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Discontinuous phase transitions 
in the multi‑state noisy q‑voter 
model: quenched vs. annealed 
disorder
Bartłomiej Nowak  , Bartosz Stoń & Katarzyna Sznajd‑Weron  * 

We introduce a generalized version of the noisy q-voter model, one of the most popular opinion 
dynamics models, in which voters can be in one of s ≥ 2 states. As in the original binary q-voter model, 
which corresponds to s = 2 , at each update randomly selected voter can conform to its q randomly 
chosen neighbors only if they are all in the same state. Additionally, a voter can act independently, 
taking a randomly chosen state, which introduces disorder to the system. We consider two types of 
disorder: (1) annealed, which means that each voter can act independently with probability p and 
with complementary probability 1− p conform to others, and (2) quenched, which means that there 
is a fraction p of all voters, which are permanently independent and the rest of them are conformists. 
We analyze the model on the complete graph analytically and via Monte Carlo simulations. We show 
that for the number of states s > 2 the model displays discontinuous phase transitions for any q > 1 , 
on contrary to the model with binary opinions, in which discontinuous phase transitions are observed 
only for q > 5 . Moreover, unlike the case of s = 2 , for s > 2 discontinuous phase transitions survive 
under the quenched disorder, although they are less sharp than under the annealed one.

It might seem that determining the type of a given phase transition is interesting only from the physics point of 
view. However, it has been reported that the hysteresis appears in real social systems1–5, which means that this 
issue is important also from the social point of view. Because hysteresis cannot appear within the continuous 
phase transition, researchers working in the field of opinion dynamics try to determine conditions under which 
discontinuous phase transitions appear6–14.

In this paper we focus on two factors that are known to influence the type of transition, namely the type of 
disorder (quenched vs. annealed) and the number of states. It is known, that discontinuous phase transitions 
can be rounded (become less sharp) or even totally forbidden in the presence of the quenched disorder15–18. On 
the other hand, the larger number of states supports discontinuous phase transitions. The classical example is 
the Potts model: in two dimensions discontinuous phase transitions are observed for the number of states larger 
than 4, whereas continuous ones for the smaller values of states19. Similar situation has been reported for the 
majority-vote model. For the binary model only continuous phase transitions are observed7,11,20, whereas for 
more than two states the model undergoes a discontinuous order-disorder phase transition21,22.

In this paper we introduce the generalized version of the noisy q-voter model, in which each agent can be 
in one of several discrete states, similarly as it was done already for the linear voter23–28, majority-vote21,22,29–32 
or other models of opinion dynamics33,34. We show that already for the 3-state model only discontinuous phase 
transitions are possible. Moreover, we consider the model under two approaches, the quenched and the annealed 
one, and we show that discontinuous phase transitions can survive under the quenched disorder, similarly as 
in35. Only for the binary opinions, which were studied originally, the quenched disorder forbids discontinuous 
phase transition18.

The model
In this paper we propose a generalization of the original binary q-voter model (qVM) with independence6, 
known also as the noisy nonlinear voter36 or the noisy q-voter model37. Therefore, we consider a system of N 
agents placed in the vertices of an arbitrary graph. In this paper we will focus on the complete graph, for which 
exact analytical calculations can be provided. In the generalized model, each agent i is described by a dynamical 
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s-state variable σi(t) ∈ {0, 1, 2, 3, . . . , s − 1} . As in the original q-voter model38, which corresponds to s = 2 , a 
voter can be influenced by its neighbors only if the group of q agents, chosen randomly out of the neighborhood 
of a given voter, is unanimous. Additionally, a voter can change its opinion to a random one, independently of 
others, as proposed by Nyczka et al.6.

These two competitive processes—conformity to others (ordering) and independence (disordering), were 
originally introduced as alternatives appearing with complementary probabilities 1− p and p, respectively. Such 
an annealed approach led to two types of phase transitions in the original q-voter model: continuous for q ≤ 5 
and discontinuous for q > 5 . Later on, it was shown that replacing the annealed disorder by the quenched one 
reduced all transitions to continuous ones18.

In this paper we consider both types of disorder, annealed and quenched, and corresponding elementary 
updates are the following:

•	 Annealed approach

1.	 site i is randomly chosen from the entire graph,
2.	 a voter at site i acts independently with probability p, i.e. changes its opinion to randomly chosen state 

(each state can be chosen with the same probability 1/s),
3.	 with complementary probability 1− p a group of q neighbors is randomly selected (without repetitions) 

and if all q neighbors are in the same state, the voter at site i copies their state.

•	 Quenched approach

1.	 site i is randomly chosen from the entire graph,
2.	 if the voter is independent (a fraction p of all agents is permanently independent), then it changes its 

opinion to randomly chosen state (each state can be chosen with the same probability 1/s),
3.	 if the agent is conformist (a fraction 1− p of all agents is permanently conformists), a group of q neigh-

bors is randomly selected (without repetitions) and if all q neighbors are in the same state, the voter at 
site i copies their state.

As usually time is measured in Monte Carlo Steps (MCS), and a single time step consists of N elementary updates, 
visualized in Fig. 1. It means that one time unit corresponds to the mean update time of a single individual.

Methods
In this section, we are going to analyze the annealed and quenched formulations of the multi-state q-voter 
model (MqVM). We use both the analytical as well as the Monte Carlo approach. We focus on the mean-field 
description of the model, which corresponds to the fully connected graph. This approach was already applied to 
various binary-state6,18,39,40 and multi-state21,25 dynamics. We are aware that Monte Carlo (MC) simulations can 
be carried out only for the finite system, whereas analytical results correspond to the infinite one. However, it 
occurs that already for systems of size N = 105 simulation results overlap the analytical ones.

The main goal of our study is to check how the number of states and the type of disorder influence the phase 
transition, observed in the original q-voter model with independence6. Therefore, we need to find the relation 
between stationary values of the concentration cα of agents with a given opinion α = 0, 1, 2, 3, . . . , s − 1 and 
model’s parameters p and q. The concentration cα is defined as:

where Nα denotes the number of agents with opinion α . As usually, concentrations of all states sum up to one:

(1)cα =
Nα

N
,

Figure 1.   Visualization of an elementary update for the multi-state q-voter model with independence. 
Within the annealed approach two alternative social responses, independence and conformity, appear with 
complementary probabilities p and 1− p . Whereas, within the quenched approach, a fraction p of agents is 
permanently independent, whereas others are always conformists.
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Based on the values of cα we distinguish the following phases:

•	 The disordered phase, in which all opinions are equinumerous i.e. c0 = c1 = · · · = cs−1 =
1
s.•	 The ordered phase, in which one or more opinions dominate over the others. A special case within this phase 

is the state of consensus, i.e. when all voters share the same opinion cα = 1, cβ = cγ = · · · = 0.
•	 The coexistence phase (possible only in case of discontinuous phase transitions), if both ordered and disor-

dered phases can be reached depending on the initial state of the system.

Our model is based on the random sequential updating, i.e. in a single update only one agent can change its state. 
Thus, the concentration cα can increase or decrease by 1/N or remain constant with the respective probabilities:

The dynamics of our model in the mean-field limit is given by the rate equation:

where F(s, cα , q, p) can be interpreted as the effective force acting on the system6,38.

Annealed approach.  Within the annealed approach a system is homogeneous, i.e. all agents are identical 
and transition rates can be expressed as:

where P(i) is the probability of choosing a voter in i-th state and P(α|i) is the conditional probability of picking 
a neighbor in state α given that a target voter is in state i. Inserting γ±

α  to Eq. (4) we obtain:

When events of picking a voter in state i and a neighbor in state α are independent, which is true in case of a 
complete graph, then P(α|i) = P(α) . If we additionally assume that ∀αP(α) = cα , which is also true for a com-
plete graph, we end up with the simple formula:

Stationary states of Eq. (4) are those for which

The obvious solution of the above equation, which is valid for arbitrary value of p, is c0 = c1 = · · · = cs−1 =
1
s . 

The other solutions can be obtained by solving numerically Eq. (8). However, independently we can provide also 
the general analytical solution based on the analogy to the Potts model19. In our model opinions are equivalent 
and there is no external field so we deal with Zs symmetry that can be broken due to the noise. Because we have 
such a noise, introduced by independence, we expect an order-disorder phase transition. At the critical value of 
the noise (temperature in the Potts model and independence here), the Zs symmetry is broken and the system 
choose spontaneously one of s states as a dominant one. From the mathematical point of view, such a transition 
corresponds to the bifurcation, at which fixed point c0 = c1 = · · · = cs−1 =

1
s looses stability41. However, because 

it is a fixed point, although unstable, if initially the system is exactly at this point, it will stay in this point forever. 
It shows how important the initial state is, if we analyze a system of an infinite size.

If initially one opinion dominates over the others, i.e. cα(0) > cβ(0), cγ (0), cδ(0), . . . , where 
α,β , γ , δ, · · · ∈ {0, 1, . . . , s − 1} the system reaches an absorbing state in which this opinion still dominates 
over the others and the concentrations of all the others are equal cα > cβ = cγ = cδ = · · · , see Fig. 2. Similarly, 

(2)
s−1
∑

α=0

cα =
N0 + N1 + · · · + Ns−1

N
= 1.

(3)
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if initially two or more equinumerous states dominate over the others the system reaches an absorbing state in 
which concentrations for these states are still equal and larger than the concentrations of others:

It means that in the final state at most two values of opinion’s concentrations are possible. This observation, 
together with the normalizing condition (2) indicates that all solutions can be written in terms of a single variable 
c, which describes the concentration of a one given state. Because in our model all states are equivalent, we can 
choose any of them as a representative one. Therefore, let us denote the concentration of state 0 by c and then 
the concentrations of all remaining states can be expressed with c by using condition (2):

where ξ = 1, 2, . . . , s − 1 and ξ = 0 indicates solution, where all  states are equinumerous: 
c0 = c1 = · · · = cs−1 =

1
s.

Inserting Eq. (10) to Eq. (7) we obtain

The stationary solutions different than c = 1
s are not that easy to derive in the simple form c = c(p) . However, 

since above equation is linear with the parameter p, we can derive the opposite relation from F(s, cst , q, ξ) = 0 , 
i.e. p = p(cst)

6:

(9)

cα = cβ > cγ = cδ = cǫ = · · ·

cα = cβ = cγ > cδ = cǫ = · · ·

cα = cβ = cγ = cδ > cǫ = · · ·

...

cα = cβ = cγ = cδ = cǫ = · · · =
1

s
.

(10)

c0 = · · · = cs−(ξ+1) = c,

cs−ξ = · · · = cs−1 =
1− (s − ξ)c

ξ
,

(11)F(s, c, q, ξ) = (1− p)

[

(1− (s − ξ)c)cq − cξ

(

1− (s − ξ)c

ξ

)q]

+
p

s
(1− sc).
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Figure 2.   Trajectories for the multi-state annealed q-voter model on the complete graph of size N = 105 with 
the size of the influence group q = 5 and s = 3 states. Upper and lower panels differ by the amount of noise: 
p = 0.025 at the top row and p = 0.09 at the bottom one. Markers and color areas represent the outcome of 
Monte Carlo simulations and thick solid black lines are results of analytical prediction obtained from Eq. (7). 
Symbols represent median trajectory over 50 samples. The shaded color areas show the range of trajectories, i.e. 
are limited by 0 and 100th quantiles. Note that Monte Carlo simulations show a good agreement with analytical 
solutions in all panels, except of the third one in the upper row. The reason for this inconsistency is that in 
this case we are dealing with the hyperbolic (saddle) fixed point, i.e., a stable, as well as an unstable manifold 
exist41. Therefore, within MC simulations the system always eventually leaves such a state due to the finite-size 
fluctuations.
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For s = 2 and ξ = 1 the above equation correctly reproduces the analytical solution for the original binary 
q-voter model with noise6. For more states, namely s > 2 , the above relation produces s − 1 stationary solutions 
for ξ = 1, 2, . . . , s − 1 respectively, see Fig. 3.

The information about the stability of these states is given by the sign of the first derivative of the effective 
force with respect to the concentration c at the steady point:

The state is stable if F ′(s, cst , q, ξ) < 0 and unstable if F ′(s, cst , q, ξ) > 0 . Based on this analysis, two critical points 
can be identified: p = p∗1 in which solution cst = 1/s loses stability (so called a lower spinodal) and p = p∗2 in 
which steady state given by Eq. (12) loses stability (so called an upper spinodal).

At cst = 1/s we can determine the stability analytically, i.e. we are able to derive a formula for the lower 
spinodal. To do so we calculate the derivative of the effective force

which for cst = 1
s gives

From the above equation we see that cst = 1
s is stable for p > p∗1 and unstable otherwise, where

(12)p =
s
[

c
q
st − (s − ξ)c

q+1
st − ξcst

(

1−(s−ξ)cst
ξ

)q]

s
[

c
q
st − (s − ξ)c

q+1
st − ξcst

(

1−(s−ξ)cst
ξ

)q]

− 1+ cst s
.

(13)F ′(s, c, q, ξ) =
dF(s, c, q, ξ)

dc

∣

∣

∣

∣

c=cst

.

(14)

F ′(s, c, q, ξ) = (1− p)

[

cq−1q(1− c(s − ξ))− cq(s − ξ)− ξ

(

1− c(s − ξ)

ξ

)q

+ (s − ξ)cq

(

1− c(s − ξ)

ξ

)q−1
]

− p,

(15)F ′
(

s,
1

s
, q, ξ

)

= (1− p)

(

1

s

)q

s(q− 1)− p.

Figure 3.   Steady states, given by the solution of Eq. (12), for the annealed model with q = 3 . Each row 
corresponds to a different number of states: s = 3 (top panels), s = 4 (middle panels), s = 5 (bottom panels). 
The first column represents all possible solutions indexed with different values of ξ without the distinction 
between the stable and unstable solutions. The remaining columns represent stationary states for initial 
conditions indicated in the top right corner of each panel, where α,β , γ , δ, ǫ ∈ {0, 1, . . . , s − 1} . Stable solutions 
are denoted by the solid lines, whereas the unstable ones are marked with the dashed lines.
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The same result can be obtained in several different ways6,42, for example by taking the limit c → 1/s in Eq. (12). 
As expected, for s = 2 the result for p∗1 agrees with the one for the original q-voter model with independence6. 
We see in Eq. (16) that, the transition point depends on the size of the influence group q and number of states 
s. However, it does not depend on the value of ξ , which means that all stationary solutions intersect in the same 
point p∗1 , as clearly seen in Fig. 3.

The stability of other solutions of Eq. (12) can be determined numerically. In Fig. 4 we present the flow dia-
gram for s = 3 and the noise parameter p = 0 as an example. It is visible that the states with only one dominant 
opinion are attractive. It means that from almost all initial conditions the system reaches the stationary state in 
which one opinion significantly dominates over the others. However, also another type of solution, namely the 
hyperbolic (saddle)41 fixed point appears with more than one dominating opinion. In this case a stable, as well as 
an unstable manifold exist: the point is reached only from the initial state in which two or more equinumerous 
opinions dominate over the others but it cannot be reached from any other state. This type of solution has been 
observed also for the multi-state majority-vote model21.

The steady state related to the saddle point in which several equinumerous opinions dominate over the others 
is visible only within the analytical approach but not within the MC simulations. In the latter case, the system 
initially seems to go towards the saddle point. However, after some time fluctuations push the system into the 
attractive steady state with only one dominant opinion, as shown in the third (from left) upper panel of Fig. 2.

Quenched approach.  Under the quenched approach, we have two types of agents18: independent and con-
formists. For each type we introduce the concentration of agents in a given state, similarly as for the annealed 
model. The only difference in respect to the annealed approach is that this time we consider separately c(I,α) and 
c(C,α) for independent and conformist voters in state α , respectively. As a result the total concentration of voters 
in state α is

Therefore, now the mean-field dynamics is given by two equations instead of one:

Similarly as for the annealed approach we have

(16)p∗1 =
q− 1

q− 1+ sq−1
.

(17)cα = pc(I,α) + (1− p)c(C,α).

(18)
dc(I,α)

dt
= FI(s, c(I,α), q, p),

(19)
dc(C,α)

dt
= FC(s, c(C,α), q, p).

(20)FI(s, c(I,α), q, p) = γ+
I (s, c(I,α), q)− γ−

I (s, c(I,α), q) ≡ γ+
(I,α) − γ−

(I,α),

Figure 4.   Flow diagrams for the annealed model with s = 3 states, the group of influence q = 5 and probability 
of independence p = 0 obtained from Eq. (7). Arrows indicate the direction of the flow in the system. Squares 
refer to stationary points, whereas other markers represent initial points, as indicated in the legend. Lines that 
connect them represent trajectories. Space for clarity is presented for c0, c1, c2 ∈ [0, 1] as independent variables, 
whereas dotted lines on insets represent possible initial conditions which fulfill condition c0 + c1 + c2 = 1.
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where γ+
(I,α) and γ−

(I,α) are probabilities that the number of independent agents in state α increases and decreases 
respectively in a single update. The probabilities γ+

(C,α) and γ−
(C,α) describe the same, but for conformist agents. 

These probabilities can be expressed analogously as in the annealed approach:

where P(i) is the probability of choosing a voter with i-th state, PI(i)/PC(i) is the probability of choosing a inde-
pendent/conformist voter with i-th state and P(α|i) is the conditional probability of picking the neighbor in state 
α given that a target voter is in state i.

As previously, P(α|i) = P(α) , and ∀αP(α) = cα , and ∀αPI(α) = c(I,α) , ∀αPC(α) = c(C,α) , for the complete 
graph. Therefore:

Similarly as in the annealed approach the system can reach the steady state in which all opinions are equinumer-
ous or the one in which some states dominate over the others. Again, we can express all stationary states by c, 
which denotes the concentration of an arbitrarily chosen state, and by cI and cC , which denote the concentration 
of independent and conformist agents in this state respectively:

where ξ = 1, 2, . . . , s − 1 and ξ = 0 indicates solution, where all states are equinumerous.
Hence Eq. (26) reduces to:

Because in the steady state FI(s, cIst , q, ξ) = 0 and FC(s, cCst , q, ξ) = 0 we obtain:

By inserting the above formulas to the last formula of Eq. (27), we obtain:

(21)FC(s, c(C,α), q, p) = γ+
C (s, c(C,α), q)− γ−

C (s, c(C,α), q) ≡ γ+
(C,α) − γ−

(C,α),

(22)γ+
(I,α) =

∑

i �=α

PI(i)

s
,

(23)γ−
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∑

i �=α

PI(α)

s
,

(24)γ+
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∑
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PC(i)P
q(α|i),
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∑
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(26)
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s
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ξ
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It is easy to notice that the above equation for s = 2 and ξ = 1 reproduces the analytical result for the quenched 
binary q-voter model18. For more states, namely s > 2 , above relation produces s − 1 stationary solutions, for 
ξ = 1, 2, . . . , s − 1 in the same way as for annealed model, see Fig. 5.

The stability of a steady point is given by determinant and trace of the Jacobian matrix at this point21,39

where

The state is stable if det[J(cIst ,cCst )] > 0 and tr[J(cIst ,cCst )] < 0 . For the steady state (cIst , cCst ) = ( 1s ,
1
s ) we are able 

to determine the stability analytically as for the annealed version of the model:

(31)J(cIst ,cCst ) =

[

∂FI
∂cI

∂FI
∂cC

∂FC
∂cI

∂FC
∂cC

]

(cI ,cC)=(cIst ,cCst )

,

(32)
∂FI

∂cI
= −1,

(33)
∂FI

∂cC
= 0,

(34)
∂FC

∂cI
= qp

[

cq−1 − (s − ξ)cCc
q−1 + (s − ξ)cC

(

1− (s − ξ)c

ξ

)q−1
]

,

(35)

∂FC

∂cC
= q(1− p)

[

cq−1 − (s − ξ)cCc
q−1 + (s − ξ)cC

(

1− (s − ξ)c

ξ

)q−1
]

− (s − ξ)cq − ξ

(

1− (s − ξ)c

ξ

)q

.

Figure 5.   Steady states, given by the solution of Eq. (30), for the quenched model with q = 3 . The distribution 
of opinions is the same for Independent and Conformist agents. Each row corresponds to a different number of 
states: s = 3 (top panels), s = 4 (middle panels), s = 5 (bottom panels). The first column represents all possible 
solutions indexed with different values of ξ without the distinction between the stable and unstable solutions. 
The remaining columns represent stationary states for initial conditions indicated in the top right corner of each 
panel, where α,β , γ , δ, ǫ ∈ {0, 1, . . . , s − 1} . Stable solutions are denoted by the solid lines, whereas the unstable 
ones are marked with the dashed lines.
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Thus the stead state is stable for p > p∗1 and unstable otherwise, where

We see that, the critical point p∗1 depends only on the size of the group of influence q, but not on the number of 
states s, contrary to the annealed model.

Discussion of the results.  In the above sections, several aspects of the multi-state qVM was analyzed, 
namely the role of the parameters: q being the size of the group of influence, s being the number of states, as well 
as the type of the disorder. The model was considered on the complete graph, which allowed for the mean-field 
approach. However, all analytical results were also confirmed by the Monte Carlo simulations. In particular, we 
observe very good agreement between Eqs. (12), (16), (30), (38) and numerical results for the critical points, see 
Figs. 6 and 7.

It was shown previously that under the quenched disorder only continuous phase transitions are possible 
within the original (binary) q-voter model with noise18. Moreover, even under the annealed approach, the appro-
priate size of the influence group q > 5 is required to obtain discontinuous phase transition6,36,37.

Here we have shown that already for the 3-state opinions, the model displays discontinuous phase transitions 
for any q > 1 , as presented in Fig. 7. An analogous result was obtained for the majority-vote model, in which 
agents are not influenced by the unanimous group of q neighbors but by the absolute majority of all agents in 
the neighborhood. Within such a model with binary opinions, only continuous phase transitions appear43, even 
if an additional noise is introduced7,11,20. However, for more than two states the majority-vote model displays 
discontinuous order-disorder phase transitions21,32.

In Fig. 7 it is also seen that discontinuous phase transitions are observed even under the quenched disorder 
if only the number of states is larger than two, although indeed they are less sharp. This result cannot be com-
pared directly with the analogous one for the majority-vote model, because to our best knowledge multi-state 
majority-vote model was not studied with the quenched noise. However, the 3-state majority-vote model was 
studied on the quenched networks and in such a case only a continuous phase transitions were observed as in 
the binary model21,30.

Although discontinuous phase transitions are observed under both types of disorder, there is a huge differ-
ence between two approaches, clearly seen in Figs. 6, 7 and 8: 

1.	 For an arbitrary number of states s, spinodals p∗1 and p∗2 are non-monotonic functions of q within the annealed 
approach (left panel in Fig. 8), whereas monotonically increasing ones under the quenched approach.

2.	 While the parameter q affects the lower spinodal p∗1 under both approaches (differently as stayed above), 
parameter s influences p∗1 only in the case of the annealed approach, see Eq. (16) for the annealed approach 
and Eq. (38) for the quenched one.

3.	 Hysteresis, and simultaneously coexistence phase, appears under both approaches for s > 2 but it is much 
larger under the annealed approach than under the quenched one.

(36)det[J 1
s ,

1
s
] =

(

1

s

)q−1

(1− q+ qp)

(37)tr[J 1
s ,

1
s
] =

(

1

s

)q−1

(q(1− p)− 1)− 1.

(38)p∗1 =
q− 1

q
.

Figure 6.   Dependence between the stationary concentration of agents in state 0 and probability of 
independence p within the annealed (left panel) and the quenched (right panel) approach for q = 5 and 
s = 3 . Lines represent the solutions of Eqs. (12) and (30): solid and dashed lines correspond to stable and 
unstable steady states, respectively. Symbols represent the outcome from MC simulations for the system size 
N = 5× 105 . The results are averaged over ten runs and collected after t = 105 MCS. Simulations are performed 
from two different initial conditions indicated in the legend. To compare analytical with MC results we plotted 
also error bars, but for almost all values of p they are invisible, i.e. smaller than the symbols representing results.
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Figure 7.   Dependence between the stationary concentration of agents in state 0 and probability of 
independence p within the annealed (upper panels) and quenched (bottom panels) approach for different values 
of the influence group size q = {2, 3, 4, 5, 6} . Arrows in the right corners of subplots indicate the direction in 
which q increases. The number of states: s = 2 (left column), s = 3 (middle column) and s = 4 (right column). 
Lines represent the solutions of Eqs. (12) and (30): solid and dashed lines correspond to stable and unstable 
steady states, respectively. Note that for s = 2 we have only four curves, the reason for that is that for q = 2 and 
q = 3 exactly the same results are obtained. Symbols represent the outcome from MC simulations for the system 
size N = 5× 105 performed from initial condition c0 = 1, c1 = c2 = 0 . The results are averaged over ten runs 
and collected after t = 2× 104 MCS. Symbols above the line c = 1/s correspond to the concentration of state 0, 
whereas symbols below the line c = 1/s represent concentration of all others.

Figure 8.   Phase diagram of the multi-state q-voter model under (a) the annealed and (b) the quenched 
approach. The ordered phases are marked by solid fill-color (green). The coexistence regions are marked by 
crosshatched pattern (red). The disordered phases are shown as no-fill-color regions (white). Lower and upper 
spinodals are marked by dotted and solid thick line respectively.
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Conclusions
Binary opinions are probably the most frequently used microscopic dynamical variables in models of opin-
ion dynamics, such as the linear voter23,44–47 and non-linear voter6,13,18,36–40,48–50 models, or the majority-vote 
model7,8,10,11,20,43,51–55. However, it seems that the binary opinion format is not always sufficient and thus the 
multi-state versions of the voter23–28, as well as majority-vote model21,22,29–32 was introduced.

In this paper we proposed the generalized version of the noisy q-voter model, in which agents are described 
by the s-state dynamical variables. In our model all opinions are equivalent and agents can switch between any 
of them. Hence, it is not the best model for opinions that can be measured within the Likert psychometric scale, 
used to scaling responses in survey research. Such a scale is often used to measure the level of agreement/disa-
greement, e.g., a typical five-level scale would be: Strongly disagree, Disagree, Neither agree nor disagree, Agree, 
Strongly agree. One may argue that going in one step from one extreme to another would be not very realistic. 
Therefore, the multi-state model introduced here would me more appropriate for making a choice between 
equivalent items. A good example of such a situation is a choice between equivalent products or services on the 
oligopoly market, such as the choice of the Cable Television and Cellular Phone Services or Automobiles. The 
model, which could describe opinions on the Likert scale requires in our opinion additional assumptions, such 
as bounded confidence, and will be studied in the future.

We have investigated the model under two types of approaches, the annealed and the quenched one, to check 
how the type of disorder influences the model for s > 2 . Previously it was shown that for s = 2 quenched disorder 
forbids discontinuous phase transitions18. However, it occurs that for s > 2 discontinuous phase transitions are 
possible even for the quenched disorder. Moreover, they appear for any q > 1 , on contrary to the original binary 
q-voter model for which discontinuous phase transitions appear only for q > 5 within the annealed approach.

Physicists always look for universalities and this is also the case in this paper. If we compare two popular, yet 
very different, binary models of opinion dynamics, such as the majority-vote and the q-voter model we clearly see 
such a universality. In both models introducing only one additional (third) state results in discontinuous phase 
transitions for the annealed approach. The universality of the second result obtained here, namely the survival 
of the discontinuous phase transition under the quenched approach would be an interesting task for the future.
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