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Abstract

Background: Epidemiological models have been employed with great success to explore the efficacy of alternative
strategies at combating disease outbreaks. These models have often incorporated an understanding of age-based
susceptibility and severity of outcome, considering how to limit the adverse outcomes or disease burden relative to
an age structure. Such models frequently recommend the preferential treatment/vaccination of children or

the elderly, demonstrating how prevention of serious disease within these etiological subgroups can provide both
protection within the subgroup itself and indirect protection to the broader population. However, it is most
frequently the case that these target populations are consumers, rather than providers, of household resources. In
areas of the globe where continued health of household members relies on continued provision of resources, these
models may fail to provide the most effective overall strategies for health outcomes in both target populations and
overall. This is particularly important for tropical diseases impacting rural and low-income areas in which the disease
may be endemic or newly emergent, particularly in the wake of natural disasters.

Methods: We propose a modified epidemiological model with targeted treatment in resource-limited populations.
We evaluate the model over a broad parameter space.

Results: This model demonstrates how economic limitations may shift the optimal strategy. It may be
advantageous to treat populations at lesser direct risk if they are responsible for providing secondary protection to
higher-risk population(s) by producing household resources. Evaluation of this model over the parameter space
reveals that, in some cases, targeting treatment towards consumers may result in greater numbers of consumer
infections.

Conclusions: Our results demonstrate how household resource limitation can drastically affect the impact of
targeted treatment strategies for limiting epidemics. Depending on the economic circumstances, it is possible that
focusing treatment on consumers such as children can produce a counter-intuitive outcome in which more
children contract the disease.
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Background

Mathematical epidemiological models have a long history
of examining the impact of both prophylaxis and
treatment on the dynamics of disease within populations
[1-5]. These examinations have incorporated certain
aspects of financial concerns, usually when considering
cost-benefit analyses of population-level investment into
particular interventions, such as vaccination [6—8]. Many
economic epidemiology models have been built to explore
both targeted and non-target specific vaccination to deter-
mine maximal effectiveness at population-wide reduction
of both incidence and/or disease-related mortality [9—11].
Similarly, models of treatment, especially under assump-
tions of limited resources, whether economic or pharma-
ceutical, have explored how best to reduce total impact of
epidemic outbreaks for many different diseases and in
many different populations [12-15].

Models have also demonstrated the different needs of dif-
ferent demographically distributed populations, especially
in diseases with age- [16, 17] or immunocompentence-
specific [18, 19] etiologies. The impact of differential treat-
ment protocols has been studied before, demonstrating ef-
fects within and without the particular etiological group
being treated [20, 21]. Nowhere are these differences more
extreme than in developing or war-torn nations, where
populations are frequently exposed to a broad variety of
pathogens with serious outcomes. When these outcomes
are so skewed as to risk the lives of children, while merely
causing moderate, short-duration incapacity in adults, these
models have frequently focused on limiting disease-related
mortality [22—-26], mirroring public sentiment and behavior
(cf. [27-29]). While this is obviously one of the most im-
portant concerns, in severely socio-economically depressed
areas, these strategies may prove economically naive, lead-
ing to increased mortality from indirect negative health
outcomes to children by compromising the health of their
caretakers. Many of the areas of the world with severe
socio-economic depression are also those facing a multi-
tude of severe diseases. It is therefore important to couple
epidemiological and economic models to investigate the dy-
namics as these two coupled systems impact economic
productivity and health status of individuals in households.

Household economics and family health can be inex-
tricably intertwined (cf. [30-33]): if the person respon-
sible for the majority of a family’s income is unable to
work due to disease, even if that disease provides no dir-
ect mortality risk to the infected individual, the loss of fi-
nancial productivity can compromise, for example, the
health and/or nutritional resources available to the fam-
ily. In areas where minimal nutritional needs are difficult
to meet under normal conditions, compromised nutri-
tional intake can lead to increased disease susceptibility
(cf. [34]). Models of endemic disease and economic
distress at a national scale demonstrate that certain
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conditions create so-called “poverty traps” where disease
and poverty are mutually reinforcing [35]. This leads to
an obvious trade off in patterns of directed treatment,
even if the only goal is the minimization of childhood
disease burden (i.e. minimizing the greatest mortality
risks). (Note: In the cases we examine here, we assume
the disease affects the entire population rather than, for
example, childhood diseases in which resource limita-
tions do not relate to treatment allocation to specific
demographic segments.)

From this perspective, population-level efforts to
minimize the disease risk could require a shift from a
purely epidemiological perspective to an economically
motivated epidemiological perspective. Often, a health
organization provides aid or assistance to supplement
available resources to families. When such treatment re-
sources are limited, the recommendation to focus treat-
ment on those at greatest risk of direct disease-related
mortality may inadvertently lead to greater overall
mortality due to indirect economically-based effects on
pathogen susceptibility such as those previously de-
scribed. This is true even when strictly limited to only
same-pathogen attributable mortality.

Models examining the impact of infection in different
demographic segments of a single, interacting popula-
tion, have shown that focusing prophylaxis or treatment
on subpopulations in which there is heightened trans-
mission of disease (through either increased contact or
susceptibility) can have protective effects for the entire
population (e.g. [20]). Since the most frequent subpopu-
lation of concern for heightened transmission in these
ways is children, there is the potential for conflict be-
tween family health and public health. If a family can do
best at safeguarding all its members, including its chil-
dren, by ensuring their economic safety by preferentially
treating the parents, then that effect may spill out into
the greater community. The potential for this interactive
effect between household economics, household health,
and community health implies that simple discount fac-
tors are insufficient to capture the true effects of house-
hold financial concerns on population-level outbreaks. A
true epidemiological model, incorporating household in-
come effects, is needed.

These models are inspired by a number of diseases for
which resource management and treatment targeting is
essential to the maintenance of a productive workforce.
For example, malaria infection is less severe in able-
bodied adults, but it will remove them from the
workforce and hamper their household economic prod-
uctivity. However, we do not study malaria specifically,
instead focusing on a more general model. Diseases like
leptospirosis and Chagas disease have been shown to be
emergent and neglected in both Europe and the United
States [36, 37], while malaria can be found to be
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seasonally emergent, rather than endemic, in parts of
Africa and Asia [38, 39]. Treatment strategies for these
diseases requires similar economic-epidemiological con-
sideration. These effects are amplified by the increasing
frequency, severity, and risk associated with natural di-
sasters, like Hurricane Maria in Puerto Rico, which re-
sulted in significant outbreaks of leptospirosis.

Methods

Assuming that each member of a family has an eco-
nomic role within the household as either a net produ-
cer of resources, or else as a net consumer, and taking
into account not only direct costs of treatment for par-
ticular diseases, but also the costs of minimal nutritional
maintenance, we propose a model that builds off of the
standard SIR framework, splitting each disease state to
separately characterize the producer and consumer pop-
ulations within each household.

Compartmental models in epidemiology, whether im-
plemented as continuous differential equations models,
discrete agent based models, or otherwise, comprise a
broad swathe of the literature in this area [40-43].

While our model is explicitly designed to consider
preferential treatment strategies in response to the emer-
gence of an infectious disease, the result is the same as
models likewise tuned for preventative strategies for
seasonal or ongoing endemic transmission by simply
adjusting the economic parameters (e.g. subtracting pre-
ventative treatment costs from household income) and
perhaps elongating the time frame over which we would
estimate the disease burden.

Discrete, agent-based simulation

We first consider a stochastic, discrete-time, agent-based
model. 500 households are constructed randomly, with
1-4 producers and 0-7 consumers, drawn from a
weighted binomial distribution, averaging 2 producers
and 3 consumers per household. Households are gener-
ated randomly in this way to represent the probability
that individuals “arrive” successfully in the household,
with parameters adjusted to set the average and range
accordingly. Such Bernoulli events produce a binomial
distribution [44] and the details of this implementation
can be found in Additional file 1. One producer in one
household is initially infected (untreated) to begin the
outbreak.

In order to understand the effect of age, particularly
the division between ages associated with economic
activity and inactivity, we include assumed age-based
etiology for both producer and consumer populations
(assuming producers are adult and consumers are
children): probabilities of transmission $, and f5, and of
recovery ¥, and y. Infected individuals receiving
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treatment have increased probabilities of recovery y;;
and y7. We also assign for each population a percentage
of treatment coverage, T, and T, describing what por-
tion of infected individuals from that population are
intended to be treated. Individuals who are infected are
categorized as treated with coverage T, or T, (respect-
ively) at the time they become infected.

Further, we account for the interaction of household
members, employing a different probability of transmis-
sion from infected to susceptible individuals, ¢ rather
than 5. We assume that household contact is frequent
enough that individuals within a household are equally
likely to transmit the infection to one another regardless
of whether or not they are well enough to work. For this
reason, we do not need to divide the population based
on whether each producer works within the home or
outside, which could vary from household to household,
or even within a household.

With this framework, we then introduce the limitation
of household economics, employing a total monetary re-
source per household (denoted M;(0) =500), increased
daily by healthy producers at rate P, = 50, and decreased
daily by costs to support consumers at rate C. which
will vary. We assume that infected producers do not
produce any resources while sick. Further, we assume a
fixed cost per treatment C,, and that treatment will only
successfully be applied at initial onset of illness. To in-
corporate the indirect loss of immuno-support from lack
of resources, we assumed an increased probability of

transmission {ﬁ, i}, to susceptible individuals in families
without available resources. Increases in disease shed-
ding and susceptibility (and thus transmission) are asso-
ciated with lack of treatment and nutritional/economic
stress [45, 46].

An underlying assumption of such a transmission
process is that the population is relatively well-mixed,
and that the social contact network between individ-
uals is relatively uniform and well-connected. Because
we are focusing on small populations, generally work-
ing in agricultural or other small, single-industry
communities, we expect that there will be one school,
one marketplace, one main workplace, etc. within the
community, suggesting such a well-mixing assumption
(a relatively common assumption in SIR and similar
models) is particularly well-founded for this type of
population.

At each time-step (1 day), we update the monetary re-
sources of each household based on its producers, con-
sumers, and treatment costs (if any). We vary the
economic parameters C. and C; in our analysis. In
addition to the economic dynamics, at each time-step,
we associate to each individual a single probability de-
rived from the transmission probabilities, and each indi-
vidual randomly contracts the disease (or not) based on
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that composite probability. If so, the individual is ran-
domly assigned a treatment status (treated or untreated)
using the appropriate coverage proportion, T, or T,.
Parameter values and ranges of values are provided in
Table 1. Note that these parameter values are used for
both the discrete model and the continuous model in-
troduced in the next subsection. Each rate is adjusted
accordingly, translating the rates of a continuous model
into the probabilities of a discrete model, so that the two
models are equivalent (meaning the same basic
reproduction ratio Ry). To achieve this, we need only ad-
just the recovery rates (although one could also adjust
transmission rates while preserving R).

Since our focal question relies on a careful balance be-
tween economic resources, costs of treatment, average
household demographics, and the epidemiology of a
treatable infection, we refrained from parameterizing the
model in direct representation of any one outbreak. In-
stead, we have chosen to demonstrate the potential is-
sues using assumed, abstracted figures that could easily
approximate a variety of infectious disease outbreaks in
different populations, but make particular predictions
about no one specific epidemic.

In order to assess the effectiveness of treatment strat-
egies, we fix a particular combination of C. and C; and
run a set of Monte Carlo simulations across the full set
of possible T, - T, combinations. We can observe the

Table 1 Epidemiological and economic parameter values

Epidemiological Parameters

% Producers in Population 40%
% Consumers in Population 60%
Transmission Probability (Producers) By 03
Transmission Probability (Consumers) Be 0.5
Transmission Probability (Broke Producers) ﬁp 04
Transmission Probability (Broke Consumers) ﬁ( 0.7
Recovery Probability (Producers) Yp 0.1
Recovery Probability (Consumers) Ye 01
Recovery Probability (Treated Producers) y; 0.5
Recovery Probability (Treated Consumers) yb 05
Transmission Probability (Household Producers) Ip 0.03
Transmission Probability (Household Consumers) le 0.05
Transmission Probability (Broke Household Producers) I 0.04

Transmission Probability (Broke Household Consumers) 1. 0.07

Treatment Proportion (Producers) T, varies

Treatment Proportion (Consumers) Te varies
Economic Parameters

Producer Net Daily Production P, 50

Consumer Net Daily Consumption C.  varies

Cost of Treatment (& varies
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total number of infected individuals, or isolate the con-
sumer population. We focus on the latter, since it is our
objective to reduce infections in this more vulnerable
population.

In order to produce meaningful data for a single C. - C,
pair, where the Monte Carlo data begins to converge and
show meaningful trends, we must run about 500 Monte
Carlo simulations per T, - T, combinations, or roughly
200,000 simulations. The limitations of such high-
intensity computation require us to modify our approach
to analyze a greater portion of the space of C.-C,
combinations.

Code used to produce this simulation is available in
Additional file 1.

Continuous approximation of the system

In order to more fully explore the range of impacts on
such a system of varying the parameters governing the
household economic constraints and targeted public
health policies, we also constructed a continuous model
of this system using ordinary differential equations. This
continuous model complements the discrete model by
providing greater analytic insight, while the discrete,
agent-based model allows us to verify that our observa-
tions are present in a treatment of the system allowing
for complete stochasticity and heterogeneity.

We denote the sizes of susceptible, infective, and
recovered populations of producers and consumers as
{Sps Iy R, Sc, 1, R}, respectively. We designate infected
individuals who are receiving treatment with a*. We
also denote the average household size | /| (which is 5,
as above) and use this to define {S,, I, R, S, I, R}, an
average measure of the distribution of each class of indi-
vidual in each household, scaled to the size of the total
population, N =2500. (Note: whereas the agent-based
model allowed us to fully explore heterogeneity among
households in the population, for this continuous model,
we assume that all households behave uniformly.)

g:%%
5.= s,
Q:%(g+g)
=),
@:%&
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Using these definitions, we define the following initial
system of differential equations (which is then modified
to include economic constraints). This system highlights

the disease dynamics:

Wy | = Bo(Sp(lo+17)) =By (Splle+ 1))
‘19(51) ‘p( pic

e A5 1) RIS
= te(Selp) = te(Sele),

U | o= Bo(So (1 + 1)) + B Sy + 1)) +(5,1)
+p (Sple) ) (1- Tp)~Yylp,

dlc/dt = (B, (Sc (Ip +1;)) +B.(Sc(I. + 1))
He(Selp) + te(Scle))(1-T )=y Le
B (5010 15)) B 5o 1) i)
‘Hp(spic))( )~ }’;IL

dlf/dt: (ﬁc(55<1p+1;)) +B(Sele +17))
Fie(Sely) + te(Sele) (Te)-y I,

dR _ +r+
p/dt_)/plp+}/p[pa

and
dR, +r+
=yl I
/ dr = Vele Ve

In each dS/dt and dI/dt term, we find the usual g S I
terms, where in each case, we must account for trans-
mission from all four infective categories. Additional ¢ S I
terms account for transmission within households (thus
using the I weighted variables). The y I terms account for
recovery in the usual way and are no more complex than
the most basic SIR model.

However, these equations have not yet accounted for
the economic factors, which change the rates of disease
transmission. We reintroduce the variable Mj, to indicate
the amount of economic resources a household has. To
translate this constraint under the averaging effect of the
continuous model, M), represents the economic state of
all households, collectively.

For notational simplicity, we define

4=, (8, (1o 1)) B, (So 1+ 1)) =t (S,1) 1 (S,1e)
B =B, (5:(1,+ 1} ) )-Bu(Sele + I7)) ~e(SeIy) e (ScL)
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= /3( (1 +I+)) B(Sp(lc+Ic+))‘2p(5pjp)‘ip(5p16)

B= (st +1) ) Bt + 1)) ie(5iD) (.1

These A and B differ from A and B only by the modi-
fied disease transmission rates. We therefore redefine
our system of differential equations to include this:

dS/ lth>0 A
dt lf My<0, A

dS/ _ {lf My >0, @
dt if My<0, B
-A(1ij)-yp1p

d[ / — {lf My > 0,
dt -A-y,lp

if My<0,

dl, / lf My >0, -B(1-T)-yl
ar =~ Lif M=o, ~B-y .

df;/ _ (if My>0, -ATp- )’+I+
e Mi<0, “Volp

dI*/ lf My >0, -BT.- )’+I+
dt lf tho _YC c

The quantity M), itself varies over time, based on the
number of active resource producers and resource con-
sumers, as follows:

] 1= (Bo(Sp 1] Ry ) =CelSe 4 e 1] 41, +Re)

-, (1; + 1;))/1\17

This formulation permits analysis over a broader set of
economic parameters. We vary C, from 0 to 50 and C,
from 0 to 500. Concretely, with P, fixed at 50 and a 3:2
consumer to producer ratio, households consume be-
tween 0 and 150% of their income daily, and one daily
treatment costs between 0 and 5days’ worth of house-
hold income.

To more easily quantify this information, we define CPR
to be the consumption-to-production ratio of the average
household, and likewise define TCI to be the treatment-
cost-index, the number of days’ worth of household in-

come one treatment costs, i.e. TCI = Cr / op.°

We consider an economy strong when the CPR is low,
i.e. where each household consumes significantly less
than its daily income, and weak when it is not (in par-
ticular, CPR > 1 means households tend to lose money).
Using these two relative metrics to understand the econ-
omy, we map the entire set of outcomes within the par-
ameter space of C, and C,.

We allow TCI to range as low as 0 (allowing free treat-
ment) and 5 (an extremely prohibitive cost) in order to
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analyze a broad set of parameter values. Values of TCI
significantly higher than 1 have been observed [33].

We focus much of our attention in each instance to
lines of demographically proportionate treatment, by
which we mean gradations in the T, - T,-plane wherein
equal numbers of treatments are administered, allocated
differently between producers and consumers. The slope
of these lines reflects the 3:2 ratio of consumers to
producers. These are indicated in all graphs of the T, -
T,-plane by white lines. We discuss a number of com-
parable scenarios in which the economic parameters are
fixed and we contrast two (or more) points in the T, -
T,-plane and the outcomes therein. The comparable
points are along lines of demographically proportionate
treatment — where the combined total of individuals
treated would be equal, assuming otherwise proportion-
ate incidence of the disease — the neutral assumption to
make in order to test hypotheses related to dispropor-
tionate disease burden, and a reflection of treatment
strategies that are predetermined, not dynamic.

It is important to note that the purpose of this study is
to understand how the effect of household-level resource
limitations interact with treatment strategies that are de-
vised a priori. We are considering treating a fixed por-
tion of each category of the population, assuming with
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no future knowledge of the outbreak and no means for
more complex adaptive or otherwise time-varying treat-
ment strategy. In resource-limited environments, it may
not be possible to implement a strategy besides a static,
predetermined allocation of a certain treatment rate for
each of the two categories, treating a given fraction of
producers and consumers presenting with the disease.
To demonstrate the impact of household-level re-
source limitation, we explore the parameter space of this
model, varying the economic parameters (CPR and TCI)
and the treatment coverages (7, and T.). We observe
scenarios in which, for a fixed CPR and TCI, varying T,
and T, in a way that allocates preferential treatment for
consumers (while treating equivalently fewer consumers)
increases the disease burden within that vulnerable

group.

Results
In the discrete model, Monte Carlo simulations reveal
preferentially treating consumers, given a fixed number
of total individuals treated, generally leads to a higher in-
cidence of consumer infection. This phenomenon ap-
pears throughout the parameter space (Fig. 1).

This phenomenon is also supported by results from
the continuous model. In cases in which the economy is

0% 25% 50%

75% 100%

100%

75%

50%

25%

T.: Portion of consumers treated

N

SO

0%

100%

2500
75%

2000

50%

1500

25%

1000

0%

0% 25% 50%

T,: Portion of producers treated

Fig. 1 Consumer disease burden vs. treatment protocol. Discrete model, with economic parameters CPR=0.6, TCI =1, and all other parameters as
in Table 1. Lines of demographically proportionate treatment in white. Measured as total individuals infected

75% 100%
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Combined

100% 100% -

75% 75%[

50% 50%

25% 25%

T.: Consumer Treatment Rate
T.: Consumer Treatment Rate

0% 0%

100% -

2000

1500

1000

T.: Consumer Treatment Rate

0% 25% 50% 75% 100% 0% 25%

T,: Producer Treatment Rate

Tp: Producer Treatment Rate

Fig. 2 Incidence of infection vs. treatment protocol. Continuous model with economic parameters CPR=0.6, TCI=0.5

75% 100% 0% 25% 50% 75% 100%

T,: Producer Treatment Rate

strong or treatment is inexpensive, we see the type of
behavior we would naively expect: along lines of demo-
graphically proportionate treatment in the T, - T, plane,
the incidence of infection in producer and consumer
populations remains relatively constant. As treatment in-
creases for either group, a steady improvement in the
outcomes is visible (e.g. CPR = 0.6, TCI = 0.5, see Fig. 2).

In the case of an extremely weak economy, we see out-
comes that are similarly naive, in that there is no dis-
cernable difference between incidences of infection
along lines of demographically proportionate treatment.
The significant difference between this and a stronger
economic scenario is a sharp rise in disease incidence
with only minor decreases in the treatment coverage
(e.g. CPR=0.9, TCI = 5, see Fig. 3).

This sharp threshold in outcomes for a weak economy
highlights the role of the economy in epidemiological
outcomes. With T, =0.8 and T,.=0.8 (Fig. 4), we see a
lower incidence of disease and an economy that almost
goes bankrupt (bankrupt meaning M, <0). With T,,=0.7
and T, =0.7 (Fig. 5), we see a slightly larger incidence of

disease before the economy goes bankrupt, but after it
does so, the incidence rises sharply.

Recall that each treatment scenario does not imply
treatment of all cases. For example, T, =0.75 means
treatment of 75% of cases in producers so long as
there are sufficient economic resources to provide
treatment at the onset of each infection. Once these
resources are depleted, additional individuals are not
treated. This depletion can result in secondary jump
or other bimodal behavior in the infective population.
It is thus possible for alternative strategies to allow
for better allocation of economic resources, provide
more effective control even with fewer cases specified
for treatment.

For example, consider a scenario with CPR =0.9 and
TCI=2.5. We can treat the same number of individuals
in three different ratios (producers to consumers), either
favoring consumers, favoring producers, or treating
equal numbers of each (Fig. 6).

Using the case of equal treatment (7, =0.51 and T, =
0.51) as a baseline (1450 consumers infected), we find

Producers

Consumers

Combined

100% 100%

75%

75%

50%

50%

25% 1 25% 1

T.: Consumer Treatment Rate
T.: Consumer Treatment Rate

0% 0%

100% - &=

75%[

1000

25%

500

T.: Consumer Treatment Rate

0%

0% 25% 50% 75% 100% 0% 25%

Tp: Producer Treatment Rate

Tp: Producer Treatment Rate

Fig. 3 Incidence of infection vs. treatment protocol. Continuous model with economic parameters CPR=0.9, TCI=5

75% 100% 0% 25% 50% 75% 100%
T,: Producer Treatment Rate
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Fig. 4 Incidence of infection over time. Continuous model with economic parameters CPR=0.9, TCI =5 and treatment coverage 7,=038, T.=08

J

that by favoring consumers (T}, = 0.15 and T, = 0.75), the
incidence of infection in consumers increases by 1.6%
(1473 infected). Conversely, favoring producers (7, = 0.9
and T,=0.25), the consumer incidence decreases by
4.6% (1383 infected).

Note that we are comparing outcomes along lines of
demographically proportionate treatment (see detailed
explanation in Methods above). This distinction allows
us to consider the question of whom to treat (i.e., which
proportion of each class of individuals to treat) given a
fixed number of treatments, in order to have a particular
outcome. We are not considering cases in which we
treat equal numbers of producers and more consumers,
which in all cases lead to better outcomes for both
groups. We are considering cases in which, in order to
treat more consumers, we treat fewer producers. We
have found that for certain economic parameters, this is
worse for consumers.

This phenomenon is easily explained. Although equal
numbers of individuals are treated, by treating more pro-
ducers, the economy continues to be healthier, with
M;,(2) > 0. By treating more consumers, we find that the
economy can temporarily or permanently run out of re-
sources (i.e. My(t) <0). Treating even more producers
can prevent or shorten this bankruptcy, resulting in even
lower incidence among consumers. This is a case in

which we could observe in the T}, — T, plane where out-
comes are no longer equivalent along lines of demo-
graphically proportionate treatment, as shown in Fig. 7.
These scenarios are also shown in greater detail in
Figs. 8, 9 and 10.

Additionally, we can observe that the epidemiological
dynamics are affected significantly by the transition from
My(£) >0 to My(t) <0. Treating more consumers makes
this phenomenon worse, resulting in longer periods in
which the economic resources available for treatment
are exhausted, during which there will be an increase in
incidence of disease (both overall, and specifically in
consumers). The transition to an economic state of
bankruptcy induces a second wave of the outbreak, and
it is clear (a priori, or from the data) that the length of
this secondary outbreak is worse than the first, since
M,;(t) <0 increases the disease transmission and de-
creases the recovery.

By reframing this model as a system of differential
equations, key quantities (in particular, M) are no
longer distributed across households — they are simply
averaged. Instead of seeing this phenomenon steadily
(Fig. 1), we see sharper thresholds with more pro-
nounced jumps (see Figs. 3 and 7 — particularly Fig. 3
contrasted with Fig. 2), but only along lines of demo-
graphically proportionate treatment near the center of

Mi(t)

000

Units of Currency
Individuals

2000

~s000

All Individuals

Infective Individuals
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Fig. 5 Incidence of infection over time. Continuous model with economic parameters CPR=0.9, TCI =5 and treatment coverage T,=0.7, T.=0.7
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the graph, rather than throughout the entire parameter
space (as in the discrete case).

We note that these jumps (non-smooth points) at the
start of a secondary outbreak are, in some sense, artifacts
of the differential equations model, wherein households
experience similar conditions at the same points in time.
In the agent-based simulation, we have observed the
same phenomenon, but with the heterogeneity of a
discrete, stochastic model, the two outbreaks are not
separated by a specific non-smooth point at some point
where a threshold is crossed.

Another counter-intuitive phenomenon appears in the
continuous model at a second-order level. When no
other phenomena occur in the T,- T, plane, we find
very little variation in incidence (e.g. CPR=1.2, TCI=
1.5, see Fig. 11).

However, we see instead second-order behavior that
shows it may be possible to allocate too many economic
resources on treatment (for either producers or con-
sumers). We can observe that in certain cases, higher
treatment coverage result in the depletion of economic
resources early, resulting in an effective treatment

coverage much lower, while slightly lower coverage al-
lows the economy to sustain itself for slightly longer.
(While this gain is truly very slight within the scope of
our current model, more detailed economic models may
provide greater insight into critical cases; the marginality
of this benefit is what makes this effect a very small,
second-order phenomenon.)

We have characterized three distinct phenomena that
may occur in the T}, - T,, depending on the values of C,
and C; (with other parameters fixed). We name them as
follows:

The weak economy phenomenon, where there is a
sharp decrease in the incidence of disease when treat-
ment level reaches a certain threshold (treatment of
fixed number of individuals, regardless of whether they
are consumers or producers), as demonstrated in the ex-
ample in Fig. 3;

The threshold phenomenon, where shifting from
consumer-heavy treatment strategies towards producer-
heavy treatment strategies produces a paradoxical benefit
for consumers, even moving along lines of demographic-
ally proportionate treatment, as in the example in Fig. 7;
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Fig. 9 Incidence of infection over time. Continuous model with economic parameters C. =30, C,= 250 and treatment coverage
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7,=09,7,=025

The overspending phenomenon, the second-order
phenomenon demonstrated in Fig. 11.

We can quantify the occurrence of these phenom-
ena in the C.- C; plane. We show the most remark-
able, the threshold phenomenon, in Fig. 12. We can
observe that these phenomena all occur most promin-
ently in cases in which CPR is 0.45 to 0.75, a range
in which the cost of consumers is significant, but not
too close to the total household income. The other
two phenomena are also shown individually as Figs. 13
and 14, respectively.

Discussion

The majority of epidemiological studies exploring the
optimal patterns of limited resource allocation to achieve
maximal epidemic control have assumed population
level economic or biomedical limitations. While these
assumptions work well for the developed world, in the
developing world there are many different scenarios of
economically determined disease susceptibility. As we
have begun to explore, these scenarios can depend upon
the personal, household maintenance of health, includ-
ing minimal, ongoing, adequate nutrition, but also
clearly need to incorporate the underlying demography,

relative levels of financial productivity, treatment costs,
and socioeconomic distribution of the population to be
protected. Critically, however, exactly such scenarios are
those in which subsidized availability of medical inter-
ventions and outcome-based targeted public health cam-
paigns are most frequently employed.

For tropical diseases in areas where household
treatment strategies are limited by the day-to-day in-
come of working adults, we have demonstrated that it is
important to consider the economic productivity as a
crucial contribution to the health of other members of
the household. Diseases like malaria, Chagas disease, and
leptospirosis, whether endemic or emergent, in
resource-limited communities, should require careful
analysis before making decisions regarding targeted
treatment strategies, particularly when triggered by nat-
ural disasters, which can themselves temporarily depress
the economic productivity and elasticity of a vulnerable
community.

Naturally, the models here presented apply directly in
only a very explicit set of circumstances: illness must be
sufficiently debilitating as to prevent someone from go-
ing to work, and financial support must be able to pro-
vide sufficient direct impact to health status as to affect
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Fig. 12 Occurrence of “threshold” phenomenon in the C.— C; plane. Continuous model with all parameters as in Table 1. Brighter blue represents
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susceptibility to infectious disease, and treatment must
speed recovery without increasing the ability to transmit
the disease in the meanwhile by enabling nominal social
interactions. While these requirements are far from rare
in the developing world, analysis of the specifics will be
critical to any recommendation as to effective targeted
treatment strategy. These models have demonstrated the
need for these specific investigations, showing how
individual-level economic constraints and disease eti-
ology can invalidate the accuracy of recommendations
from models that fail to incorporate these concerns.
Based on these results, it is clear that targeted policies,
meant to protect the most vulnerable members of a
population, may inadvertently backfire if the broader
economic impacts of intervention are not also
considered.

Conclusions
Using both agent-based simulation and continuous dif-
ferential equations, we explore the implications of
expanding traditional epidemiological models to account
for individual- and family-level economic factors: the
production and consumption of household resources. In
this resources-limited model, treatment is allocated only
when a household can afford it. We answer a key ques-
tion: which individuals in each household to treat, pro-
ducers or consumers. Although the model assumes
certain economic circumstances and represents a small,
well-mixed population, it exhibits a phenomenon worthy
of study and indicating caution is required.

We analyze the relationship between the total cases of
consumer illness, as a measure of adverse outcomes in
children, against three parameters: the net-income of

CPR
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Fig. 13 Occurrence of “weak economy” phenomenon in C,— C. plane
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each household, the cost of treatment, and the propor-
tion treated from each group (producers and con-
sumers). We examine household-scale economies in
which a family does not have a high net-income relative
to the cost of treatment. The most effective strategy for
minimizing the number of consumers, the at-risk group,
to contract the disease may be to focus treatment on the
other group, the producers. This counter-intuitive con-
clusion is demonstrated by examining how the economy
impacts the overall dynamics of the disease outbreak.
This suggests further study, in more diverse systems
representing less homogeneous systems or more specific
populations, is necessary and that public health policy
should be informed by this ongoing study.

We also suggest that increasing economic inequality,
on the global scale, has created or entrenched low-
income communities like the ones we describe all over
the world, living day-to-day without monetary resources
to weather a health crisis. For this reason, there is great
importance in research that models such communities
and accounts for nuances of health policy for these peo-
ples and regions, particularly when a more refined or
nuanced approach might run counter to naive intuition
or best practices in other environments.
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