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Abstract

Background

Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis,

yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rab-

bits). A set of 11 treponemal genome sequences including those of five Treponema pallidum

ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. per-

tenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemi-

cum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum

ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes.

Methodology/Principal findings

A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence

of positively selected genes using both site and branch-site models with CODEML (PAML

package). Subsequent analyses with sequences obtained from 62 treponemal draft

genomes were used for the identification of positively selected amino acid positions. Syn-

thetic biotinylated peptides were designed to cover positively selected protein regions and

these peptides were tested for reactivity with the patient’s syphilis sera. Altogether, 22 posi-

tively selected genes were identified in the TP genomes and TPA sets of positively selected

genes differed from TPE genes. While genetic variability among TPA strains was predomi-

nantly present in a number of genetic loci, genetic variability within TPE and TEN strains

was distributed more equally along the chromosome. Several syphilitic sera were shown to

react with some peptides derived from the protein sequences evolving under positive

selection.
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Conclusions/Significance

The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected

genes. Most of the positively selected chromosomal loci were identified among the TPA

treponemes. The local accumulation of genetic variability suggests that the diversification of

TPA strains took place predominantly in a limited number of genomic regions compared to

the more dispersed genetic diversity differentiating TPE and TEN strains. The identification

of positively selected sites in tpr genes and genes encoding outer membrane proteins sug-

gests their role during infection of human and animal hosts. The driving force for adaptive

evolution at these loci thus appears to be the host immune response as supported by

observed reactivity of syphilitic sera with some peptides derived from protein sequences

showing adaptive evolution.

Author summary

In the genus Treponema there are several human and animal pathogens that include the

causative agent of syphilis (Treponema pallidum ssp. pallidum; TPA), the causative agent

of yaws (T. p. ssp. pertenue; TPE), and the causative agent of endemic syphilis (T. p. ssp.

endemicum; TEN). T. paraluisleporidarum causes venereal spirochetosis in rabbits. We

used whole genome sequences of 11 treponemal strains together with additional 62 draft

genomic data to identify genes evolving under positive selection. The identified genes

evolving under positive selection partly overlapped with the genes previously reported as

recombinant and were found to be different in treponemal subspecies. Since both genetic

recombination and positive selection could allow a survival of pathogenic bacteria despite

the human immune response, identification of such genes could predict the major anti-

gens recognized by the human immune system and also identify the most suitable compo-

nents for development of an anti-treponemal vaccine.

Introduction

Adaptive evolution including positive selection plays crucial roles in the evolution of bacterial

human pathogens and both have been well documented on a genome-wide scale in a number

of bacterial genera including Escherichia, Helicobacter, Neisseria, Listeria, Salmonella, Strepto-
coccus, Campylobacter, and Actinobacillus [1–8].

Pathogenic treponemes are both human and animal pathogens. Human pathogens include

Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, T. p. ssp. pertenue
(TPE, the causative agent of yaws), and T. p. ssp. endemicum (TEN, the causative agent of

bejel) while animal pathogens include TPE causing non-human primate infections [9–12], and

T. paraluisleporidarum ecovar Cuniculus (TPeC; formerly denoted as Treponema paraluiscuni-
culi), the causative agent of venereal spirochetosis in rabbits, and T. paraluisleporidarum
ecovar Lepus, which infects hares [13–15]. Although the recent work of Edmondson et al. [16]

reported successful long-term cultivation of T. pallidum in a tissue culture system, most of the

data on treponemal genetics comes from the whole genome sequencing studies [17,18].

The above-listed pathogens are monomorphic, i.e., highly similar at the genetic level and all

the genomes of these pathogenic treponemes characterized to date share a genetic identity of

98% or higher [17,18]. The group of human pathogens (TPA, TPE, TEN) are even more
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related sharing a genetic identity over 99.7% [17,19,20]. Currently, 14 complete treponemal

genomes have been published including six TPA genomes, six TPE genomes, one TEN

genome, and one TPeC genome [12,19–29]. In addition, 23, 25, 8, and 6 draft whole genome

sequences of treponemal strains or isolates were published recently by Arora et al. [30], Pinto

et al. [31], Sun et al. [32], and Marks et al. [33], respectively.

The genomes of pathogenic treponemes related to T. pallidum contain no prophages or

insertion sequence-elements [21,34], or plasmids [35]. Therefore, recombination is expected

to be quite infrequent among these treponemes due to a lack of mobile genetic elements [21].

However, traces of both intragenomic DNA recombinations via gene conversion [36–38] and

intergenomic homologous recombination after DNA horizontal gene transfer have been

described [20,25]. In addition, traces of positive selection have been detected in previously

published papers including TPA and TPE comparisons [19], comparisons within TPA strains

[39], and detailed intrastrain analysis [40]. However, no comprehensive analysis of positively

selected loci in the genomes of pathogenic treponemes has been performed to date.

Despite the fact that treponemes related to Treponema pallidum are monomorphic bacteria

with extremely low level of genetic diversity [18], it has been shown that human immunity

does not protect against different subspecies and not even against different syphilis strains

[41]. Therefore, divergent genes encoding differences in proteomes of individual treponemal

strains and subspecies are likely of importance for development of syphilis vaccine.

In this communication, the whole genome sequences of 11 treponemal strains were system-

atically analyzed for the presence of positive selection. The identified genes were further reana-

lyzed relative to all sequences available in 62 draft genomes published to date. The causative

agents of syphilis, yaws, and bejel differed in sets of positively selected genes. Moreover, several

synthetic peptides covering positively selected protein regions were found to interact with

syphilitic sera.

Materials and methods

Strains used in this study

A set of 11 treponemal genomic sequences was examined in this study and included genomes

of five TPA strains (Nichols, DAL-1, Mexico A, SS14, Chicago B), four TPE strains (CDC-2,

Gauthier, Samoa D, Fribourg-Blanc), one TEN strain (Bosnia A), and one strain of TPeC

(Cuniculi A). An overview of the complete genome sequences used is shown in Table 1. Subse-

quent analysis of selected genes was performed on additional 62 draft genomes (Arora et al.
[30]; Pinto et al. [31]; Sun et al. [32]; GenBank genome TPA sequences [UW074B, UW189B,

UW228B, UW254B, UW391B] and TEN Iraq B [CP032303.1]). The overall algorithm is

shown in Fig 1.

Identification of genes under adaptive evolution

The TPE Samoa D was used as a reference genome, and all 1068 orthologous genes were

extracted from the other 10 complete genomes using given annotation coordinates. The ortho-

logous sequences from the complete genomes were aligned at the codon level using Matlab

R2013a software and the Bioinformatics Toolbox. Only genes where at least three nonsynon-

ymous mutations at different sites occurred were further analyzed with respect to the presence

of positive selection. A BLAST search was used to determine orthologous sequences in the

draft genomes. These sequences were aligned in Matlab at the nucleotide level because large

number of ambiguous sites precluded proper automatic ORF localization. Then the sequences

from the draft genomes were scanned for nucleotide differences. After filtering sites with

unknown nucleotides, insertions, and deletions, only orthologs with more than five nucleotide
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differences at different sites were analyzed further. These orthologs were aligned with the cor-

responding genes from the complete genomes to determine the ORF and identify the number

of nonsynonymous mutations. At the same time, the TPeC orthologs were excluded in this

step due to frequent sequential diversity and due to the lack of pathogenicity of TPeC to

humans. The removal of the TPeC orthologs did not change the number of detected positively

selected genes. Compared to an analysis of whole genomes, no new locus with more than

three nonsynonymous mutations at different sites was identified during the analysis of draft

genomes.

Table 1. Treponemal genomes analyzed in this study.

TP strain� Place and year of isolation Reference GenBank Accession number, Genome sequence reference

TPA Nichols Washington, D.C., USA; 1912 [42] CP004010.2, [21,26]

TPA DAL-1 Dallas, USA; 1991 [43] CP003115.1, [29]

TPA SS14 Atlanta, USA; 1977 [44] CP004011.1, [24,26]

TPA Mexico A Mexico City, Mexico; 1953 [41] CP003064.1, [25]

TPA Chicago Chicago; 1951 [41] CP001752, [22]

TPE CDC-2 Akorabo, Ghana; 1980 [45] CP002375.1, [19]

TPE Gauthier Brazzaville, Congo; 1960 [46] CP002376.1, [19]

TPE Samoa D Apia, Samoa; 1953 [41] CP002374.1, [19]

TPE Fribourg-Blanc Guinea; 1966 [9,10] CP003902.1, [12]

TEN Bosnia A Bosnia; 1950 [47] CP007548, [20]

TPeC Cuniculi A unknown; before 1957 [41] CP002103.1, [27]

�Additional genome sequences of TPE Ghana-051 and CDC 2575 became available recently [28] and TPA Sea81-4 was published as a whole genome sequence [23].

https://doi.org/10.1371/journal.pntd.0007463.t001

Fig 1. The algorithm used for identification of positively selected genes. The original search for positively selected genes started with

identification of gene orthologs with 3 or more nucleotide differences leading to nonsynonymous amino acid replacements. The original search was

performed on a set of 11 complete treponemal genomes listed in Table 1. Subsequently, orthologous gene sequences extracted from published

treponemal draft genomes were used and the Cuniculi A orthologs were removed due to frequent sequential diversity and due to lack of

pathogenicity of TPeC to humans. Orthologs from draft genomes were used when available and positively selected genes were analyzed within

treponemal subspecies using branch-site PAML model analysis.

https://doi.org/10.1371/journal.pntd.0007463.g001
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For each analyzed gene from the complete genomes, a maximum likelihood phylogenetic

tree with 50 bootstrap replicates was constructed using MEGA 6 [48]. Different evolution

models (Kimura 2-parameter [49], Tamura 3-parameter [50], and Tamura-Nei [51]) were

applied to each gene. The trees of each gene were compared by calculating Robinson-Foulds

distances [52] using R software (packages phytools and phangorn) [53]. The comparison

showed that the choice of the evolution model did not significantly change the topology of the

tree; the Tamura-Nei evolution model was chosen for the construction of all phylogenetic

trees.

A calculation of mutational rate ratio ω between two gene sequences was the basis for the

positive selection analysis. The ω was calculated as a ratio of nonsynonymous to synonymous

mutational rates. The ratio indicates negative purifying selection (0< ω< 1), neutral evolu-

tion (ω = 1), and positive selection (ω> 1) [54]. A set of selected genes from complete

genomes was tested relative to positive selection using the maximum likelihood method using

the CODEML of the PAML software package [55]. PAML version 4 [56] and its user interface

PAMLX [57] were used in our study. For each analyzed gene, its maximum likelihood phylo-

genetic tree was used as an input tree. The CODEML offers several different codon evolution-

ary models, and the statistical likelihood ratio test (LRT) was used to compare the codon

evolutionary model to the null model. The Bayes empirical Bayes method (BEB) [58] was then

used to evaluate the posterior probability of sites considered to have been positively selected.

The CODEML models could produce different results (i.e., a list of sites under positive

selection) since they calculate different parameter estimates. Site models allow ω to vary in

each site (codon) within the gene. Statistical testing was required for sites with ω> 1. Two

pairs of models were predominantly used since their LRTs have low false-positive rates. M1a

(nearly neutral evolution) was compared to M2a (positive selection) [58,59] and M7 (beta) was

compared to M8 (beta & ω) [60]. Our preliminary testing found that the two model pairs gave

the same or very similar results. Therefore we chose to use the M7-M8 model pair. The M7

model is a null model that allows 10 classes of sites with a ω beta-distribution within the inter-

val 0� ω� 1. Sites with ω> 1 are not allowed. The alternative M8 model adds an eleventh

class of sites with ω> 1. Each site was tested to determine the class to which it belongs. The

LRT compares twice the log-likelihood difference 2Δl = 2(l1-l0) between the M7 model (log

likelihood value l0) and the M8 model (log likelihood value l1) to the χ2 distribution [61]. If the

twice log-likelihood difference is above a critical χ2 value, then the null model is rejected, and

the positive selection is statistically significant.

A considerable disadvantage of the site models is that ω was calculated as an average over

all codons of the site. Therefore, the site models are not suitable for the data where ω also varies

between lineages. In contrast, the branch-site models search for positive selection in sites and

pre-specifies lineages where different rates of ω may occur [62]. Sequences of lineages are a pri-
ori divided into a group of foreground lineages where positive selection may occur and group

of background lineages where only purifying selection or neutral evolution occurs. We used

branch-site model A, which allows four classes of sites and different setups of foreground line-

ages to be tested depending on the gene phylogeny. In branch-site model A, all lineages under

purifying selection with a low value of ω0 belong to site class 0. Weak purifying selection and

neutral evolution with ω1 near to value 1 are allowed in site class 1. In site class 2a, a proportion

of class 0 sites in foreground lineages is under positive selection with ω2 > 1. Similarly, site

class 2b is a proportion of class 1 sites under positive selection with ω2 > 1. The null model for

LRT has ω2 = 1. Critical values of LRT (2Δl) are 2.71 at 5% and 5.41 at 1% [63]. The posterior

probabilities of suggested sites under positive selection were calculated using the BEB method.

The average pairwise p-distances (APD) and average number of mutations (transitions and

transversions), calculated using MEGA-X [64], were used to evaluate genetic diversity. A
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pairwise deletion of sites with gaps/missing data was used. The Fisher exact statistical test was

used to assess the significance of the changes between average numbers of mutations.

Synthetic peptides and chemiluminescent detection of serological reactions

Synthetic biotinylated peptides, covering protein regions containing positively selected resi-

dues, were designed. Peptide synthesis was performed by JPT Peptide Technologies (Berlin,

Germany) on a 50–200 nmol scale. The lyophilized peptides were resuspended in TBS buffer

(25 mM Tris, 150 mM NaCl, pH = 7.2) at 1 mM concentrations and were stored at −20˚C.

Prior to further use, synthetic peptides were diluted 1000x in TBS buffer.

Streptavidin-coated 96 well plates (Pierce Streptavidin Coated High Binding Capacity

White 96-Well Plates; Thermo Scientific, Rockford, USA) were washed three times with 200 μl

of washing buffer (TBS buffer containing Tween 20 (0.05%) and Bovine Serum Albumin, BSA

(0.1%) (Sigma-Aldrich, Prague, Czech Republic); then 100 μl of diluted peptide was added to

each well and incubated for 30 min at room temperature as recommended by the manufac-

turer (Thermo Scientific) with mild shaking. Subsequently, each well was washed three times

with washing buffer (200 μl in each step); then 100 μl of blocking buffer SuperBlock Blocking

Buffer in TBS (Thermo Scientific) were added and incubated for 30 min at room temperature

with mild shaking. Each well was washed three times with washing buffer (200 μl in each step)

and 100 μl of diluted sera (1:500 in washing buffer) were added and incubated for 30 min at

room temperature with mild shaking. Each well was washed three times with washing buffer

(200 μl in each step) and 100 μl of diluted secondary antibody conjugated with horseradish

peroxidase were subsequently added (1:2000 in washing buffer; Goat Anti-Human IgG/IgA/

IgM Horseradish Peroxidase Conjugate; Life Technologies, Carlsbad, USA) and incubated for

30 min at room temperature with mild shaking. Each well was then washed three times with

washing buffer (200 μl in each step); then 100 μl of chemiluminescent detection solution

(Super Signal ELISA Pico Chemiluminescent Substrate; Thermo Scientific) was added. Lumi-

nescence was measured on a TriStar2 LB 942 luminometer with a Modular Multimode Micro-

plate Reader (Berthold Technologies, Bad Wildbad, Germany). Each experiment was

performed at least three times. A signal was considered positive when it was higher than the

average of the three lowest values for each serum plus five standard deviations of the average

value.

Ethics statement

The human sera were collected from adult patients diagnosed with syphilis at the Department

of Dermatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. Sera

from child patients diagnosed with Lyme disease were obtained from the Department of Chil-

dren’s Infectious Diseases, Faculty of Medicine and University Hospital, Masaryk University,

Brno, Czech Republic. All clinical samples were obtained after patients or parents of involved

children signed an informed consent. The design of the study was approved by the ethics com-

mittee of the Faculty of Medicine, Masaryk University. All human sera were collected under

established guidelines.

Results

Identification of positively selected genes

A comparison of 47 orthologous gene sequences from the complete genomes where at least

three nonsynonymous mutations at different sites occurred was used to identify positively

selected genes using the site and branch-site models of the CODEML in PAML package [55].

Positive selection in treponemes
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The completely sequenced genomes are listed in Table 1 and include 11 genomes. In addition,

25 draft TPA genomes [31], 23 draft TPA and TPE genomes [30], 8 TPA genomes [32], 5 TPA

genomes from GenBank (UW074B, UW189B, UW228B, UW254B, UW391B), and one TEN

(Iraq B) were also analyzed. The overall algorithm is shown in Fig 1.

In all cases of complete treponemal genomes, the genome structure was identical or very

similar allowing straightforward identification of gene orthologs. However, in many cases,

draft genome sequences were either incomplete or contained many ambiguous bases preclud-

ing their use in analyses. This resulted in a variable number of sequences used for identifica-

tion of positively selected sites within individual loci. Altogether, 22 positively selected genes

were identified in the TP genomes using site model analysis in PAML (Table 2). The number

of positively selected amino acid sites varied from 1 to 65, with a median value of 8.5. A list of

positively selected protein sites identified using PAML software (site and branch-site models)

as well as PAML-identified positively selected protein sites within treponemal subspecies are

shown in S1 Table.

Average pairwise p-distances (APD) were calculated for each of the 22 genes from 10 com-

plete genomes (Cuniculi A genome was removed from analysis) and from the draft genomes.

The APD value for each gene was compared with APDw10 = 0.000525 of the 10 complete

genomes without 54 variable loci (listed in S2 Table) which can be considered as a background

level of polymorphism. All 22 genes evolving under adaptive evolution had elevated nucleotide

substitution density.

Out of these 22 genes, 14 genes were previously reported as recombinant (Table 2). These

genes are listed in Table 3. Functionally, these genes comprised the tpr genes (tprC, D, G, I, J,
L), outer membrane proteins (TP0133, TP0136, TP0548, TP0856, TP0858, TP0865), and genes

encoding the outer membrane biogenesis protein (TP0326 [BamA]) and methyl-accepting

chemotaxis protein (TP0488 [Mcp-2]). Putative recombination loci were most frequently

identified in TEN strain (n = 9) while in other treponemes there were fewer predicted recom-

binant loci (TPA, n = 7; TPeC, n = 1; TPE, n = 1). When recombinant sequences were removed

from analyses, positive selection among 14 these loci (Table 3) was found mostly within TPA

strains or isolates (n = 9), within TPE (n = 4), between TEN and TPA/TPE sequences (n = 2),

between TPA and TPE strains (n = 1) and between TPA and TPE/TEN sequences (n = 1).

Positively selected genes with no recombination events described so far

A list of the 8 positively selected genes is shown in Table 4. These genes include tprF gene,

genes encoding outer membrane proteins (TP0515, TP0733, TP0859), subtilisin-like proteins

(TP0314, TP0462), enzymes (TP0619), and hypothetical protein (TP0126b). Evidence of posi-

tive selection from analyses performed within the strains belonging to different treponemal

subspecies and analyses from the PAML branch-site model revealed that positive selection was

found mostly between TPA and TPE strains (n = 6), and within TPA strains or isolates (n = 2).

In one case (TP0859), positive selection was found both between TPA and TPE strains (n = 1),

and between TEN and TPA/TPE (n = 1).

Identified positively selected genes in various treponemal species and subspecies are shown

in Table 5 and Fig 2. While Table 5 lists all identified recombinant and positively selected

genes in TPA, TPE, and TEN groups of strains or isolates, Fig 2 shows only recombinant or

positively selected genes that were identified within a particular subspecies.

Distribution of genetic diversity among TPA, TPE, and TEN strains

To test whether genetic diversity in treponemal genomes was distributed evenly along the

chromosome, an average pairwise p-distance (APD) and average number of mutations (ANM,
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transitions and transversions) were calculated (Table 6) for concatenation of 54 genes (S2

Table) representing a total length of 86.8 kbp (7.6% of the genome length). These 54 genes

included the tpr genes, genes with traces of possible recombination events (according to Gray

et al. [38], and Čejková et al. [19]), genes showing inter-strain variability between TPE and

TPA strains and their paralogs (according to Čejková et al. [19]), genes showing intra-strain

variability [40], and previously identified positively selected genes (according to Čejková et al.
[19]) (S2 Table). The TPA strains contained greater genetic diversity within these genes com-

pared to TPE strains (APD(TPA) = 420.0�10−5 versus APD(TPE) = 384.2�10−5). Note that the

average pairwise p-distances within TPA strains (compared to TPE/TEN strains) are lower

when complete genomes were analyzed but higher within selected 54 loci (Table 6). In addi-

tion, genetic distance within TPA strains (compared to TPE/TEN strains) is markedly lower

in complete genomes without selected 54 genes compared to whole genome analyses

(p = 0.0008).

Table 2. A set of 22 genes evolving under adaptive evolution that was identified using site and branch-site model analysis in the PAML program.

Gene Gene

name

Protein No. of positively selected protein sites identified by

PAML site or branch-site model (no. of analyzed

sequences)

Previously published

evidence of recombination

References Gene average

pairwise p-

distances

TP0117 tprC Tpr protein C 22 (41) + [38] 0.009171

TP0126b hypothetical protein 2 (69) - 0.005899

TP0131 tprD Tpr protein D 65 (41) + [38] 0.033553

TP0133 outer membrane

proteina
3 (66) + [20] 0.004718

TP0136 fibronectin binding

protein

5 (54) + [65] 0.016599

TP0314 subtilisin-like proteina 7 (49) - 0.026378

TP0316 tprF Tpr protein F 5 (33) - 0.003250

TP0317 tprG Tpr protein G 8 (39) + [38] 0.003241

TP0326 bamA BamA 7 (64) + [20,25,66] 0.002131

TP0462 lipoprotein, subtilisin-

like proteina
44 (60) - 0.009186

TP0488 mcp2 methyl-accepting

chemotaxis protein

50 (64) + [20,25,67] 0.002691

TP0515 outer membrane

protein

15 (66) - 0.001381

TP0548 FadL-like proteinb 24 (52) + [67] 0.010881

TP0619 Fe, Mn superoxide

dismutasea
7 (40) - 0.029166

TP0620 tprI Tpr protein I 14 (38) + [38] 0.006651

TP0621 tprJ Tpr protein J 52 (40) + [38] 0.023909

TP0733 OprG/OmpW-like

ion-channelb
1 (62) - 0.005125

TP0856 FadL-like proteinb 16 (62) + [68] 0.003663

TP0858 FadL-like proteinb 2 (61) + [33,68] 0.005894

TP0859 FadL-like proteinb 7 (33) - 0.004191

TP0865 FadL-like proteinb 13 (64) + [30] 0.004340

TP1031 tprL Tpr protein L 9 (58) + [20] 0.007283

aprotein predictions by Naqvi et al. [69]
bprotein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t002

Positive selection in treponemes

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007463 June 19, 2019 8 / 18

https://doi.org/10.1371/journal.pntd.0007463.t002
https://doi.org/10.1371/journal.pntd.0007463


Serological reactivity of human syphilis and Lyme disease sera with

synthetic biotinylated peptides derived from positively selected proteins

Synthetic biotinylated peptides were designed to cover protein regions where positively

selected amino acid residues were detected. These peptides were tested for reactivity with the

patient’s syphilis sera (Table 7). As a control, serum from a patient with Lyme disease was

used. A positive result was obtained for one to seven peptides (out of 8 tested) depending on

the serum used. At the same time, serum obtained from Lyme disease patient failed to

Table 3. A set of 14 positively selected genes with previously detected recombination events.

Gene Gene name Protein Putative recombination in Evidence of positive selection among non-recombinant

sequences

TP0117 tprC Tpr protein C TPA, TEN within TPA

between TPA and TPE

TP0131 tprD Tpr protein D two alternative tprD and tprD2
allelesa

no

TP0133 outer membrane proteinb TEN between TEN/TPE and TPA

TP0136 fibronectin binding protein TPA within TPA

TP0317 tprG Tpr protein G TPA within TPA

TP0326 bamA BamA TPA, TEN within TPA

TP0488 mcp2 methyl-accepting chemotaxis

protein

TPA, TEN within TPA

TP0548 FadL-like proteinc TEN within TPA

within TPE

TP0620 tprI Tpr protein I TPE within TPE

TP0621 tprJ Tpr protein J TPA, TPeC within TPA

TP0856 FadL-like proteinc TEN between TEN and TPA/TPE

TP0858 FadL-like proteinc TEN within TPE

TP0865 FadL-like proteinc TPA, TEN within TPA

within TPE

between TEN and TPA/TPE

TP1031 tprL Tpr protein L TEN within TPA

atprD and tprD2 alleles existed in both TPA and TPE strains [18,71]
bprotein predictions by Naqvi et al. [69]
cprotein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t003

Table 4. Positively selected genes revealed by the PAML program with no recombination events described so far.

Gene Gene name Protein Positively selected branch

TP0126b hypothetical protein between TPA and TPE

TP0314 subtilisin-like proteina between TPA and TPE

TP0316 tprF Tpr protein F between TPA and TPE

TP0462 lipoprotein, subtilisin-like proteina within TPA

TP0515 outer membrane protein within TPA

TP0619 Fe, Mn superoxide dismutasea between TPA and TPE

TP0733 OprG/OmpW-like ion channelb between TPA and TPE

TP0859 FadL-like proteinb between TPA and TPE

between TEN and TPA/TPE

aprotein predictions by Naqvi et al. [69]
bprotein predictions by Radolf and Kumar [70]

https://doi.org/10.1371/journal.pntd.0007463.t004
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recognize peptides derived from treponemal proteins but did react with peptides derived from

borrelial protein ErpA.

Discussion

In this study, 22 genes showing traces of positive selection were identified among the TPA,

TPE, and TEN genomes. Within this group of genes, recombination was previously reported

in 14 genes. Genes with previously detected recombination events were often found to contain

positively selected amino acid residues both among the recombinant and the non-recombi-

nant sequences, which indicates that both recombination and positive selection are different

mechanisms of treponemal adaptive molecular evolution. Adaptive evolution is common to

many bacterial pathogens and can usually be found in genes important to the interaction

between the host and the pathogen, i.e., where new protein variants are of selective advantage

for the survival of the pathogenic strain. The immune pressure from the host favors, in micro-

bial genes encoding proteins exposed on the surface of the pathogen, emerging genetic vari-

ants, which due to immune evasion, get positively selected. In Escherichia coli, positive

selection is limited to a few dozen genes [3] while in several other genomes, including Strepto-
coccus [1] and Campylobacter [2], traces of positive selection have been found in more than

half of the core genome.

The extent to which adaptive evolution of different bacterial pathogens differs depends on

several bacterial features including bacterial mutation rate, frequency of genetic recombination

and horizontal gene transfer, and genome size. Genetic recombination occurs more frequently

in Neisseria [8] and Helicobacter [5] compared to several bacterial pathogens such as Escheri-
chia [3], Salmonella [4], and Listeria [6]. Moreover, compared to E. coli, Helicobacter pylori has

about a 100-times higher mutation rate due to the lack of a highly efficient DNA repair system

[72]. Treponemes related to T. pallidum represent bacterial pathogens with small genomes,

with an extreme paucity of outer membrane proteins [73], high genetic similarity, and a rela-

tively low mutation rate [28]. Moreover, there are no known mechanisms of horizontal gene

transfer in syphilis, bejel, and yaws treponemes [18]. These features of pathogenic treponemes

are consistent with a relatively small number of positively selected genetic loci, which consists

of just 22 genes (2.1% of all protein-encoding genes). Moreover, this situation also partly

reflects the fact that the number of determined treponemal genomes is quite low due to the dif-

ficulties in long-term cultivation of treponemes [16]; the sequenced genomes currently avail-

able do not reveal the entire genetic variability present among human pathogenic treponemes.

A recently developed MLST typing of TPA treponemes [74,75] revealed a number of genetic

variants of the TP0705 gene and the vast majority of these variants resulted in amino acid

replacements, which suggests positive evolution at this locus. This locus was not identified in

Table 5. Positively selected genes and the corresponding proteins in different treponemal species and subspecies.

Proteins previously reported as recombinant out of the positively selected proteins are also shown.

Treponema pallidum
subspecies

Recombinant proteins Positively selected proteins

TPA TprC, G, J, BamA, Mcp-2,

TP0136

TprC, F, G, J, L, BamA, Mcp-2

TP0126b, TP0133, TP0136, TP0314, TP0462, TP0515,

TP0548, TP0619, TP0733, TP0859, TP0865

TPE TprI TprE, F, I

TP0126b, TP0133, TP0314, TP0548, TP0619, TP0733,

TP0858, TP0859, TP0865

TEN BamA, Mcp-2, TprL

TP0548, TP0856, TP0858

TprL

TP0856, TP0858, TP0865

https://doi.org/10.1371/journal.pntd.0007463.t005
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this study because of the limited variability present in the currently available genome

sequences. It is therefore expected that the list of positively selected/recombinant treponemal

loci will grow larger as the number of additional genomes accumulate.

Fig 2. Positively selected genes as well as positively selected genes with previously identified recombination event

that were identified within particular subspecies. Genes identified as recombinant in a particular treponemal

subspecies are shown in bold. Positively selected genes with no evidence of recombination are shown in regular

version. Positively selected genes identified between subspecies of treponemes, but not within any of them, are not

shown. Note that positively selected genes occur mostly within the TPA and the recombinant genes are within the TEN

genomes. The TP0548 and TP0865 genes were found to be positively selected within TPA and also within TPE

subspecies.

https://doi.org/10.1371/journal.pntd.0007463.g002

Table 6. Average pairwise p-distances (APD) and average number of mutations (ANM, transitions + transversions) within TPA, within TPE/TEN, and between

TPA and TPE/TEN, for whole complete genomes, for selected 54 genomic loci, and for complete genomes without selected 54 loci.

Whole genomes

APD (ANM)

54 selected loci (S2 Table)

APD (ANM)

Genomes without 54 loci

APD (ANM)

TP subspecies Within

Group

Between

groups

Within

group

Between

groups

Within

group

Between

Groups

TPA 0.000415a

(472.7)

TPA-TPE/TEN

0.001908

(2171.4)

0.004200

(361.8)

TPA-TPE/TEN

0.015227

(1297.0)

0.000105a

(110.9)

TPA-TPE/TEN

0.000831

(874.4)

TPE/TEN 0.000455a

(517.4)

0.003842

(325.7)

0.000182a

(191.7)

aStatistically significant difference for genetic distance within TPA strains compared to TPE/TEN strains when complete genomes and genomes without selected 54

genes were compared (The Fisher exact test, p = 0.0008).

https://doi.org/10.1371/journal.pntd.0007463.t006
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Among the genes identified in this study, a substantial number of genes were shown to

have evidence of recombination event. Several recent studies revealed that genetic recombina-

tion in pathogenic treponemes is not only limited to intra-genomic homologous recombina-

tion and gene conversion events involving rDNA loci, tpr genes and their paralogs, and the

TP0856 and TP0858 genes [36,38,68]. In addition to intra-genome recombinations, two genes,

TP0326 and TP0488, in the TPA Mexico A genome, were found as a result of recombination

with exogenous DNA, likely as a result of DNA uptake and chromosome incorporation during

coinfection with a different treponemal subspecies [25]. Similar recombinations were detected

in a TPA isolate from South Africa [66]. In the work of Grange et al. [76], TEN strain 11qj

within the TP0548 locus and a nucleotide sequence almost identical to TPE strains [67,77,78]

indicating that the TP0548 locus in other TEN strains is also a result of an interstrain recombi-

nation event. In the genome of TPA Sea84-1, the TP0621 locus revealed sequences identical to

TPE [23]. Moreover, whole-genome sequencing of TEN Bosnia A revealed several genomic

loci similar to TPA strains [20]. All these findings suggest that genetic recombinations of exog-

enous DNA into the chromosomal loci of treponemes are rare but detectable events. In addi-

tion, these findings suggest that the corresponding recombination could be of selective

advantage during host infection given the fact that the recombination of foreign DNA without

available horizontal gene transfer mechanisms is quite infrequent.

In the work of Arora et al. [30], the authors find the genes with predicted putative recombi-

nant regions (e.g., TP0136, TP0462, TP0548, TP0733, TP0894-898) using a phylogenetic

incongruence method, ClonalFrameML, and Gubbins, overlapping with genes identified in

our study. However, several predicted recombinant genes comprising TP0179, TP0313,

TP0315, TP0967, TP0968 [30], were not identified in this study reflecting the fact that not all

recombination events result in detectable positive selection signal.

Out of the 22 genes showing adaptive evolution identified in this study, nine genes (40.9%)

were identified in the set of 71 genes showing intra-strain heterogeneity (reviewed in Šmajs

et al. [18]). Since most of the observed intra-strain heterogeneity resulted in non-synonymous

amino acid changes, identified intra-strain heterogeneity should be considered as ongoing

Table 7. Serological reactivity of a patient’s syphilis and Lyme disease sera recognizing synthetic peptides corresponding to protein regions containing positively

selected amino acid residues. Peptides were designed to cover protein regions containing several positively selected amino acid positions.

Peptide Derived from gene Protein function Sequence Syphilis sera Lyme disease serum

350a 356b 405c B0403201d

TPA51S TP0117 TprC YVFYRNNGGYELNRVVPSGI + e

TPE83 TP0136 fibronectin binding protein GNSANGGGGGGGCGS +

TPA04 TP0314 subtilisin-like protein LQPSSSSYSAGNWHR + + +

TPA58 TP0316 TprF HQSNADADCRLPATG + +

TPA61-S TP0462 lipoprotein, subtilisin-like protein TPSTVLDKTNGAIR + +

TPA64-S TP0515 outer membrane protein YRLHSEPPSSGSRQ +

TPA17 TP0619 Fe, Mn superoxide dismutase LGQGLLQPSSSSYSA

TPA21 TP0733 OprG/OmpW-like ion channel GDIASSPDKCRAVGL + +

BB-ErpA-Bval erpA ErpA KIKNKDTNSSWIDL +

aHuman serum comes from a 33-year-old patient that was syphilis positive for VLDR (1:4), TPHA and western blot IgG test.
bHuman serum comes from a 32-year-old patient that was syphilis positive for VLDR (1:8), TPHA and western blot IgG test.
cHuman serum comes from a 21-year-old patient that was syphilis positive for VLDR (1:128), TPHA and western blot IgG and IgM test.
dHuman serum comes from a 12-year-old patient with Lyme disease positive for ELISA IgG and western blot IgM and IgG tests.
e+, signal above threshold; for each peptide, an average of the three lowest values (out of 9) plus 5 standard deviations was used as a threshold.

https://doi.org/10.1371/journal.pntd.0007463.t007
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adaptive evolution and, as such, it is not surprising that both sets of positively selected/recom-

binant genes and genes showing intra-strain heterogeneity overlapped considerably.

Functionally, the genes showing adaptive evolution identified in this study were the tpr
genes (tprC, D, F, G, I, J, L), outer membrane proteins (TP0133, TP0136, TP0515, TP0548,

TP0733, TP0859, TP0865) and genes encoding outer membrane biogenesis protein (BamA),

lipoproteins (TP0462, TP0856, TP0858), methyl-accepting chemotaxis protein (TP0488), and

three other proteins (TP0126a, TP0314, TP0619). The driving force for adaptive evolution at

these loci thus appears to be the host immune response. The observed reactivity of syphilitic

sera with some peptides derived from protein sequences evolving under positive evolution

supports this prediction.

This study has several limitations. First, the number of analyzed genomes was quite limited,

especially regarding the TEN genomes. In addition, in recently published draft genomes of

TPA, the candidate genes are often only partially sequenced. With a much larger set of trepo-

nemal sequences, one can expect a higher number of positively selected genes. The second

major limitation was the disproportionality in the number of analyzed genes per species/sub-

species, which reflects genome availability. Another limitation is related to the fact that the

analyzed complete genomes were obtained from treponemal strains propagated in rabbits and

could therefore reflect adaptation of treponemes to this host. However, the analysis of draft

genome sequences in this study obtained directly from clinical material suggests that the

observed traces of positive selections are present also during infection of humans. Moreover,

the identified positively selected positions may represent recent mutations that were not yet

removed by negative selection.

In this study, a detailed analysis of traces of positive selection in 3 T. pallidum subspecies

including ssp. pallidum (TPA), ssp. pertenue (TPE), and ssp. endemicum (TEN) enabled us to

classify most of the identified positively selected genes to a particular subspecies when analyses

were performed separately within strains and isolates of the same subspecies or when a PAML

branch-site model was used to identify lineages with positively selected loci. The majority of

positively selected genes were identified within the TPA and TPE genomes, likely as a result of

the highest number of available sequences for these subspecies. However, TPA sets of posi-

tively selected genes differed from TPE genes. Among TPA, members of the paralogous tpr
family (tprCGJ) and the TP0136 paralogous gene family (TP0136, TP0462) prevailed, while

among TPE, a paralogous gene family containing TP0856, TP0858, TP0859, TP0865, showed

adaptive evolution. Interestingly, the genes belonging to the latter family (TP0548, TP0856,

TP0858, TP0859) were found to be recombinant among TEN genomes. These findings suggest

that genomic loci showing signs of adaptive evolution could differ between TPA and TPE/

TEN strains/isolates. This finding supports the observed and consistent genetic differences

between treponemal subspecies TPA, TPE, and TEN, and shows that the ways TPA and TPE

strains interact with a host during infection is different. Although some authors suggest that

the subspecies classification is a case of opportunity and not the consequence of genetic and

biological differences [79,80], our findings support the latter explanation.
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S1 Table. A list of positively selected protein positions identified by PAML software using
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75. Pospı́šilová P, Grange PA, Grillová L, Mikalová L, Janier M, Benhaddou N, et al. Multi-locus sequence

typing of Treponema pallidum subsp. pallidum present in clinical samples from France: infecting trepo-

nemes are genetically diverse and belong to 18 genotypes. PLoS One. 2018; 13: e0201068. https://doi.

org/10.1371/journal.pone.0201068 PMID: 30024965

76. Grange PA, Allix-Beguec C, Chanal J, Benhaddou N, Gerhardt P, Morini JP, et al. Molecular subtyping

of Treponema pallidum in Paris, France. Sex Transm Dis. 2013; 40: 641–644. https://doi.org/10.1097/

OLQ.0000000000000006 PMID: 23859911
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