keller-Segel model following previous work model-

ing the growth of immotile biofilms [42]. In particular, at each time step δt, we first

identify the smallest xi at which b(xi, t + δt) exceeds bjammed; we then set b(xi, t + δt) =

bjammed and instead relocate the newly-formed cells δb(xi)� b(xi, t + δt) − bjammed to

the nearest location xj > xi at which b(xj, t) < bjammed. We then repeat this process for

all successive positions x> xi such that at time t + δt, the upper limit on cell density

bjammed is globally satisfied.

2.4 Implementation of numerical simulations

To explore the influence of confinement, we perform numerical simulations of Eqs 1 and 2,

modified as described in §2.3. Motivated by its simplicity and amenability to the addition of

our discrete jammed expansion rule, we implement a forward Euler method to solve these

equations; specifically, we discretize the spatial coordinate x using a forward difference form

for first derivatives and a central difference form for second derivatives. The update equations

for nutrient concentration and bacterial cell density, corresponding to Eqs 1 and 2 respectively,

are then:

cnþ1
i ¼ cn

i þ dt
Dc

dx2
ðcn

i� 1
� 2cn

i þ cn
iþ1
Þ � kbn

i gðc
n
i Þ

� �

bnþ1
i ¼ bn

i þ dt
Db0mðbn

i Þ

dx2
ðbn

i� 1
� 2bn

i þ bn
iþ1
Þ �

1

dx
ðbn

iþ1
vn

ciþ1
� bn

i v
n
ci
Þ þ gbn

i gðc
n
i Þ

� �

where time points advance in discrete steps of δt and are indexed by n, and spatial positions

are separated by discrete steps of δx and are indexed by i. The spatial resolution δx is 10 μm

and the time step δt is 0.01 s; as shown in S3 Fig, these choices are sufficiently fine so that our

results are not sensitive to the choice of resolution. We note that implicit methods (such as
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backwards Euler) or semi-implicit methods would likely improve the efficiency of the numeri-

cal simulations—an important consideration for those seeking to extend our work e.g., to

higher spatial dimensions.

To connect our results to an experimental system, we use input parameters and initial con-

ditions that mimic the experiments described in [28], which explored the chemotactic spread-

ing of E. coli populations in 3D porous media composed of densely-packed hydrogel particles.

We use a Cartesian rectilinear coordinate system extending to a maximum distance of

1.75 × 104 μm, matching the length of the experimental system. Because our system is one-

dimensional, vectors (e.g. fluxes) oriented in the + or −x directions are represented by positive

or negative quantities, respectively, with the vector notation suppressed. Both boundaries have

no flux conditions. In these experiments, L-serine was considered to act as the primary nutri-

ent and chemoattractant for cells. Because the hydrogel particles are polymer networks swollen

in liquid, they are permeable to the nutrient, similar to many other naturally-occurring media

such as biological gels and microporous clays/soils. Therefore, we take the nutrient diffusivity

Dc to be equal to its value in bulk liquid, 800 μm2 s−1 [72], and the nutrient is initially saturated

at c1 = 10 mM throughout the simulation domain. For all the simulations, we use direct mea-

surements of individual cells [27, 28, 34] to choose fixed values of the cellular parameters c−,

c+, and γ given by 1 μM, 30 μM, and 0.69 h−1, respectively; furthermore, as detailed in S2 Text,

we use the data from experiments on spreading populations [28] to directly determine cchar

and κ, given by 10 μM and 1.3 × 10−12 mM (cells/mL)−1 s−1, respectively.

Each experiment used a long 3D-printed cylinder of close-packed cells not containing

hydrogel particles (ϕ = 1) as the initial inoculum, embedded within and surrounded by the 3D

porous medium. The cells then continued to spread radially outward through the pore space.

Thus, as the initial condition in all the simulations, we consider a Gaussian profile of b(x, t = 0)

centered at x = 0 with a full width at half maximum of 100 μm and a peak number density of

b0 = bmax� 3/(4πd3) = 2.4 × 1011 cells/mL, where bmax is defined as the number density of

close-packed cells and is therefore the maximum possible value of b0—with the exception of

the lower-density simulations that employ a lower value of b0, as detailed further in §3.1.3.

Hence, for all simulations except those in §3.1.3, the initial inoculum has a maximal cell den-

sity bmax > bjammed, where bjammed instead corresponds to the maximal possible density of cells

in confinement (ϕ< 1). For simplicity, wherever b(x, t = 0)> bjammed, we still apply the

jammed growth spreading rule described in §2.3(iii), but with bjammed replaced by b(x, t = 0).

The experiments tuned cellular confinement by using porous media with varying porosities

ϕ and mean chord lengths ℓc [37], resulting in varying values of the transport parameters Db0

and χ0 [28, 38]. In particular, as determined from the experiments, Db0 and χ0 both decrease

with increasing confinement as cellular mobility is increasingly hindered. Hence, in our simu-

lations, we tune confinement by varying these parameters, using the values of Db0 obtained

from single-cell imaging [28] and extracting χ0 from experimental measurements of popula-

tion spreading, as detailed in S2 Text. The confinement-dependent parameters are summa-

rized in Table 1.

The corresponding dimensionless parameters characterizing the Keller-Segel model (§2.2)

are also summarized in Table 1:

• The diffusion parameter δ0� Dc/Db0 increases with confinement as cellular mobility is

increasingly hindered. For all conditions tested here, however, δ0 is always much greater

than one, reflecting fast diffusion of nutrient; thus, we expect that nutrient levels vary over

large spatial extents, as confirmed in the simulations that follow.

• For all conditions tested here, the directedness parameter α0� χ0/Db0 is always much greater

than one, indicating that motile cells strongly direct their motion in response to the nutrient
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gradient established through consumption. Intriguingly, the α0 determined from the experi-

mental parameters decreases with increasing confinement, indicating that confinement

more strongly hinders directed versus undirected motion—consistent with previous reports

that confinement fundamentally alters the mechanism by which cells perform chemotaxis

[28]. Further investigating the determinants of α0 in confinement will be a useful direction

for future experiments.

• Because the maximal growth rate is not affected by confinement [28], the yield parameter

β0� γ/(b0κ/c1) is independent of confinement for all of our simulations. For all simulations

employing b0 = bmax, β0 is much less than one, reflecting the fact that nutrient consumption

by a maximally dense population is faster than cellular proliferation; conversely, for the

lower-density simulations presented in Figs 4 and 5, β0 is much greater than one, indicating

the dominant role of proliferation in this case.

Therefore, for our simulations testing the influence of confinement on bacterial spreading,

the parameter Λ0� α0/(β0δ0) varies over a broad range, decreasing over nearly three orders of

magnitude as confinement increases. We note that because the different parameters δ0, α0, β0

do not incorporate the influence of density-dependent cellular crowding, we do not expect this

transition to occur precisely at Λ0� 1. We therefore define a new version of this parameter, Λ
� α/(βδ), where now d � Dc=Dbð

�bÞ, a � wð�bÞ=Dbð
�bÞ ¼ a0, and b � g=ð�bk=c1Þ (Table 1); �b is

defined as the long-time mean cell density within each propagating pulse, and is directly calcu-

lated from each simulation as described further below. Thus, the newly-defined Λ explicitly

incorporates density-dependent crowding. As summarized in Table 1, our simulations explore

the transition from weak confinement (Λ = 0.95) to strong confinement (Λ = 3.6 × 10−4); con-

sistent with our expectation, this range reflects a transition from chemotactic to growth-driven

spreading, as demonstrated directly by the simulations presented below.

Table 1. Parameters used to describe bacteria in weak, intermediate, and strong confinement, as defined in the text. All parameters are defined in the text and their

values are obtained from experiments as detailed in §2.4 and S2 Text, with the exception of �b, which is determined directly from the simulation. We note that the values of

α0 are taken directly from the experiments in [28], which indicate that this parameter surprisingly decreases with increasing confinement. Thus, while we expect that both

transport parameters χ0 and Db0 are tuned by confinement in a similar way, with both proportional to �l2
c=tt, it appears from the experiments that the ratio of the propor-

tionality constants for each is also confinement-dependent. That is, experiments suggest that confinement more strongly hinders directed (quantified by χ0) versus undi-

rected (quantified by Db0) spreading. While more work needs to be done to fully unravel why this is the case, in absence of a theoretical model for the confinement-

dependence of α0, we directly use the experimental values in our work. Furthermore, in the absence of any experimental data assessing the influence of cell density on α,

we make the simplest possible assumption that cell-cell collisions hinder both χ0 and Db0 through the same crowding correction factor μcrowd(b), which quantifies the

reduction in free space available to the cells. Thus, we take α = α0. Future experiments could further probe this density dependence and motivate the introduction of addi-

tional extensions to our model.

Parameter Weak confinement Intermediate confinement Strong confinement

ϕ 0.36 0.17 0.04

�lc (μm) 4.6 3.1 2.4

Db0 (μm2s−1) 2.3 0.93 0.42

χ0 (μm2s−1) 3700 94 16

�b=bmax 0.10 0.027 0.026

δ0� Dc/Db0 340 860 1900

d � Dc=Dbð
�bÞ 2.8 × 104 1.2 × 104 4.3 × 105

α = α0� χ0/Db0 1600 100 38

β0� γ/(b0κ/c1) 0.0063 0.0063 (b0 = bmax), 630 (b0 = 10−5bmax) 0.0063

b � g=ð�bk=c1Þ 0.06 0.23 0.25

Λ0� α0/(β0δ0) 750 18 (b0 = bmax), 1.8 × 10−4 (b0 = 10−5bmax) 1.3

Λ� α/(βδ) 0.95 0.037 3.6 × 10−4

https://doi.org/10.1371/journal.pcbi.1010063.t001
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3 Results

3.1 Intermediate confinement

As a prototypical starting case, we first examine bacterial spreading from a dense-packed

Gaussian-shaped inoculum under intermediate confinement (Λ = 0.037), shown by the initial

profile for t = 0 in Fig 2A. The simulation incorporates both motility and growth. The cells rap-

idly deplete nutrient locally via consumption (S1 Video) over a time scale� c1/(κbmax)� 30

s, establishing a steep nutrient gradient at the leading edge of the population. This gradient

extends over a large distance ahead of the population (Fig 2B and inset)—as expected from our

calculation of the diffusion parameter δ0� 1. Cells at this leading edge then continue to grow

outward as a jammed front with b = bjammed, shown by the flat region at t = 1.8 h in Fig 2A.

Eventually, a lower-density, coherent pulse of cells detaches from this jammed region (t = 3.7

h), continues to propagate the nutrient gradient along with it, and thus continues to spread

outward (t> 3.7 h), as shown by the outward-moving peak in Fig 2A.

Indeed, this pulse spans the extent over which nutrient varies between the upper and lower

bounds of sensing, c+ and c− (pluses and diamonds shown for the t = 11 h profiles, respec-

tively)—reflecting the central role of chemotaxis in driving its propagation. The forward face

of the pulse is also exposed to sufficient nutrient for cells to proliferate (with c� cchar, the char-

acteristic Monod concentration, shown by the triangles on the t = 11 h profiles)—suggesting

that cellular growth contributes to population spreading over long time scales, as well. The

overall width of this pulse, W� 200 μm, is set by the length scale over which nutrient is

depleted by consumption; at its rear, the nutrient concentration and nutrient gradient are both

low, causing both growth and chemotaxis to be hindered. As a result, cells are shed at a near-

constant density btrailing� 0.02b/bmax (see 0.5 mm < x< 1.2 mm in Fig 2A). This coherent

pulse of cells continues to move apparently without an appreciable change in shape, as sug-

gested by the inset to Fig 2A, at a speed vpulse� 0.15 mm/h. However, given the limited dura-

tion of the simulation, our results do not enable us to definitively conclude that the simulated

pulse develops into a traveling wave with an unchanging shape; building on our simulation to

explore longer length and time scales to test this possibility will be a useful direction for future

work. The nutrient profile concomitantly propagates with the pulse, as shown in Fig 2B. Nota-

bly, similar spreading behavior was observed in experiments [28]; as shown in S4 Fig, in both

simulation and experiment, we observe similarly-shaped bacterial pulses with comparable

widths, trailing densities (compared to the peak densities), and final positions at t� 11 h.

3.1.1 Initial dynamics. To further characterize these spreading dynamics, we track the

position xl of the leading edge of the population over time t, as shown in Fig 3A. Specifically,

motivated by a similar definition used in prior experiments [28], we define xl as the position at

which b falls below the threshold value b/bmax = 10−4. Initially, population spreading is hin-

dered (xl� tν with ν� 1 e.g., red point), but as the coherent pulse forms and propagates, it

eventually approaches constant speed spreading (ν� 1 e.g., blue point). A similar transition

from hindered to constant speed spreading was observed in experiments [28], although the

underlying reason has thus far remained unclear. Here, we use our model to clarify the origin

of this transition.

In particular, we examine the two different contributions to the motility-driven flux of cells

—active diffusion and chemotaxis—for the population at early and late times (Fig 3B and 3C,

respectively); for simplicity, we do not consider the added influence of growth, which only

plays an appreciable role for long times t� γ−1, until the next subsection. The magnitude of

the active diffusive flux −Db(b)rb = −Db,0μcrowd(b)rb as it varies across the population is

shown by the dashed lines in the bottom panels of Fig 3B and 3C, while the magnitude of the

chemotactic flux bvc = bχ0μcrowd(b)rf(c) is shown by the dash-dotted lines instead. At early
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times, the gradient in cell density is steep, as set by the sharp initial profile of cells and the lim-

ited extent of subsequent population spreading (Fig 3B, top). As a result, spreading is primarily

due to active diffusion, which dominates over chemotaxis, as shown in the lower panel of Fig

3B. By contrast, as cells spread outward, the gradient in cell density becomes less steep. As a

result, at late times, spreading is primarily due to chemotaxis, which dominates over active dif-

fusion, as shown in the lower panel of Fig 3C. This behavior is also reflected by the bottom set

of circles and squares in Fig 3D, which represent the maximal diffusive and chemotactic fluxes

across the population (exemplified by the circles and squares in Fig 3B and 3C) over time. Ini-

tially, the diffusive flux dominates over the chemotactic flux; however, as the population con-

tinues to spread and consume nutrient, the diffusive flux decreases and the chemotactic flux

increases, with both eventually approaching constant values at long times.

Another key factor that hinders the initial population spreading is cellular crowding. To

assess the influence of crowding, we compare the maximal diffusive and chemotactic fluxes

across the population, but with or without the crowding correction factor μcrowd(b) (corre-

sponding to the “with crowding” and “no crowding” datasets, respectively, in Fig 3D). In both

cases, the active diffusive flux dominates over the chemotactic flux initially, but chemotaxis

eventually dominates as the population continues to spread and establish the nutrient gradient

(e.g. top set of squares for t� 0.1 h). The spreading of the population remains hindered, how-

ever; due to the high initial density of cells, crowding continues to limit the chemotactic flux of

Fig 2. Results from a numerical simulation of population spreading in intermediate confinement. The simulation

incorporates both motility and growth. (A) shows the dynamics of the cells while (B) shows the corresponding

dynamics of the nutrient, quantified by the normalized density b/bmax and concentration c/c1, respectively. As noted

in §2.4, the initial inoculum is composed purely of dense-packed cells with liquid between them (ϕ = 1), with the entire

inoculum surrounded by the obstacle-filled medium (ϕ = 0.17); hence, the initial inoculum has b = bmax, which is

larger than bjammed, the jamming density of cells in confinement. Different colors indicate different times as listed. The

dense inoculum initially centered about the origin spreads outward, first as a jammed front (jamming density shown

by the dashed grey line in A), then detaching as a coherent lower-density pulse that propagates continually via

chemotaxis. At long times, this pulse appears to approach an unchanging shape and speed, as suggested by the collapse

of the profiles in the upper inset (showing the same data, but shifted horizontally to center the peaks). The cellular

dynamics arise in response to consumption of the nutrient, which is initially saturated everywhere, but is rapidly

depleted and forms a gradient that is propagated with the pulse (inset shows the same data but with both axes zoomed

out). In B, the three dashed grey lines show the characteristic concentrations of sensing c+ and c− and the characteristic

Monod concentration cchar; the corresponding positions are shown by the pluses, diamonds, and triangles,

respectively, in A-B. An animated form of this Figure is shown in S1 Video, and a sample MATLAB code to implement

this simulation is provided in S1 File.

https://doi.org/10.1371/journal.pcbi.1010063.g002
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cells, only enabling a small fraction at the leading edge of the population to spread outward—

as exemplified by the first two profiles in Fig 2A, the sharp decrease in both diffusive and che-

motactic fluxes for x< 0.5 mm in Fig 3B, and the large difference between the two sets of

squares in Fig 3D. Eventually, as this leading edge continues to spread, crowding in the for-

ward face of the population becomes sufficiently low, enabling the coherent pulse of cells to

detach from the population—as exemplified by the t = 3.7 h profile in Fig 2A and the “kink” in

the top set of squares at t� 3 h in Fig 3D. Hindrance due to crowding continues to decrease

over time, as shown by the diminishing difference between the two sets of squares in Fig 3D

for t> 3 h, and eventually approaches a constant value.

Fig 3. Population dynamics, morphology, and fluxes driving spreading for the simulation of bacteria in

intermediate confinement (Fig 2). The simulation incorporates both motility and growth. (A) Increase in the position

of the leading edge of the population is initially hindered (red), but approaches constant-speed motion indicated by the

triangle at long times (blue). The corresponding instantaneous speed vpulse is shown in the inset. (B) At a short time

corresponding to the red point in A, the population expands as a jammed front (top panel). Lower panel shows that

cellular growth and diffusion are the primary contributors to the expansion of this front. (C) At a long time

corresponding to the blue point in A, the population spreads as a coherent pulse (top panel). Lower panel shows that

chemotaxis is the primary contributor to pulse propagation. Positions of the maximal diffusive and chemotactic fluxes

are indicated by the circles and squares, respectively, in B-C; note the slight upward kink in the diffusive flux in C

indicated by the circle. (D) Variation of the maximal diffusive and chemotactic fluxes, indicated by the circles and

squares in B-C, over time. The initial population dynamics are dominated by cellular diffusion (circles), while at longer

times chemotaxis dominates (squares). To illustrate the role played by cellular collisions, we show the same data with

and without the crowding correction μcrowd in the upper (grey) and lower (black) datasets; crowding hinders

population spreading, as shown by the vertical offset in the curves, but plays a less appreciable role at long times, as

shown by the curves approaching each other.

https://doi.org/10.1371/journal.pcbi.1010063.g003
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Hence, population spreading is initially slow due to the time required for cellular consump-

tion to establish a sufficiently strong nutrient gradient to drive chemotactic spreading. Cellular

crowding near the initial inoculum then continues to hinder spreading until enough of the for-

ward face of the population has spread outward—enabling cells to detach as a coherent pulse

that continues to move outward, eventually approaching a constant speed.

3.1.2 Long-time behavior. Having established how the spreading population forms a

moving pulse, we now seek to clarify the factors that continue to drive its propagation. As pre-

viously described (Fig 3), active diffusion plays a negligible role at these longer times. Instead,

as noted previously when describing the t = 11 h profiles in Fig 2, we expect that chemotaxis

and growth are the principal contributors to population spreading. In particular, the outward-

moving pulse spans the extent over which nutrient varies between the upper and lower bounds

of nutrient sensing—reflecting the central role of chemotaxis in driving its propagation. The

forward face of the pulse is also exposed to sufficient nutrient for cells to proliferate—suggest-

ing that cellular growth contributes to spreading, as well. Indeed, the time scale over which

this pulse propagates over its width�W/vpulse = 1.3 h is comparable to the time scale of cellu-

lar proliferation, γ−1 = 1.4 h, further indicating that growth may contribute to population

spreading. However, the relative influence of chemotaxis versus growth in driving population

spreading remains unclear.

Hence, we examine the long-time behavior of the pulse by considering a coordinate system

that moves with the pulse, ξ� x − tvpulse + ξ0; ξ0 is a constant shift factor chosen such that ξ = 0

is located at the rear of the pulse, at which b� btrailing. Here, both the bacterial and nutrient

gradients are negligible, eliminating diffusive and chemotactic fluxes of cells, as shown in Fig

3C. Within a time increment dt, the moving pulse leaves behind Nloss� btrailingvpulseAdt
cells, where A is the transverse cross sectional area. Simultaneously, growth generates

Ngrown � Adt
R1
x¼0

bðx0Þggðx0Þdx0 new cells within the pulse. Therefore, Nloss� Ngrown to pre-

serve what we assume for simplicity to be a nearly-unchanging pulse of cells (Fig 2A, inset).

More generally, at locations further ahead (ξ� 0), Nmotile� JmAdt cells also travel with the

pulse through their motility-driven flux Jm = −Dbrb + bvc; here, b,rb, Db, and vc are all ξ-

dependent quantities. Thus, an unchanging profile of cells requires the more general flux bal-

ance Nloss − Nmotile� Ngrown, where now Nloss� bvpulseAdt and

Ngrown � Adt
R1
x

bðx0Þggðx0Þdx0; that is,

bvpulse
|fflffl{zfflffl}

Loss

þ Dbrb
|fflffl{zfflffl}
Diffusion

� bvc|{z}
Chemotaxis

�

Z 1

x

bggdx0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Growth

ð8Þ

where all quantities except for the constants vpulse and γ are position-dependent. This equation

quantifies the intuition that the cells that cannot keep up with the moving pulse through their

motility must be replaced by growth so as to prevent a net loss of cells from the region ahead

of ξ. Therefore, for a given position ξ, the right hand side of Eq 8 represents the additional con-

tribution to the overall spreading of the pulse due to cellular growth at ξ� 0. We therefore

term this quantity the growth flux and compare it to the chemotactic flux bvc.

Both fluxes are shown for the final profile in Fig 3C; the growth flux is shown by the dotted

line and the chemotactic flux is shown by the dash-dotted line, both plotted on a logarithmic

scale. A version showing these fluxes on linear scales is given in §3.2. For this case of interme-

diate confinement, both fluxes are appreciable, with the maximal chemotactic flux (3.4 × 10−4

cells μm−2s−1) slightly larger than the maximal growth flux (1.5 × 10−4 cells μm−2s−1), indicat-

ing that chemotaxis plays a greater role in driving population spreading. To further quantify

this behavior, we evaluate Eq 8 at two distinct positions: the rear of the pulse (ξ = 0) and the
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peak of chemotactic flux, which we denote ξpeak (indicated by the square in Fig 3C). At both

locations, the gradient in cell density is approximately zero, eliminating diffusive flux and

simplifying our analysis. The chemotactic flux is also approximately zero at the rear of the

pulse (x� 1.2 mm in Fig 3C). Moreover, at both locations, the growth flux is approximately

the same—reflecting the fact that only the forward face of the pulse is exposed to sufficient

nutrient for cells to proliferate. Hence, equating both of these implementations of Eq 8 yields

an expression for the long-time pulse speed:

vpulse � vcðxpeakÞ þ vpulse

btrailing

bpeak
; ð9Þ

where we have defined bpeak� b(ξpeak). Therefore, the ratio btrailing/bpeak = 40% approximates

the fraction of the overall pulse speed attributable to growth, while the remaining 60% is due

to chemotaxis.

This analysis also provides a way to extend a previous scaling estimate [27] of the long-time

pulse speed vpulse, which did not incorporate the influence of confinement in regulating

spreading. First, we note that the chemotactic velocity scales as vc(ξpeak)� χ(bpeak)/W, where

W is the pulse width. Next, we relate the mean number density of cells �b �W � 1
R1

0
bdx0 to

vpulse through a flux balance of cells at long times, when the shape of the pulse is unchanging

over time. In particular, as described earlier, the rate at which cells are left behind the pulse,

btrailingvpulseA, is balanced by the rate at which growth generates new cells in the pulse,

A
R1

0
bggdx0 ¼ A�bWg�g , where we have defined the cell-weighted mean

�g �
R1

0
gðcðx0ÞÞbdx0=

R1
0

bdx0 ¼
R1

0
gðcðx0ÞÞbdx0=ð�bWÞ. This flux balance yields

W ¼ btrailingvpulse=ð
�bg�gÞ, and therefore, vcðxpeakÞ � wðbpeakÞ

�bg�g=ðbtrailingvpulseÞ. Substituting this

expression into Eq 9,

vpulse � w bpeak

� � �bg�gðcÞ
btrailingvpulse

þ vpulse

btrailing

bpeak
: ð10Þ

Multiplying both left and right hand sides by vpulse, grouping terms to solve for v2
pulse, and

multiplying the resulting solution by
bpeakbtrailing
bpeakbtrailing

then yields our ultimate scaling estimate:

v2
pulse � w bpeak

� �
g�gðcÞ

�bbpeak

btrailingðbpeak � btrailingÞ
: ð11Þ

This estimate thus extends a previous calculation [27] by explicitly incorporating the influ-

ence of confinement. To evaluate the accuracy of this estimate, we use the long-time simula-

tion data to directly determine all the parameters on the right hand side of Eq 11 and thereby

obtain vpulse. We find reasonable agreement between the predicted (via Eq 11) and simulated

speeds to within a factor of two: the predicted value is 0.08 mm/h, while the simulation yields

0.15 mm/h. This agreement also extends to the case of weak confinement, discussed further in

§3.2, for which the predicted value is 0.3 mm/h, while the simulation yields 0.8 mm/h, within a

factor of 2.5. Hence, Eq 11 provides a straightforward way to approximately relate the long-

time shape of a pulse to its propagation speed, even in confinement.

Finally, we note that the fluxes associated with chemotaxis and growth also determine the

overall shape of the spreading population; for simplicity, we neglect the diffusive flux, given

that it is at least one order of magnitude smaller than the chemotactic and growth fluxes (Fig

3C). In particular, as quantified in Eq 8, the cellular profile b(ξ) is given by the sum of the che-

motactic and growth fluxes, scaled by the constant vpulse. Our results confirm this expectation:
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as shown in Fig 3C, the location of the bacterial pulse nearly coincides with the peak in the che-

motactic flux, while the steady increase in growth flux from the leading edge to the rear coin-

cides with the additional asymmetry in the bacterial profile arising from the trail of cells shed

from the moving pulse. Taken together, these results therefore demonstrate that the interplay

between chemotaxis and growth determines both the long-time speed and shape of the spread-

ing population.

3.1.3 Influence of initial cell density. Our analysis thus far considered a dense initial

inoculum, for which cellular crowding hinders the formation and detachment of a pulse; at

much longer times, this less-crowded pulse no longer resembles the initial inoculum, but

instead is shaped by the interplay of chemotaxis and growth (Fig 3). We therefore expect that

for a lower-density inoculum, a similar pulse also emerges at long times, but with initial

dynamics that are limited instead by the time required for cellular consumption to establish a

sufficiently strong nutrient gradient. To test this expectation, we repeat the simulation

shown in Fig 2, but using an initial peak number density of cells that is 105 times smaller

(b0 = 10−5bmax)—shown in S2 Video.

In the previously-considered case of a dense inoculum, the cells deplete nutrient rapidly via

consumption, and the population subsequently spreads from its leading edge as a growing

jammed front (first two curves in Fig 2). By contrast, with a more dilute inoculum, nutrient

depletion takes much longer. Instead, the population continually grows and spreads as a whole

(red to blue curves in Fig 4A inset), not just at its leading edge, without appreciably depleting

nutrient. It eventually reaches a maximal density b0 = b0eγt0 for which the time scale of subse-

quent nutrient depletion tdep� c1/(κb0) is comparable to the time scale of subsequent growth

tg� γ−1; equating these time scales yields t0 ¼ g� 1ln c1g
b0k

� �
. Therefore, we expect that nutrient is

fully depleted at the initial inoculum after t0 þ tdep � g� 1 ln c1g
b0k

� �
þ 1

h i
� 11 h. The simulation

results are consistent with this estimate, which neglects spatial variation in nutrient availability

through the entire population and thus serves as a lower bound, showing that nutrient is fully

depleted at the initial inoculum after� 14 h (red to blue curves in Fig 4B inset). The nutrient

gradient again extends over a large distance ahead of the population, as expected from our cal-

culation of the diffusion parameter δ0� 1.

Unlike the case of a dense inoculum, the population does not subsequently spread as a

jammed front. Instead, once the nutrient gradient is sufficiently strong, a coherent pulse of

cells again detaches without the prior formation of a jammed front, continues to propagate the

nutrient gradient with it, and continues to spread outward (t> 15 h in Fig 4). Consistent with

our expectation, this pulse is noticeably similar to that which arises in the dense inoculum

case: it has a nearly-identical shape and also appears to move without an appreciable change in

shape, eventually reaching approximately a similar constant speed vpulse� 0.1 mm/h (compare

late-time profiles in Figs 2 and 4). Evaluating the speed by instead tracking the position of the

peak, instead of the leading edge, also yields a comparable value of vpulse� 0.16 mm/h.

To further characterize the population spreading dynamics, we again plot the leading edge

position xl as a function of time t. As in the case of a dense inoculum, xl� tν with ν� 1 at

early times, transitioning to ν� 1 at later times (Fig 5A); however, these seemingly similar

dynamics reflect fundamentally different underlying processes at early times. With a more

dilute inoculum, slower nutrient depletion causes the diffusive flux to initially dominate over

chemotaxis (Fig 5B) without any influence of cellular crowding—indicated by the overlap of

the early-time points with/without the crowding correction in Fig 5D. As cells continue to

grow and consume nutrient, they eventually establish a sufficiently strong gradient and spread

as a coherent pulse via chemotaxis—as indicated by the dominant role of the chemotactic flux
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at long times (Fig 5C and 5D). At these later times, the different contributions to the bacterial

flux are nearly identical to those that drive pulse propagation in the case of a dense inoculum

(compare Figs 5C and 3C). Indeed, the fractions of the overall pulse speed attributable to che-

motaxis and growth, as quantified by Eq 9, are� 58% and 42%, respectively—nearly identical

to the case of a dense inoculum. Hence, while the initial dynamics of population spreading are

sensitive to the initial cell density—consistent with experiments [28]—the properties of the

pulse that forms and continues to drive spreading at long times are not, instead being set solely

by the interplay between chemotaxis and growth.

3.2 Influence of confinement

For the case of intermediate confinement explored thus far, we have established that chemo-

taxis and growth both drive population spreading at long times. How does this behavior

change with confinement? As quantified in Figs 3D and 5, confinement-induced crowding

limits the chemotactic flux; therefore, we expect that with reduced or increased confinement,

chemotaxis or growth plays a more dominant role in driving spreading, respectively. To test

this expectation, we perform the same simulation with a dense inoculum as in Figs 2 and 3,

but with different values of the confinement-dependent parameters as summarized in Table 1.

In particular, our simulations explore Λ = 0.95, 0.037, and 3.6 × 10−4, representing weak,

intermediate, and strong confinement (top, middle, and bottom rows in Figs 6 and 7), respec-

tively—also shown in S3 Video.

In all cases, the cells first rapidly deplete nutrient locally via consumption, generating a

nutrient gradient that again extends over a large distance and drives subsequent spreading at

Fig 4. Results from a numerical simulation of population spreading in intermediate confinement starting from a

more dilute inoculum. The simulation incorporates both motility and growth. (A) shows the dynamics of the cells

while (B) shows the corresponding dynamics of the nutrient, quantified by the normalized density b/bmax and

concentration c/c1, respectively. Different colors indicate different times as listed. The dilute inoculum (jamming

density shown by the dashed grey line in A) initially centered about the origin first grows exponentially and spreads

diffusively until nutrient is locally depleted (upper inset shows the same data, but zoomed in to the vertical axis); only

then does a coherent pulse detach and propagate continually via chemotaxis in response to the nutrient gradient (lower

inset shows the same data but with both axes zoomed out). Even though the short-time behavior is different from the

case of a more dense inoculum shown in Fig 2, the long-time behavior of this pulse is identical. To facilitate

comparison with Fig 2, in B, the three dashed grey lines again show the characteristic concentrations of sensing c+ and

c− and the characteristic Monod concentration cchar; the corresponding positions are shown by the pluses, diamonds,

and triangles, respectively, in A-B. An animated form of this Figure is shown in S2 Video.

https://doi.org/10.1371/journal.pcbi.1010063.g004
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the leading edge of the population. However, consistent with our expectation, and with experi-

mental observations [28], the nature of this spreading is strongly confinement-dependent.

3.2.1 Weak confinement. In the case of weak confinement, cells detach and spread as a

lower-density, coherent, propagating pulse without first growing outward as a jammed front

(Fig 6A), unlike the case of intermediate confinement (Fig 6B). This pulse is notably sharper

and faster, with the long-time pulse speed and peak height� 5.4 and 3.9 times larger than in

Fig 5. Population dynamics, morphology, and fluxes driving spreading for the simulation of bacteria in intermediate

confinement, but from a more dilute initial inoculum (Fig 4). The simulation incorporates both motility and growth. (A) Increase

in the position of the leading edge of the population is initially hindered (red), but approaches constant-speed motion indicated by

the triangle at long times (purple). The corresponding speed vpulse is shown in the inset. (B) At a short time corresponding to the red

point in A, the population grows exponentially (top panel) and spreads primarily through growth and diffusion (lower panel). (C) At

a long time corresponding to the purple point in A, the population spreads as a coherent pulse (top panel). Lower panel shows that

chemotaxis is the primary contributor to pulse propagation. Positions of the maximal diffusive and chemotactic fluxes are indicated

by the circles and squares, respectively, in B-C; note the slight upward kink in the diffusive flux in C indicated by the circle. (D)

Variation of the maximal diffusive and chemotactic fluxes, indicated by the circles and squares in B-C, over time. The initial

population dynamics are dominated by cellular diffusion (circles), while at longer times chemotaxis dominates (squares). To

illustrate the role played by cellular collisions, we show the same data with (black) and without (grey) the crowding correction μcrowd

in the datasets indicated by the red lines; the data are identical except at long times, when crowding slightly hinders population

spreading.

https://doi.org/10.1371/journal.pcbi.1010063.g005
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intermediate confinement (also compare Panels A–B and D–E in Fig 7)—reflecting the domi-

nant role of chemotaxis in driving spreading, as expected from the larger value of Λ. Quantifi-

cation of the different fluxes driving spreading corroborates this expectation (Fig 7D); indeed,

following our previous analysis summarized by Eqs 8 and 9, we find that� 93% of the overall

pulse speed is attributable to chemotaxis in the case of weak confinement.

As a final confirmation of this point, we re-run the simulations, but with either growth or

chemotaxis removed—shown by the second and third columns of Fig 6, respectively—thereby

isolating the contributions of chemotactic and growth-driven spreading. In the prototypical

case of intermediate confinement, both chemotactic and growth-driven spreading play appre-

ciable roles; compare Panels E and H to B in Fig 6, as well as the different curves in Fig 7B and

7E. However, in the case of weak confinement, chemotactic spreading dominates, as expected;

the simulation without growth (Fig 6D) is nearly identical to that incorporating all factors

(Fig 6A), while the simulation without chemotaxis (Fig 6G) yields a population that barely

spreads—also seen by comparing the different curves in Fig 7A and 7D. Therefore, chemotac-

tic propagation dominates under lesser confinement, enabling the population to spread faster

as a sharp, coherent pulse.

Fig 6. Increasing confinement causes a transition from fast chemotactic pulse propagation to slower jammed

growth expansion. Panels show results from numerical simulations of population spreading from the same dense

inoculum initially centered about the origin in weak, intermediate, and strong confinement, shown by top, middle,

and bottom rows respectively. First column shows the results of the full model, while second and third columns show

the same simulations with growth or chemotaxis omitted, respectively. We only show the normalized cellular density

b/bmax for clarity. As noted in §2.4, the initial inoculum is composed purely of dense-packed cells with liquid in

between them (ϕ = 1), surrounded by the obstacle-filled medium (ϕ< 1); hence, the initial inoculum has b = bmax,

which is larger than bjammed, the jamming density of cells in confinement. Different colors indicate different times as

listed in the color scale. In weak confinement, a coherent pulse rapidly detaches and continually propagates; this pulse

is driven primarily by chemotaxis, and thus, omitting growth barely changes the dynamics while omitting chemotaxis

abolishes the propagation altogether. Conversely, in strong confinement, the population spreads slowly as a jammed

front, driven primarily by growth. In intermediate confinement, both growth and chemotaxis drive population

spreading. The dashed grey line shows the jamming density, which varies depending on confinement (and is larger

than the vertical scale in the top row). An animated form of this Figure, along with the nutrient profiles, is shown in S3

Video.

https://doi.org/10.1371/journal.pcbi.1010063.g006
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Fig 7. Population dynamics, morphology, and fluxes driving spreading for simulations of bacteria in weak, intermediate, and strong

confinement (Fig 6) as shown by the top, middle, and bottom rows, respectively. (A-B) Increase in the position of the leading edge of the population

is initially hindered, but approaches constant-speed motion indicated by the triangle at long times. In strong confinement (C), however, the long-time

behavior approaches diffusive-like scaling instead. (D-E) At long times, the population spreads as a coherent pulse (solid line) driven primarily by

chemotaxis in weak confinement, and by both chemotaxis and growth in intermediate confinement. (F) In strong confinement, however, the

population spreads slowly as a jammed front, driven primarily by growth.

https://doi.org/10.1371/journal.pcbi.1010063.g007
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3.2.2 Strong confinement. Population spreading is markedly different in strong confine-

ment. In this case, cells do not form a coherent pulse at all; instead, they continually grow out-

ward as a jammed front (Fig 6C), unlike the case of intermediate confinement (Fig 6B).

Notably, this front does not have a well-defined speed at long times, in stark contrast to the

cases of weaker confinement explored previously. Instead, the leading edge position progresses

as xl� tν with ν� 0.5 at long times, as shown by the solid curve in Fig 7C—and thus, the popu-

lation spreads less effectively. This diffusive scaling of xl is at odds with the prediction of the

classic Fisher-KPP model, commonly used to describe growth-driven spreading, that the pop-

ulation spreads at a constant speed as a traveling wave [27, 47]. Instead, our finding is consis-

tent with the results of agent-based simulations of a growing population of jammed,

incompressible cells [41], which also found ν� 0.5 in the limit of fast nutrient consumption.

In this case, front propagation via growth of the jammed population lags behind nutrient diffu-

sion—leading to the diffusive scaling of xl observed in our simulations as well as those of [41].

This difference with the prediction of the classic Fisher-KPP model suggests that the logistic

form of growth used therein does not adequately describe jammed growth spreading. We are

not aware of any experiments testing this prediction; performing such a study would be a valu-

able direction for future research.

This dominant role of growth in driving spreading in the case of strong confinement is

expected from the smaller value of Λ; it is also corroborated by quantification of the different

fluxes driving spreading (Fig 7F). Removing growth or chemotaxis from the simulation pro-

vides a final confirmation of this point; the simulation without growth (Fig 6F) yields a popula-

tion that barely spreads, while that without chemotaxis (Fig 6I) is nearly identical to that

incorporating all factors (Fig 6C)—also seen by comparing the different curves in Fig 7C and

7F. Hence, growth-driven spreading dominates under stronger confinement, enabling the

population to spread diffusively as a jammed front.

4 Discussion

Ever since the discovery of bacteria over 300 years ago, lab studies of their spreading have typi-

cally focused on cells in unconfined environments such as in liquid cultures or near flat sur-

faces. However, in many real-world settings, bacteria must navigate complex and highly-

confining environments. Thus, motivated by experimental observations of bacterial motility

[28, 34–38] and growth [39, 40] in confined settings, in this paper, we have presented an

extended version of the classic Keller-Segel model that incorporates the influence of confine-

ment on bacterial spreading through both motility and growth. Versions of the Keller-Segel

model describing cellular aggregation and pattern formation in response to cell-generated che-

moattractant have in some cases considered cell density-dependent motility [46], but do not

explicitly consider confinement, and do not also incorporate cellular growth. Moreover, to our

knowledge, there is no version of the Keller-Segel model of bacterial spreading in response to

external chemoattractant that treats the density- and confinement-dependence of motility in

an experimentally-motivated manner, and also incorporates cellular growth. The model

described here provides a first step toward filling these gaps in knowledge, and in doing so,

enabled us to examine the confinement-dependent interplay between motility-mediated and

growth-mediated spreading.

In particular, our extended model treats cellular collisions with rigid surrounding obstacles,

cellular collisions with each other, and growth-mediated spreading of jammed populations of

cells. As such, it helps to bridge the classic Keller-Segel model of chemotactic spreading—

which does not treat these effects and is therefore only appropriate to describe the spreading of

dilute populations in unconfined settings—and models of growth-driven spreading (e.g., [41,
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42, 71])—which do not treat motility-based spreading and are therefore only appropriate to

describe the spreading of highly-concentrated/confined and non-motile populations. Indeed,

non-dimensionalizing our extended model revealed the parameter Λ that quantifies the con-

finement-mediated transition between chemotactic spreading (in weak confinement with

Λ ≳ 1) and growth-driven spreading (in stronger confinement with Λ< 1). Our analysis also

provided a straightforward way to estimate, in general, the relative contributions of chemotaxis

and growth to the speed with which a population spreads.

While our prior experiments [28] motivated and helped to parameterize and validate the

model used in this study, our prior work did not provide a full computational analysis of the

vastly different confinement-dependent spreading behaviors encoded by the model, and how

they can jointly influence bacterial population dynamics. Accomplishing this task was the central

goal of the present manuscript. To this end, numerical simulations of the model enabled us to

examine the implications of the confinement-mediated transition in behaviors for the full

dynamics of bacterial spreading. As expected, in weak confinement, a dense inoculum of bacteria

rapidly depletes nutrient locally, causing a coherent pulse of cells to detach and continually prop-

agate outward via chemotaxis—as predicted by the classic Keller-Segel model [26, 27, 29–33].

However, with increasing confinement, cellular crowding increasingly hinders both the initial

formation of this pulse as well as its long-time propagation speed. Moreover, with increasing

confinement, growth plays an increasingly dominant role in driving population spreading—

eventually leading to a transition from fast chemotactic spreading to slow, growth-driven spread-

ing of a jammed front [41]. Therefore, confinement is a key regulator of population spreading.

While chemotactic pulse propagation is well-characterized in unconfined settings [23–26],

and conversely, jammed growth expansion has been investigated in some highly-confined set-

tings [39, 40], the interplay between these two behaviors has scarcely been studied. Hence, we

anticipate that our numerical characterization of this confinement-mediated transition from

chemotactic- to growth-driven spreading will help guide future experimental investigations of

confined populations. Moreover, because our model describes spreading over large length and

time scales, we expect it could help more accurately describe the spreading dynamics of bacte-

ria in processes ranging from infections, drug delivery, agriculture, and bioremediation. To

this end, it would be interesting to extend our one-dimensional simulations to higher dimen-

sions, which could result in additional rich dynamics e.g., as recently explored in [73], and to

media with spatially-varying confinement.

Our model represents a first step toward capturing the essential biophysical processes

underlying these complex dynamics, and necessarily involved some simplifying assumptions

and approximations. For example, based on recent experiments [28], we treated the influence

of cell-cell collisions using a mean-field approach in which the transport parameters Db0 and

χ0 are truncated in a cell density-dependent manner; incorporating more sophisticated collec-

tive dynamics [74–77] will be an important extension of our work. Similarly, we described

jammed growth expansion by treating the population as an incompressible “fluid”, similar to

other models of growing immotile populations [41, 69, 70] and motivated by some experi-

ments [39, 40], implemented in a discrete manner. An alternate continuum description of

growth could e.g., track the local growth velocity defined from the spatial gradient of a pressure

field within the growing population that originates from cell growth. For the purposes of this

paper, in which our central goal was to characterize the dynamics of population spreading, we

needed to only track the motion of the outer boundary of the jammed region—which is readily

accomplished using our discrete representation of growth expansion. Developing a more

detailed treatment of these growth dynamics using either continuum or discrete approaches,

such as by incorporating cellular deformations [41] and possible changes in cellular behavior

that may result [78], will be a useful direction for future work. Furthermore, a simplifying
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assumption made in our model is that the solid obstacles that induce confinement are rigid

and immovable; incorporating deformations of the surrounding medium will likely give rise

to even more complex dynamics that will be interesting to study. Finally, while our model

assumes that nutrient diffusion is unimpeded by the solid medium—which is likely to be the

case in highly-permeable media such as biological gels and microporous clays/soils—incorpo-

rating hindered nutrient diffusion that may arise in other media will likely result in more com-

plex dynamics that future extensions of our work could explore.

Supporting information

S1 Fig. Simulations corresponding to Fig 6A–6C, but using the full diffusive term (Eq 12)

in our model; we observe nearly identical results to those presented in the main text.

(TIFF)

S2 Fig. Visualization of terms (i) and (ii) of Eq 12 corresponding to the cell density profiles

in Fig 3B and 3C. (A) Top shows the same cell profile as in Fig 3B; bottom shows correspond-

ing diffusion terms. This example of an early time point shows that term (ii), as used in the

main text, is larger than term (i), the neglected term. (B) Top shows the same cell profile as in

Fig 3C; bottom shows corresponding diffusion terms. This example of a late time point shows

that term (ii), as used in the main text, is typically larger than term (i), the neglected term. We

note that the magnitude of the diffusive flux during this later time is much smaller than that of

chemotaxis, as shown in Fig 3C; thus, the minor impact on diffusion of including term (i) does

not change the finding that diffusion is negligible relative to chemotaxis.

(TIF)

S3 Fig. To assess the sensitivity of our results to numerical discretization, we repeat the

simulation shown in Fig 2, which has spatial resolution of dx = 10 μm, with varying values

of dx; the time step dt is correspondingly varied as dt = 0.01 s ×(dx/10 μm)2. As shown in

the figure, the final pulse velocity vpulse obtained from the simulations is not strongly sensitive

to the choice of numerical discretization.

(TIFF)

S4 Fig. Experimental cellular signal of traveling front under intermediate confinement

from [28]. Experiments begin with a dense packed cylindrical inoculum of E. coli embedded

within a porous media with mean pore size 1.7 μm. A pulse forms and propagates outward;

the dataset shows the final time point of 10.75 h. The experiment used confocal microscopy of

cells constitutively expressing green fluorescent protein; we take the fluorescence data thereby

obtained from the mid-plane of the bacterial cylinder and normalize it by the brightest region

of the initial inoculum. This normalized cellular signal is then converted to cell density by mul-

tiplying with bmax = 0.95 × 1012 cells/mL. Arrow indicates location identified as trailing behind

the pulse, xtrailing, and the corresponding cellular density is btrailing = 1.5 × 109 cells/mL.

(TIFF)

S1 Video. Numerical simulations of bacterial spreading from a dense inoculum in interme-

diate confinement. Video corresponds to Fig 2. Top shows the dynamics of the cells while bot-

tom shows the corresponding dynamics of the nutrient, quantified by the normalized density

b/bmax and concentration c/c1, respectively. Lower inset shows the same nutrient data, but

with both axes zoomed out).

(MP4)

S2 Video. Numerical simulations of bacterial spreading from a dilute inoculum in inter-

mediate confinement. Video corresponds to Fig 4. Top shows the dynamics of the cells while
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bottom shows the corresponding dynamics of the nutrient, quantified by the normalized den-

sity b/bmax and concentration c/c1, respectively. Top inset shows the same cellular data, but

with the vertical axis zoomed in. Lower inset shows the same nutrient data, but with both axes

zoomed out).

(MP4)

S3 Video. Numerical simulations of bacterial spreading in weak, intermediate, and strong

confinement, also with growth or chemotaxis removed. Video corresponds to Fig 6, but also

includes the nutrient profiles in orange (same vertical scales as in Figs 2 and 4). Different rows

show different degrees of confinement, while different columns show full simulations or simu-

lations with growth or chemotaxis removed. The simulations shown in different rows progress

over different durations of time.

(MP4)

S1 File. Sample MATLAB code to implement simulations. This sample code corresponds to

Fig 2.

(ZIP)

S2 File. Raw data underlying all Figures. This zip file contains the raw data used to make all

the Figures.

(ZIP)

S1 Text. Further details of the model. This text presents additional details on how diffusion is

incorporated in our model.

(PDF)

S2 Text. Determining parameters from experimental data. This text presents additional

details on how the values of model parameters were extracted from experimental data.

(PDF)
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