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One major barrier in glycoscience is the lack of diverse and biomedically relevant

complex glycans in sufficient quantities for functional study. Complex glycans from

natural sources serve as an important source of these glycans and an alternative

to challenging chemoenzymatic synthesis. This review discusses preparation of

complex glycans from several classes of glycoconjugates using both enzymatic and

chemical release approaches. Novel technologies have been developed to advance

the large-scale preparation of complex glycans from natural sources. We also highlight

recent approaches and methods developed in functional and fluorescent tagging and

high-performance liquid chromatography (HPLC) isolation of released glycans.
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INTRODUCTION

Glycans, as one of the four major biological macromolecules in mammalian systems, are the
most diverse and abundant biopolymers (Ohtsubo and Marth, 2006). Besides serving as structural
support (such as cellulose) and energy storage (such as starch and glycogen), many glycans are
covalently linked to proteins or lipids and play a wide variety of functional roles in physiological
and pathophysiological states (Varki, 2017; Reily et al., 2019). Aberrations of glycan structures are
associated with many diseases, including cancer, autoimmune, infectious, chronic inflammatory
diseases, etc. (Reily et al., 2019).

Recently, glycoscience and functional glycomics have greatly advanced to systematically study
the structure and function of glycans (Paulson et al., 2006; Cummings, 2009; Taniguchi et al.,
2009; Smith and Cummings, 2013; Cummings and Pierce, 2014; Song et al., 2015). However,
the functional study of glycans and glycoconjugates lags far behind those of proteins/peptides
and nucleic acids. This is partially due to the fact that glycosylation is a post-translational
modification, and the biosynthesis of glycans is not directly template-driven. Glycans are often
highly branched structures as products of concerted reactions by glycosyltransferases and/or
glycosidases. As a result, both high-throughput structural characterization (sequencing) and
automated synthesis/expression are yet in the infant stage. Nevertheless, the importance of
biological functions of glycans has been more and more recognized, driving significant interests
to glycoscience study. Over the last decades, many new methods and technologies, such as those
based on high-performance liquid chromatography (HPLC), mass spectrometry (MS), and LC-MS,
have been developed to facilitate glycoscience study (Royle et al., 2008; Zaia, 2008; Doneanu et al.,
2009; Ruhaak et al., 2010). Among those, the glycan microarray has proved to be very successful
as a high-throughput screening tool for protein–glycan interactions. A glycan microarray is a
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presentation of a library of diverse glycan structures on a
solid surface, such as microscope glass slides, for interrogation
with fluorescently tagged glycan binding proteins (GBPs). As
the biological functions of glycans are often realized through
their specific interaction with GBPs, the glycan microarray has
become extremely useful in elucidating ligand specificity of GBPs
and generating biological hypothesis based on protein–glycan
interactions (Fukui et al., 2002; Stowell et al., 2010; Song et al.,
2014a, 2015; Smith et al., 2019). For a glycan microarray to
be useful, the expansion of glycan libraries with more diverse
and biomedically relevant structures is critical for advancing
functional glycomics (Song et al., 2014a). The lack of more
of these glycan structures for structural and functional study
is a general problem for nearly all aspects of glycoscience. To
address this problem, currently there are two main approaches
to prepare glycans: chemical/chemo-enzymatic synthesis and
isolation/separation of glycans from natural sources. Chemo-
enzymatic approaches have been developed for the synthesis of
structurally defined glycans in the last two decades (Koeller et al.,
2000; Blixt and Razi, 2006; Boltje et al., 2009; Lepenies et al.,
2010; Palcic, 2011; Schmaltz et al., 2011). A lot of effort and
various synthetic methods have been introduced to make more
complex glycans available (Wang et al., 2013, 2018; Chen, 2015;
Li et al., 2015; Shivatare et al., 2016; Prudden et al., 2017; Zhang
et al., 2017; Wen et al., 2018; Liu et al., 2019), and recently, two
enzyme-mediated oligosaccharide synthesizers were reported to
facilitate the synthetic progress (Zhang et al., 2018; Li et al., 2019).
Despite many recent advancements in prototypic automated
glycan synthesis, the synthesis of complex, highly branched
glycan structures is still extremely challenging and can only be
carried out in a number of noncommercialized laboratories. In
addition, chemical/chemoenzymatic synthesis is target-driven,
and the selection of biomedically relevant structures as synthetic
targets relies on preliminary structural and functional analysis
of natural glycome (Song et al., 2014a). On the other hand, the
preparation of natural glycans has been traditionally carried out
at µg scales for structural analysis. Because the biomedically
relevant glycan structures often exist at low abundance and
as heterogeneous glycoconjugates, the challenges to isolate
sufficient quantities in high purity and define their structures are
also high. Nevertheless, due to their higher potential biomedical
relevance and lower technical barrier to access, we consider the
production of natural glycan preparation for functional study to
be an important and indispensable approach for glycoscience and
functional glycomics.

In general, natural glycans occur in two categories: covalently
attached to other biomolecules as glycoconjugates and free
reducing glycans existing in organisms. The preparation of
glycans from glycoconjugates requires the release of glycans first.
Then glycans can be tagged, purified, and separated based on
their physical and chemical properties. In this review, we discuss
the diverse approaches for preparing different classes of nature
glycans, including N-glycans, O-glycans, glycosphingolipids,
glycosaminoglycans, glycosylphosphatidylinositol (GPI)-anchor
glycans, and human milk oligosaccharides (HMOs). Glycans
released from diverse natural glycoconjugates on cells or free
glycans can be extracted, tagged, and purified to expand

natural glycan libraries. These natural glycans can be printed
onto glass slides as microarrays for functional glycomics
study (Figure 1).

N-GLYCAN RELEASE FROM NATURAL
GLYCOPROTEINS

As the most well-studied class of glycans until now, N-glycans
can be cleaved off glycoproteins by several enzymes, such as
Peptide-N-Glycosidases (PNGase) and endoglycosidases (Endo)
(Figure 2). PNGase F is the most widely used enzyme to remove
N-glycans from most N-linked glycoproteins and glycopeptides
except core α3-fucosylated N-glycans, which are commonly
found in plants and insects (Plummer et al., 1984; Tarentino
et al., 1985; Tretter et al., 1991). PNGase A has broader
substrate specificity and can cleave core α1–3-fucosylated N-
glycan (Takahashi, 1977). Recently, PNGase F-II, acid-stable
PNGase H+, and PNGase Yl from yeast are all reported
to release core α3-fucosylated N-glycans (Du et al., 2015;
Lee et al., 2015; Sun et al., 2015). PNGase Ar is able to
release the unusual GalαFucα1,3-reducing terminal core from
Caenorhabditis elegans (Yan et al., 2018). As another option for
enzymatic N-glycan release, endoglycosidases are able to cleave
the β1–4-linkage of the di-N-acetylchitobiose core, and such
enzymes include Endo A, Endo H, Endo M, Endo D, and Endo
S (Freeze and Kranz, 2008; Huang et al., 2012; Wang and Amin,
2014; Li et al., 2016). Although they cleave N-glycans at the same
position, they have different substrate specificities related to the
structures of the N-glycans (Fairbanks, 2017). Although it is not
a focus of this review, it is worth noting that many mutants
of endoglycosidases have been developed as synthases for N-
glycopeptides and glycoproteins (Huang et al., 2012; Wang and
Amin, 2014). The high cost of PNGases and endoglycosidases
limits their application in large-scale preparation of N-glycans.
Another enzymatic approach is using pronase to cleave peptide
bonds and leave glycan-peptide linkages intact (Dodds et al.,
2009; Song et al., 2009a; Lu et al., 2019). Pronase is much cheaper
than PNGases and endoglycosidases, but its full digestion of
glycoproteins to glycoamino acids is always a challenge and often
difficult to reproduce.

Chemical release approaches have provided an alternative to
solve the high cost of enzymatic approaches in large preparation
of N-glycans. Hydrazinolysis and ammonia/ammonium
carbonate have been shown to release N-glycans from
glycoproteins (Yosizawa et al., 1966; Huang et al., 2001; Nakakita
et al., 2007). However, toxic reagents and/or harsh conditions
are necessary, which is not amenable to large-scale preparation
and may seriously affect the structural integrity of the released
glycans. Under a set of optimized milder alkaline conditions,
N-glycans without core α1–3-fucose can also be released by
selective hydrolysis of N-glycopeptide (Yuan et al., 2014).

Recently, we reported two different chemical approaches
for large-scale release of N-glycans. The first approach is a
“chemoenzymatic” method to release N-glycans called threshing
and trimming (TaT) (Song et al., 2014b). In the first threshing
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FIGURE 1 | Preparation of natural glycans for functional glycomics.

FIGURE 2 | Common method to release glycans from glycoproteins and glycosphingolipids.
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step, glycoproteins are treated with pronase to create a pool of N-
glycoamino acids and glycopeptides with short peptide moieties.
In the second trimming step, N-bromosuccinimide (NBS) is
added to the mixture of glycoamino acids and glycopeptides to
generate free-reducing glycans, nitriles, or aldehydes, depending
on different reaction conditions. These products can be easily
tagged with fluorescent tags for HPLC purification, MALDI-
TOF-MS analysis, and functional study. The TaT approach
releases N-glycans without using specialty enzymes, hazardous
chemical reagents, and harsh reaction conditions; thus, it can be
easily applied for relatively large-scale glycan preparation.

Inspired by the oxidative decarboxylation by NBS treatment,
we explored other oxidative reagents and surprisingly discovered
that sodium hypochlorite (NaClO) (household bleach) efficiently
releases glycans from most classes of natural glycoconjugates
(N-glycans, O-glycans, and GSLs) directly from cells, tissues,
and organs (Song et al., 2016). In this oxidative release of
natural glycan (ORNG) method, household bleach is added to
homogenized natural materials (animal/plant tissues) and stirred
for 15–30min at room temperature. After acid precipitation,
the free-reducing N-glycans in the supernatant are purified
by chromatography techniques, including size exclusion, anion
exchange, and hydrophobic/hydrophilic interaction. Purified
glycans are ready for fluorescent tagging by reductive amination
and separated into individual components by multidimensional
HPLC. The ORNG approach is fast, easy to operate, and can
be applied to multi-kilograms of natural materials to produce
gram-scale natural complex glycans. In ourmost recent study, the
ORNG approach was demonstrated as a complementary route
for the preparation of multi-milligram quantities of purified
high-mannose N-glycans (Zhu et al., 2018a).

O-GLYCAN RELEASE FROM NATURAL
GLYCOPROTEINS

Mucin-type O-GalNAc glycans, which attach to serine or
threonine residues of proteins through an α-linkage, are the
major O-glycans. Compared with N-glycans, which can be
released from glycoproteins by several N-glycanases (Plummer
et al., 1984; Tarentino et al., 1985; Plummer and Tarentino,
1991), there is a lack of effective general O-glycanase to
release O-glycans. Natural O-glycans are traditionally released
by chemical methods. The most commonly used method is
reductive β-elimination using sodium hydroxide (NaOH) and
sodium borohydride (NaBH4) (Carlson, 1966, 1968). Because the
common 3-O-substituion at core GalNAc renders it susceptible
toward a β-elimination-related peeling reaction after the release
of O-glycan from the protein backbone by NaOH, in situ
reduction of the reducing end by high-concentration NaBH4 is
necessary. The reductive β-elimination converts the reducing end
of O-glycan to alditols. Although it is useful for MS-based glycan
profiling, it prevents further derivatization and functionalization
for glycan purification and printing on a microarray. Several
nonreductive β-elimination methods have been developed to
keep the reducing end for further derivatization; (Patel et al.,
1993; Chai et al., 1997; Huang et al., 2001; Merry et al., 2002;

Miura et al., 2010; Yamada et al., 2010; Kozak et al., 2012)
however, most of them are still based on base-catalyzed β-
elimination, and “peeling” is nearly inevitable (Yu et al., 2010).
Furthermore, even if an intact free-reducing end is generated,
the following tagging step often generates open-ring O-glycans,
which destroy the structural integrity of the O-glycans and,
subsequently, may affect its functional study, such as the glycan
recognition on a microarray (Prasanphanich et al., 2015). The
regeneration of the natural α-O-linkage is significantly more
challenging than that of the N-glycan linkage. A PMP-related
releasing and tagging approach for O-glycans has also been
developed by Wuhr’s and Wang’s groups (Wang et al., 2011;
Zauner et al., 2012) using the combination of β-elimination
followed by Michael addition, both of which are catalyzed by a
strong base. However, the PMP or related tagged glycans are only
suitable for glycomics analysis—not for further derivatization
and functional screening on microarrays.

Interestingly, our novel ORNG method also can effectively
release O-glycans from glycoproteins or tissues of organisms
(Song et al., 2016). The release of O-glycans by ORNG is
mechanistically different from all previously known methods.
Instead of base-catalyzed elimination, sodium hypochlorite
oxidatively degrades the protein backbone to generate O-glycan-
acids containing glycolic acid (serine-linked) or lactic acid
(threonine-linked) as aglycons in addition to a smaller fraction
of free-reducing O-glycans. As a result, these glycolic/lactic
acid–linked O-glycans to a great extent retain the structural
integrities of the O-glycans as well as the α-O-linkage to the
aglycon, preserving O-glycan recognition involving the linkage.
In addition, compared to β-elimination, ORNG release is faster
and the reaction condition is milder; thus, many labile functional
groups, such as sulfation and O-acetylation, are uncompromised
after NaClO treatment. More importantly, the released O-glycan
acids can be easily labeled using a common amidation reaction
with a florescent tag, such as mono-9-florenyl-methoxycarbonyl
(mono-Fmoc) ethylenediamine for HPLC separation to prepare
O-glycan libraries, and these mono-Fmoc tagged O-glycans
can be deprotected by piperidine to expose the amino group
for immobilization onto microarray slides for functional O-
glycomics studies.

Unlike all the above release strategies, recently we have
developed a novel technology termed cellular O-glycome
reporter/amplification (CORA), which uses an O-glycan
precursor (peracetylated benzyl-α-N-acetylgalactosamine,
Ac3Bn-α-GalNAc) to amplify O-glycans in living cells and
secretes free Bn-O-glycans into the cell media. The secreted Bn-
O-glycans can be easily purified and analyzed by MS (Kudelka
et al., 2016). CORA greatly enhances the sensitivity of MS
analysis of O-glycome from living cells. However, the low UV
absorption of the Bn group makes the isolation of these glycans
using HPLC challenging. In order to overcome this limit, we
have recently designed and synthesized many Ac3Bn-α-GalNAc
derivatives as CORA precursors to replace Ac3Bn-α-GalNAc.
These new CORA precursors include many function groups,
such as the fluorescence group and bioorthogonal reactive
groups (Zhang et al., 2019), allowing O-glycans produced by
CORA to be tagged, separated, and purified by chromatography
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for functional study. Preparative CORA using these derivatives
as precursors is currently under investigation, and we believe this
method could become a promising approach for preparation of
O-glycans (Figure 3).

GLYCAN RELEASE FROM
GLYCOSPHINGOLIPIDS

Glycosphingolipids (GSLs) are amphipathic glycoconjugates
widely distributed on the cell surfaces. Although exoglycosidases
and endoglycosidases are only able to cleave the glycan moieties
from GSLs (Li and Li, 1999), endoglycoceramidases are found
to release entire glycans from GSLs (Ishibashi et al., 2007; Li
et al., 2009; Albrecht et al., 2016). However, the enzymes are
expensive and specific to certain GSL structures, preventing their
wide application in larger scale glycan preparation from GSLs.

Traditional chemical methods utilize ozonolysis or osmium
tetraoxide to oxidize the C=C double bond in the sphingosine
moiety, followed by base-catalyzed β-elimination (Wiegandt
and Baschang, 1965; Hakomori, 1966). In order to prevent
the potential adverse effect of base treatment on glycan
structural integrities, we have developed several approaches to
release glycans from GSLs for functional study through glycan
microarray preparation using covalent immobilization. The first
approach takes advantage of the aldehyde group generated by
ozone treatment of GSLs, which can be directly coupled with
functional and fluorescent tags by reductive amination. This
approach preserves a significant portion of the lipid moiety and
may benefit functional studies requiring the lipid component
(Song et al., 2011). The second approach is to heat ozonized
GSLs gently under neutral pH, which interestingly releases

free-reducing glycans fairly efficiently (Song et al., 2012). Both
of these methods still require ozone to oxidize the C=C double
bond to initiate the reaction and can only be applied to purified
GSLs. In our most recent ORNG approach, we found that in
addition to N- and O-glycans, NaClO can also release glycans
as cyanomethyl glycosides from GSLs—apparently through the
oxidative degradation of the lipid moiety at the polar head
group (Song et al., 2016). The ORNG approach can be applied
not only to gangliosides purified by organic solvent extraction,
but also directly to aqueous homogenized brain tissue (Song
et al., 2016). The ability to release GSL-glycans without involving
organic solvent extraction significantly reduced the complexity
of GSL-glycan preparation and is essential to larger scale glycan
production. Interestingly, although NBS can also release glycan
nitriles from gangliosides at 65◦C, this reaction does not work
directly on homogenized brain tissue.

GLYCAN RELEASE FROM
GLYCOSAMINOGLYCANS AND
GPI-ANCHORS

Glycosaminoglycans (GAGs) are linear polydisperse
heteropolysaccharides, consisting of up to 1,000 repetitive
disaccharide units (Murata et al., 1985; Jackson et al., 1991).
Heparin, a highly sulfated form of heparan sulfate (HS)
glycosaminoglycans, has been shown to possess important
biological functions that vary according to its fine structure
(Liu et al., 2009). Heparin has widespread clinical use as an
intravenous anticoagulant with more than 100,000 kg produced
annually worldwide (Liu et al., 2009). Commercial heparin is
currently produced from animal tissues, such as porcine intestine

FIGURE 3 | CORA method for preparation of O-glycans by living cells. Ac3Bn-α-GalNAc derivative can enter the cell, be deacetylated to form a Bn-α-GalNAc

derivative, and then be extended by glycosyltransferases in the O-glycosylation pathway in Golgi. The Bn-O-glycan derivatives are secreted to cell media. The

fluorescently labeled O-glycans can be purified to prepare O-glycan libraries for functional O-glycome study.
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and beef lung (Bhaskar et al., 2012). The methods used for
commercial preparation of heparin involve five basic steps:
(1) preparation of tissue, (2) extraction of heparin from tissue,
(3) recovery of raw heparin, (4) purification of heparin, and
(5) recovery of purified heparin (Linhardt and Gunay, 1999).
While being similar, the heparins derived from different animal
sources have diverse structures that relate to different functional
activities, such as AT- and thrombin-binding affinities (Liu
et al., 2009). A worldwide health crisis in 2007, associated with
contamination of several heparin batches, reportedly resulted
in more than 200 deaths alone in the United States (Liu et al.,
2009; Turnbull, 2011). Low-molecular weight heparins (LMWH,
MW avg <8 kDa) are subcutaneously administered, have a
longer half-life than unfractionated heparin, and can be prepared
with different structures by different depolymerization methods,
including oxidation, deaminative degradation, and β-elimination
(Linhardt and Gunay, 1999).

With the improvement in chemical and chemo-enzymatic
methods, the synthetic scale of GAGs has reached gram scale,
and the automated solid-phase synthesis of chondroitin sulfate
GAGs is available (Eller et al., 2013; Mende et al., 2016;
Xu et al., 2017), which enable facilitated access to functional
and biological study of GAGs. Although glycan microarray
analysis of natural GAG oligomers have been reported for
more than 10 years (Noti et al., 2006; Park et al., 2008),
large-scale GAG microarrays for general screening of GAG-
binding proteins are only reported in a synthetic approach
(Yang et al., 2017; Zhang et al., 2017; Zong et al., 2017).
The high heterogeneity of the sulfation patterns of the GAG
chains make the isolation of homogeneous GAG oligomers,
structural characterization, and chemical/enzymatic synthesis
a challenging task. Nevertheless, with the recent progress
in HPLC analysis and separation, preparation of a more
comprehensive natural GAG glycan library for functional
study with GAG-binding proteins will become possible in the
near future.

GPI-anchor proteins play critical roles in numerous biological
processes, such as cell recognition and interaction (He et al.,
1987; Takeda and Kinoshita, 1995; Paulick and Bertozzi, 2008).
Because the first total synthesis of an intact GPI anchor was
in 1991 (Murakata and Ogawa, 1991), convergent chemical and
chemo-enzymatic strategies for GPI synthesis were developed,
and more than 30 GPIs were isolated and characterized (Wu
et al., 2008; Yu and Guo, 2009; Swarts and Guo, 2010; Guo,
2013). AN effective strategy of labeling of cell-surface GPIs and
GPI-anchored proteins was developed for biological studies (Lu
et al., 2015). However, natural-sourced GPI anchor preparation
for functional study is not well studied yet, presumably due to the
lack of well-defined enzymatic and chemical release methods and
low abundance of GPI-anchors in cells.

PREPARATION OF HUMAN MILK
OLIGOSACCHARIDES

Human milk oligosaccharides (HMOs), occurring as
free-reducing glycans, are the third major component of human

milk after lactose and lipids and are known to play important
roles benefiting infant health (Chen, 2015). HMOs are extended
from lactose by a collection of glycosyltransferases, adding
N-acetyl-glucosamine, galactose, fucose, and neuraminic acid
(Jenness, 1979). More than a hundred different HMO structures
have been identified and elucidated (Zopf et al., 1978; Prieto and
Smith, 1985; Smith et al., 1985; Jensen et al., 1995). Due to its high
abundance in human milk (5–15 g/L) as free-reducing glycan
without the need to release from other biomolecules, large-scale
isolation and separation of HMOs have been practiced for many
years. In an early study, individual HMOs were isolated directly
by size exclusive, anion-exchange, and paper chromatography
without being derivatized (Kobata et al., 1969; Donald and
Feeney, 1988). More recently, with the wide use of HPLC
isolation and MS analysis, tagging of HMOs by functional
and/or fluorescent groups for separation and further functional
study is more common. We have applied our bifunctional
fluorescent tag AEAB to HMO isolation and fractionation
(Song et al., 2009b). Isolated glycans can be directly printed on
a microarray for functional screening with various GBPs and
viruses (Yu et al., 2012). With more complex HMO structures
becoming available for functional study, we expect further
elucidation of their functions through interaction with the
infant microbiome.

FUNCTIONAL AND FLUORESCENT
TAGGING OF RELEASED GLYCANS

After being released from natural sources, glycans existing in
the heterogeneous mixture need to be separated for analysis
or for preparation of pure glycans. Due to the lack of an
exploitable chromophore in natural glycans and the anomeric
mutual rotation at the reducing end, it’s a challenge to monitor
glycans during HPLC separation. The preparation of glycan
microarrays also requires that the glycans are derivatized with
functional groups, such as an amino group. Therefore, it is
important to install functional and fluorescent tags on the
released glycans for easier and more efficient separation and solid
phase immobilization afterward.

Reductive amination of free-reducing glycans with fluorescent
amines has long been used for the HPLC profiling of glycans
(Figure 4). 2-aminopyridine (2-AP), 2-aminobenzamide (2-
AB), 2-aminobenzoic acid, or anthranilic acid (2-AA) are
commonly use fluorescent amines (Hase et al., 1978; Bigge
et al., 1995; Anumula, 2014). However, these small fluorescent
amines lack a functional group for efficient solid phase
immobilization or covalent derivatization. With an aromatic
amino group, a homobifunctional tag, 2,6-diaminopyridine
(DAP) conjugated glycans can be immobilized onto activated
surfaces for microarray preparation (Xia et al., 2005; Song
et al., 2008). To efficiently immobilize precious natural glycans,
we developed a novel heterobifunctional tag, 2-amino-N-(2-
aminoethyl)benzamide (AEAB), which contains both arylamine
and alkylamine (Song et al., 2009b). The aromatic amine
selectively reacts with the free-reducing end of released glycans
by reductive amination while the alkylamine is used for efficient

Frontiers in Chemistry | www.frontiersin.org 6 July 2020 | Volume 8 | Article 508

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhang et al. Preparation of Natural Glycans

FIGURE 4 | Several typical methods of fluorescent tagging of released glycans for functional study preparation.

solid-phase immobilization onto both NHS and epoxy-activated
glass slides.

One inherent problem with commonly used reductive
amination is breaking the reducing end ring structure, affecting
the glycan structural integrity. To address this drawback,
new methods and linkers have been reported, such as 2-
amino-methyl-N,O-hydroxyethyl (AMNO) (Bohorov et al.,
2006) and N-Fmoc-3-(methoxyamino)propylamine (F-MAPA)
(Wei et al., 2019). We also developed a procedure to
prepare HMO-AEAB conjugates with an intact reducing end
ring structure (Yu et al., 2012). More recently, we have
designed a new tag, O-benzylhydroxylamine (BHA), which
can be easily and efficiently installed on HMOs and keep
the glycan structure integrity (Zhang et al., 2020). By Pd/C-
catalyzed hydrogenation, free HMO can be easily regenerated
from HMO-BHA.

Compared to nonderivatized glycans, the installation of a
fluorescent tag to released glycans often increases the sensitivity
of MS analysis. Although premethylation is considered a
necessary step for detailed sequencing by MS (Ashline et al.,
2014), the conjugated tags often generate structural complexity
during permethylation. Therefore, we developed a facile andmild
method using NBS to remove tags of aminated glycans, which
regenerates free-reducing glycans for permethylation (Song et al.,
2013). This method can be efficiently applied to all types of

tags installed through reductive amination, including 2-AP, 2-AB,
2-AA, and AEAB.

Because of the easy installation and removal, the 9-
fluorenylmethoxycarbonyl (Fmoc) group is widely used as an
amino-protecting group in organic chemistry, especially in
peptide synthesis. After being installed on released glycans, the
fluorescent Fmoc group can greatly enhance sensitivity of HPLC
to tagged glycans (Kamoda et al., 2005; Song et al., 2009a;
Yamada et al., 2013; Lu et al., 2019). It can also serve as an
affinity tag due to the hydrophobicity. The amino group can be
easily regenerated for solid-phase immobilization in microarray
printing (Kamoda et al., 2005; Yamada et al., 2013; Wei et al.,
2019). We have successfully installed an Fmoc tag on the released
glycan from natural O-glycanconjugates and glycosyphingolipids
in our ORNG method (Song et al., 2016).

HPLC SEPARATION OF GLYCANS FOR
FUNCTIONAL STUDY

Over the years, various HPLC methods have been commonly
used for glycan purification, including hydrophilic interaction
liquid chromatography (HILIC), high-performance anion-
exchange chromatography (HPAEC), and reversed-phase
chromatography (Ruhaak et al., 2010; Nagy et al., 2017).
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HILIC mode HPLC is an efficient technique for separation of
unprotected saccharides (Fu et al., 2010; Melmer et al., 2011;
Wan et al., 2015) while reversed-phase chromatography is
suitable for hydrophobic saccharides (Rajakylä, 1986; El Rassi,
1995; Dallabernardina et al., 2016). HPAEC is usually used for
negatively charged unprotected carbohydrates (Rohrer et al.,
2013, 2016). Porous graphitized carbon (PGC) as a unique
stationary phase combining both hydrophobic and anionic
interactions separates glycans based very well on their isomeric
structures under reverse-phase elution conditions (Fan et al.,
1994; Itoh et al., 2002; Ruhaak et al., 2009; West et al., 2010;
Lie and Pedersen, 2018). Because the glycans obtained from
biological sources are often complex mixtures, multidimensional
HPLC is necessary to separate them into individual glycans
with significant purity (Nagy et al., 2017). We have successfully
applied multidimensional HPLC to isolate an individual glycan
library for microarray study (Song et al., 2009b; Yu et al., 2012).

Most of the HPLC separation methods are designed for
analytical glycomics using small samples, which does not
generate significant quantities of glycans for detailed functional
study. There have been a few examples in which a more
significant amount of starting materials are used to generate a
sufficient amount glycans for NMR study (Green et al., 1988;
Da Silva et al., 1995). However, no real preparative-scale HPLC
separations have been tacked previously, presumably due to the
unavailability of a large amount of released glycans. With gram-
scale glycans from a natural source are available because of the
ORNG technique, development of preparative-scale purification
becomes practical and provides an effective route to address the
lack of glycans for functional study. We have reported isolation
of high mannose N-glycans from soy proteins and egg yolks by
a preparative scale multidimensional HPLC method (Zhu et al.,
2018a,b). However, even after multidimensional HPLC, some
fractions are still mixtures of isomers that are very difficult to
separate even on analytical columns. To address this problem,
recycled HPLC could be a good solution (Alley et al., 2013;
Sidana and Joshi, 2013). Most recently, we have reported a simple
and affordable closed-loop recycled HPLCmethod for separation

of complex glycans in the preparative scale. It was successfully
applied to reverse-phase chromatography, HILIC, and sizes using
size-exclusion chromatography (SEC) (Zhu et al., 2020).

CONCLUSIONS

With a highly diverse structure, natural glycans are likely
more biologically relevant for functional study. Here, we have
summarized the preparation of several classes of complex
glycans from glycoconjugates. Both enzymatic and chemical
approaches have been discussed, and each method has its own
advantages and should be carefully selected based on the specific
goal of individual study. When a large amount of natural
glycans are desired, chemical approaches, especially the new
ORNG approach provides a good alternative to chemoenzymatic
synthesis. The ORNG approach is able to quickly release up to
grams of glycans from several major classes of glycoconjugates
using affordable chemical reagents (household bleach), a mild
reaction condition, and a simple operation. Nevertheless, more
preparationmethods are still in demand, especially for O-glycans,
GAGs, and GPI-anchors. The novel CORA method provides a
potential new route toward O-glycans if preparative scale can
be achieved.
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