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Abstract

Solid lesions emerge within diverse tissue environments making their characterization and 

diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been 

developed to transform images into quantifiable feature sets producing summary statistics that 

describe the morphology and texture of solid masses. Relying on empirical distribution summaries 

as well as grey-level co-occurrence statistics, several approaches have been devised to characterize 

tissue density heterogeneity. This article proposes a novel decision-tree based approach which 

quantifies the tissue density heterogeneity of a given lesion through its resultant distribution of 

tree-structured dissimilarity metrics computed with least common ancestor trees under repeated 

pixel re-sampling. The methodology, based on statistics derived from Galton-Watson trees, 

produces metrics that are minimally correlated with existing features, adding new information to 

the feature space and improving quantitative characterization of the extent to which a CT image 

conveys heterogeneous density distribution. We demonstrate its practical application through a 

diagnostic study of adrenal lesions. Integrating the proposed with existing features identifies 

classifiers of three important lesion types; malignant from benign (AUC = 0.78), functioning from 

non-functioning (AUC = 0.93) and calcified from non-calcified (AUC of 1).
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1. Introduction

One of the critical aspects to the study of solid lesions is intra-tumor heterogeneity (ITH). 

Solid lesions are often heterogeneous phenotypically, physiologically, and genetically, due to 

variations in processes such as cell proliferation, cell death, and local environmental 
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factors.1–3 Cellular diagnostic techniques such as biopsies are not only invasive, but they 

also do not allow for a thorough or complete investigation of the entire tumor environment. 

In order to get a more comprehensive picture of the entire lesion environment without 

having to take multiple biopsies or depend on qualitative visual assessments, quantitative 

imaging features can be mined with analytical techniques often called radiomics.4 These 

radiomic features are objectively assessed and quantitatively descriptive of the lesion 

phenotypes and can be used to develop models that can be used in prediction, classification 

or diagnosis. The “radiomics hypothesis” that is central to this strategy is that advanced 

levels of analytics on imaging data can capture information that would not otherwise be 

available.5 It has been hypothesized that this information on phenotypic patterns are 

reflective of complementary tumor characteristics at molecular, cellular and genetic levels.6

There are many possible ways to extract this radiomic data from routine images: features 

that describe size and shape, features that describe the intensity of and relationship between 

pixel values, textures features, and fractal features.6 The ability to access a large number of 

quantitative features from images is now possible due to the progress made in imaging 

techniques, but issues like high levels of correlation between these features have led to the 

need to determine which of these features to use in downstream analyses and interpretation. 

As with any big data problem, when working with such a large number of variables, it is 

imperative to balance interpretability vs. computational tractability.

Currently the most commonly used radiomic features are texture-seeking. They can be 

divided into two categories, intensity and texture. Intensity features capture the shape of the 

histogram of the pixel values, while texture features describe the spatial distribution and 

pattern of the pixel values.7 Texture-seeking methods can be divided into four categories: 

Non-spatial methods (NSM), Spatial Grey Level methods (SGLM), Fractal Analysis and 

Filters and Transforms. As NSM and SGLM are the methods used in the majority of 

analysis, we will focus in on those and give a brief description before highlighting potential 

new features derived from the tumor heterogeneity trees (THT).

NSM are intensity based features, comprised of first order statistics computed on the image 

grey level data. These are basic metrics, which include metrics such as the first order 

features, taken from the grey level image, include minimum and maximum, as well as 

computations such as range, mean, standard deviation, variance, median, skewness, kurtosis, 

entropy, root mean square (RMS) and total energy.7

The most frequently used of the central moments are variance, skewness and kurtosis.8 

Variation gives an idea of the size of the spread of the distribution around the mean, 

skewness is a measure of asymmetry around the mean, and kurtosis is a measure of the 

sharpness of the histogram. Intensity features give insight into how the pixel densities are 

distributed, but cannot give insight into their relative spatial positions, which limits their 

potential for describing the texture features of the image. The size of the images is a 

confounding factor for several of these metrics, but the simplicity of these metrics is an 

advantage, and they contain a nontrivial amount of information about the image.
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SGLM are texture features that are used to interrogate the spatial relationships between the 

grey levels of the image. A Grey Level Co-occurrence Matrix (GLCM) is an object that 

describes the spatial relationship of the grey levels of pixels in an image by counting the 

number of times two grey level valued pixels appear a specific distance and angle from each 

other. Before calculating the matrix, the number of grey levels must be chosen. This is done 

while considering the level of detail desired, the number of unique pixel values available, 

and the distribution of the density of these pixel values. These grey level “buckets” can be of 

consistent size, but the choice can alternatively be made to split the pixel value distribution 

along percentiles. This approach is a potential way to account for outlier pixel values within 

the pixel distribution. For example, the grey level matrix of angle 0° and distance 1, the cell 

(i, j) will contain the number of times a pixel of grey level j appears immediately to the right 

of a pixel of grey level i. This matrix can be made symmetric or not, and can be normalized 

by dividing each count by the number of pixels in the image. The angle can vary, allowing 

for comparison vertically or along the diagonal as well as the horizontal example given 

previously. The distance can be changed as well, with no restriction beyond the size of the 

image along the chosen angle.

GLCM features were first proposed by Haralick in 19739 and these features are easily 

computable from the GLCM matrix and include features that measure attributes such as 

image coarseness, symmetry, energy, and heterogeneity.7 These features are often computed 

on multiple combinations of angle, distance and number of grey levels, leading to a large set 

of features that can be used in model building and data analysis.

While the above metrics work well in capturing the morphological characteristics of the 

tumor, they limited in their characterization of IHT. In consideration of lesion heterogeneity, 

tree-structured objects offer hierarchical dissimilarity processes that may better reflect the 

“relationship” between the pixels as a representation of the cellular evolution of cancer and 

of the lesion as it grows and develops. It is well-established that cancer as a disease starts at 

a “single point,” a cell, which divides and proliferates outward to an extent that is allowed by 

the local immune and tissue environments. Each cell division is a biological bifurcation and 

this process is repeated up to the moment of the diagnostic scan capturing the cross-sectional 

state of the tumor. Conceptually, malignant cell proliferation is well characterized by a 

binary decision tree, which describes a hierarchical splitting process that divides iteratively 

from a common root until arriving at the final state of nodes or leaves. Considering tissue 

density as a surrogate10 for the cellular division process, the growth process of a tumor may 

be well characterized by dissimilarity measures of pixel intensities obtained from tree-

structured objects.

With this in mind, it is the goal of this paper to briefly discuss some of the various methods 

used to interrogate tumor texture, and to present a potential additional method based on tree-

based analysis of the lesions, which will be used in conjunction with the currently used 

methods on a set of solid adrenal lesions to capture various aspects of cancer progression 

and development. Specifically, we use the feature set to classify benign from malignant, 

functioning from non-functioning, and calcified from non-calcified, lesions with 

encouraging results.
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2. Methods

Trees are a data type that is a specific subset of graphs. They are a directed, acyclic set of 

linked nodes that are connected by edges. The parental node is called the root, while the 

terminal nodes are called leaves. Depending on construction, they can either start at the 

leaves and repeatedly combine pairs (in a binary tree) until all leaves are grouped together, 

or start at the root and divide until each leaf is separate from all others. This branching 

process shows the relationship between the leaves and the history of how they separated 

from each other, when and in what order. If this process is applied to pixels from an image, 

and we consider that a radiological image is a representation the cells present inside the 

body, the tree can give a “history” of the representation of these cells and how they have 

divided from an original source, to a reasonable degree. In cancer, the pattern of growth is 

critical to the lesion development and this growth can be affected by the cellular 

environment, and is reflective of the ITH. A goal of introducing this feature is capturing this 

ITH via building the tree-based relationship between the pixels as intermediates for cells. 

Figure 2 gives a high level summary of the steps for creating tree-based features from 

radiological images which we describe in ensuing sections.

2.1. Constructing Trees from pixel-level ROI data

The mathematical objects underlying the first three aspects of Figure 2 are further 

diagrammed in Equation 1. THT are constructed from radiological images, from which 

Least-Common Ancestor (LCA) trees are drawn. This sample of LCA trees can then be 

summarized into metrics to be used as features such as the ones outlined previously, to join 

these other features in modeling and analysis.

(1)

To construct the THT, we follow the work of Bharath et al,11 and denote a rooted finite tree 

with n vertices as τn, where τn is a point in the space . n is the set of all finite 

trees on n vertices. A convenient notation for the tree is τn = ( (τn), ℰ(τn)), where (τn) = 

(root, υ1, …, υ2n−1), the set of vertices and ℰ = (e1, …, e2n−1), the set of edges. Note that τn 

denotes a tree with n vertices, including the root and τ(n) denotes a tree with n terminal 

vertices.11,12 The tree τn is not itself a probabilistic structure, so a stochastic process is 

placed on the growth of the tree in order to build a probabilistic model on the tree-structured 

data, and further steps are taken to provide a consistent family of densities. A Galton-Watson 

(GW) process {Xn}n≥0 is a stochastic process that takes on positive integer values in discrete 

time, often used to model populations. It has an offspring distribution (πk, k = 0, 1, 2, …). 

When this process is conditioned to have n vertices, the resulting tree τn is known as a 

conditioned GW tree.
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These conditioned GW trees come from offspring distributions πk, where k is equal to the 

number of leaves in the tree. To obtain information about variations in branch structure and 

to incorporate information about branch lengths, we must move to the Continuum Random 

Tree (CRT) through weak convergence. The CRT is the asymptotic limit of the GW tree, and 

in this limit, σ2, the variance parameter of the GW tree’s offspring distribution appears. 

Least common ancestor (LCA) trees are randomly chosen binary subtrees of conditioned 

GW trees, and can be understood as marginals of the CRT and provide dimension reduction. 

To create an LCA tree from τn, choose k < n then uniformly choose k vertices from the n 
vertices of (τn). The density of the family of consistent CRT binary trees C(k) from which 

these LCA trees with k < n leaves are drawn is shown in equation 2.

(2)

In summation, properties of the CRT allow us to use this density to approximate the density 

from which the LCA tree from any conditioned GW tree is drawn. The σ2 term, gained by 

taking the CRT of the tree, captures variability in the branching process between different 

GW trees, while the LCA tree provides the ability to reduce the dimension of the data to s. 

Thus, for each image’s tree i, we create a LCA-tree ci(ki) by choosing ki of the ni vertices, 

then calculate the value si by taking the sum of the lengths of the branches of LCA-tree. The 

density above has the kernel of a Gamma distribution with respect to s. Further, we know 

that s is non-negative, as the branch length components are non-negative, and these CRT 

branch lengths also asymptotically follow a Gamma distribution in this CRT construction of 

trees. As the sum of Gamma random variables is also Gamma, this allows for exploration of 

this feature in a generalized linear model setting. A full reasoning for the choice of the 

Gamma distribution on the trees can be found in K. Bharath et. al.

The trees produced from the images, as well as informative variables derived from these 

trees, will be the focus of the analysis in this paper. In practice, for each image, ℐi, 

hierarchical clustering is done on the vector of pixel densities, υij, where j = 1, …, ni, and ni 

is equal to the number of pixels in image ℐi. The agglomerative clustering was done using 

the UPGMA (average) linkage method13 and Euclidean distance to produce a tree, i, from 

each image. Sensitivity analysis to the selection of distance metrics and clustering methods 

was performed. From this tree i, a LCA tree ci(k) is randomly sampled and the branch 

length sum s from ci(k) is calculated.

2.2. Deriving metrics of ITH from tree representations

In order to account for the randomness of the selection of leaves in the LCA trees, we 

randomly sampled 100-fold from the same image. The median value of the sum of the 

branch lengths and a measure of the spread of these values were collected as the variables of 

interest. This process is summarized and depicted in Figure 2, where the multi-modality of 

the empirical distribution highlights the need to take the median as the measure of center.
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It is hypothesized that the edge sum value for each lesion can be a feature that is reflective of 

the ITH. A group of pixels that are more diverse will produce a tree that is taller; a tree that, 

for example, clusters somewhat quickly into various groups but then those groups do not 

merge into one cluster until much later. If an image has a large amount of density values that 

are similar, those will cluster quickly, leading to short branch lengths. A reflection of this 

hypothesis can be seen in the left hand column of Figure 3, a graph using images from the 

case study described below. Tumors with a large amount of similarly valued pixels have low 

branch length sums, while those that have sharp differences have higher median edge sum 

values. In fact, the lesion with the highest valued median edge sum has a large group of 

extremely dense pixels, surrounded by more moderately valued pixels. Trees produced from 

this lesion have very long branches from the split of the group and non-group pixels, which 

is reflected in its’ very large branch sum value. While some of the difference in visual levels 

of heterogeneity can be explained by the pixel size of the images, there are differences in the 

small and large valued groups of the median.

3. Application to Solid Adrenal Lesions

3.1. Adrenal Lesions

Adrenal masses are common and can be either functioning or non-functioning. Within each 

side of this divide, they can be either benign or cancerous. Cancerous lesions can be either 

first degree, primary, tumors or second degree, metastatic tumors. In patients without known 

cancer, these masses are often benign adenomas and of little clinical significance, but the 

proportion that are malignant increases slightly with previous knowledge of cancer14 as well 

as with age.15 A primary non-functioning tumor is a rare malignancy known as an 

adrenocortical carcinoma (ACC)16 and a non-functioning benign lesion is an adenoma, 

which make up approximately 50% of the non-functional lesions.17 There are many different 

types of functioning lesions, such as paragangliomas and pheochromocytomas, both of 

which can present as either benign or malignant.

3.2. Data

Our retrospective data consists of 379 CT scans from 356 patients. Of the lesions, 195 are 

malignant and are 182 benign, 334 are non-functioning lesions and 43 are functioning. For 

tumors that are metastatic, the information about the primary type of cancer and the timing 

is available as well. Their pathologies have been verified by the radiologist and are available 

in table form in the supplementary material, located at http://kas23.web.rice.edu/

PSB_supplementary_material.pdf. There are 13 calcified lesions, 13 fatty lesions, 202 

heterogeneous lesions and 134 homogeneous ones. The density of lesion size (calculated by 

pixel count) was heavily skewed to the right, with large lesions presenting as outliers. An 

unsupervised clustering was performed on the pixel size using k-nearest neighbors in order 

to produce a distinction between the main group of lesions and the large outlier lesions. To 

attempt to remove these outlier affects, this cluster of large tumors was not included in 

calculations based solely on the THT features.

Using the methodology described above, a GW tree was built for each adrenal lesion image 

using Matlab, averaging 0.98 seconds per tree. Then 100 branch length samples were taken 
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for each of the lesions. This was done with a C++ program accessed through R. It took, on 

average, 4 seconds to compute one LCA sample of one tree. This was done on a computer 

with a 3.3 GHz processor and 16 GBs of RAM. The average number of pixels in an image 

was 2064 and the median number was 812. Several of the lesions’ branch sum distributions 

were multi-modal, see Figure 2 as an example, so it was decided to take the median in place 

of the mean as the measure of central tendency to account for this. The median absolute 

deviation (MAD) of the samples was calculated to capture the spread of these samples.

The median branch length sum empirical density from this truncated group of lesions is 

plotted vertically in the far left violin bar in Figure 3, along with the densities of the MAD of 

the sample draws and the normalized feature. For all three, the curve is unimodal and 

varying degrees of right skewed, but the normalized feature on the right does present a 

smaller tail. As mentioned previously, a visual difference between the upper and lower 

groups can be seen, particularly in the median and the MAD features (the left and middle 

columns, respectively). Note that when time is referenced, it is not in the usual temporal 

sense, but rather time within the tree similarity space. The group of lesions with small 

median values are very smooth with similarly valued pixels, leading to trees that go a long 

distance without branching out, with pixels tending to stay in the cluster instead of breaking 

apart. The group with large median values have large differences in color, some even with 

visible sections of pixels that are isolated and a much different value from the rest. Trees for 

an image such as this are going to have clusters that break apart quickly due to the large 

variation of intensity values present, leading to tall trees that have large branch length sums. 

The extreme outlier lesion at the bottom of the column is a perfect example of this, with a 

large cluster of high-density pixels that cause there to be a fast division into two primary 

clusters that stay clustered with themselves for a very long time. Lesions with low MAD 

values appear to be more homogeneous and uniform, likely from the similar pixels causing 

the sampled trees to be relatively similar as well, i.e., regardless of random sample taken as 

in Figure 2, the resulting tree is similar. Higher MAD values correspond to lesions with large 

visible pixel differences; the sampling of pixels from these lesions can make a large 

difference in the height of the resulting tree. While the normalized feature has less of a 

visible differential between the high and low image groupings, it contains the information 

from both other features and has the advantage that it is less correlated with the commonly 

used radiomics features.

3.3. Connection with Other Radiomics Features

When the group of small lesions’ branch length sums are compared against each of the set of 

preexisting radiomics features, as in Figure 4, various relationships and lack of relationships 

can be observed. Less informative features such as minimum and maximum appear 

dramatically related with the branch lengths, but more expository features such as contrast, 

which measures local intensity variation, and entropy, which can be used to distinguish 

tissue with structure, also appear to be correlated with branch length. As can be seen in 

Figure 4, the median is slightly correlated with the other radiomics features. This correlation 

led to the decision to divide the median by the calculated MAD, and a normalized feature 

that was much less correlated with the other radiomics features emerged. This feature is used 

as the THT feature in further statistical analysis. Besides the THT feature computed for each 
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lesion, the first order NSM features as well as the second order SGLM features were 

computed. For simplicity and ease of computation, only one GLCM was used for these 

features, the GLCM with distance 1 and angle of 0°. Thus, for each lesion, there were a total 

of 37 features collected using a combination of NSM, SGLM, and THT methods.

3.4. Characterization and Classification

In order to search for separation caused by the groups of features, a Principal Component 

Analysis (PCA) was performed on these 37 features in order to construct an orthogonal set 

of features. The components produced were further used in a 5-fold cross validated logistic 

regression on three qualitative features of the data set to determine the discriminatory 

abilities of these features when modeled conjointly. The feature loadings as well as the 

coefficients of the logistic regression can be found in Section 2 of the supplementary 

material.

We decided to use the first 6 PCs, as this was sufficient to explain 90% of the variance. The 

scree plot of the variances can be found as Figure S1 in the supplementary material. When 

each of these 6 PCs are plotted against each of the other components, the points cluster in a 

line with the outliers scattered to the side. As can be seen in Figure S2, especially in the 4th 

and 5th PCs, when compared against the various qualitative information available about the 

lesions, it was found that the majority of these outlier lesions were denoted by the 

radiologist as calcified. Calcification is typically distinguishable on CT scans, but doesn’t 

signify one subtype of lesion over any other.18 This delineation of the calcified lesions is 

likewise apparent in the results of the logistic regression, presented in Figure 5. The set of 

PCs has a very high level of accuracy for characterizing calcified lesions from non-calcified 

lesions (AUC = 1) and functioning from non-functioning (AUC = 0.93) and does moderately 

well at distinguishing malignant from benign (AUC = 0.78).

At a qualitative level, as can be seen above in Figure 3, a difference between the textural and 

visual presentation of the high and low value images along the top of the density plot can be 

seen for the median. This leads to the conclusion that this feature is capturing some aspect of 

the ITH. When looking at the lesions in the right column of Figure 3, there appears to be a 

difference in ITH. In general, while the lower valued images have larger particles of density 

clusters, the ones with higher values have a much finer grain of texture. At a quantitative 

level, the feature set was able to make a perfect characterization of calcified tumors (AUC of 

1) and was highly accurate for determining functioning tumors (AUC of 0.93).

4. Discussion

One of the foundational ideas behind radiomics is that analytics can detect nuances in 

tumors that a human eye might be unable to distinguish. By capturing unique aspects of 

ITH, as demonstrated through lack of correlation with existing quantitative image features, 

as well as yielding accurate tissue characterization in integrative analysis, THT-derived 

features represent a valuable contribution to the parameter domain of radiomics. By their 

formulation, tree-structured objects offer the potential to better reflect the biological and 

evolutionary processes that give rise to solid lesions. Summing the branch lengths of GW 

trees, the feature demonstrated in our case study, and interrogating their distributions under 

Shoemaker et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repeat sampling is straightforward and highly interpretable. THTs potentially access much 

broader information, however, whether that be features from the empirical distribution of the 

tree samples, the point process inherent to the branch breaking pattern, or using the rationale 

of the statistical grounding of the known distribution for the branch length sums. More 

exploration can be done, on this data set or others, to determine the full extent of the THT 

for producing features for characterization, classification or more.

Translation and dissemination of code is ongoing, available upon request. For further detail 

about the selection of the random LCA trees, see www.github.com/pkambadu/DyckPaths, 

where it is available under a BSD-style license

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A pictorial description of the methodology for extracting the tree-based feature metrics from 

a radiological image: First, a hierarchical tree is built from the image. Then, the branch 

length sums and other derived metrics are calculated from the tree. These metrics capture 

ITH and then can be used in further statistical analytics.
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Fig. 2. 
A depiction of the LCA sampling process. To the left, the original image. Next, a 30% 

sample of pixels is taken, illustrated by the three images with only 30% of their pixels still in 

color. From each of these, a hierarchical tree is built, where subtle differences can be seen in 

the third set of images. The final image to the right is the empirical density plot of the 100 

LCA samples taken from this image, and it provides an instance in which taking the median 

instead of the mean is important.
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Fig. 3. 
From left to right, the violin plots show the empirical densities of the Median, Median 

Absolute Deviation (MAD), and Median/Median Absolute Deviation features for the adrenal 

lesions used in the case study below, normalized to be between 0 and 1. To the immediate 

right of the density for each feature are the lesion images for the five highest and lowest 

values of each, along with their normalized value. The image colors have been scaled so that 

the individual mean pixel intensities correspond to the same color across all images.
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Fig. 4. 
A heatmap showing the correlation between a set of the NSM and SGLM features with the 

THT based features (highlighted in yellow).
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Fig. 5. 
Receiver Operating Curves for three endpoints chosen for discrimination. Perfect 

stratification was achieved in the calcified lesions, and near perfection for the functioning 

status.
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