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Abstract: Sodium-glucose co-transporter 2 (SGLT2) inhibitors facilitate urine glucose excretion by
reducing glucose reabsorption, leading to ameliorate glycemic control. While the main characteristics
of type 2 diabetes mellitus are insufficient insulin secretion and insulin resistance, SGLT2 inhibitors
have some favorable effects on pancreatic β-cell function and insulin sensitivity. SGLT2 inhibitors
ameliorate fatty liver and reduce visceral fat mass. Furthermore, it has been noted that SGLT2
inhibitors have cardio-protective and renal protective effects in addition to their glucose-lowering
effect. In addition, several kinds of SGLT2 inhibitors are used in patients with type 1 diabetes mellitus
as an adjuvant therapy to insulin. Taken together, SGLT2 inhibitors have amazing multifaceted effects
that are far beyond prediction like some emerging magical medicine. Thereby, SGLT2 inhibitors are
very promising as relatively new anti-diabetic drugs and are being paid attention in various aspects.
It is noted, however, that SGLT2 inhibitors have several side effects such as urinary tract infection
or genital infection. In addition, we should bear in mind the possibility of diabetic ketoacidosis,
especially when we use SGLT2 inhibitors in patients with poor insulin secretory capacity.
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1. Introduction

The number of patients with type 2 diabetes mellitus (T2DM) has markedly increased
all over the world due to various changes in lifestyle. The main characteristics of T2DM
are insufficient β-cell function and insulin resistance [1–3]. Since sodium-glucose cotrans-
porter 2 (SGLT2) contributes to most of renal glucose reabsorption, inhibition of SGLT2 is
promising for T2DM [4–11]. In this review article, we show that SGLT2 inhibitors have
surprisingly many multifaceted effects beyond prediction like some emerging magical
medicine. SGLT2 inhibitors protect pancreatic β-cells from glucose toxicity and mitigate
insulin resistance, which finally ameliorates glycemic control. Moreover, while nonalco-
holic fatty liver disease (NAFLD) is often brought out in patients with T2DM, it has been
shown that SGLT2 inhibitors ameliorate NAFLD. Furthermore, attention has been paid to
the fact that SGLT2 inhibitors have cardio-protective and renal protective effects beyond
their glucose-lowering effect.

2. Concept of Pancreatic β-Cell Glucose Toxicity Found in Type 2 Diabetes Mellitus

The main characteristics of T2DM are insufficient insulin secretion and insulin resis-
tance. Under healthy conditions, blood glucose levels are well controlled by insulin. Under
diabetic conditions, however, increased insulin resistance impairs insulin biosynthesis and
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secretion. First, insulin resistance is brought out by overeating and/or lack of exercise, but
enough amount of insulin is secreted so that insulin resistance is compensated. However,
when β-cells are exposed to high glucose concentration for a long period of time, β-cell
function gradually declines due to overwork. Insulin biosynthesis and secretion decline
together with reduction of insulin gene transcription factors MafA and PDX-1 [12–16]
(Figure 1). Finally, β-cell number is decreased apoptosis and/or de-differentiation. Such
phenomena are called β-cell glucose toxicity. It has been shown, however, that β-cell func-
tion is recovered by an appropriate intervention with various anti-diabetes agents [17–22].
Chronic hyperglycemia also impairs insulin signaling in insulin target tissues, which leads
to the progression of insulin resistance. Therefore, glucose toxicity is involved in insulin
resistance in addition to β-cell dysfunction.
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MafA is a potent insulin gene transcription factor [12–15]. MafA expression level is 
markedly decreased under diabetic conditions but it is preserved after reduction of glu-
cose toxicity with insulin or other anti-diabetic agents. Furthermore, we reported that se-
rum insulin levels were increased and blood glucose levels were decreased by preserva-
tion of MafA expression in β-cells in obese type 2 diabetic db/db mice using the Cre-loxP 
system. In addition, β-cell mass was preserved by MafA overexpression [15]. We think 
that these findings show that reduction of MafA expression leads to β-cell dysfunction 
found in T2DM. PDX-1 is also an insulin gene transcription factor and plays an important 
role in β-cells, but its expression level declines after exposure to chronic hyperglycemia 
[12,13]. We think that such reduction of PDX-1 also leads to β-cell dysfunction found in 
T2DM. Indeed, glucose-stimulated insulin secretion was enhanced, and glycemic control 
was ameliorated by preservation of PDX-1 expression in β-cells using the Cre-loxP system 
[16]. Taken together, we believe that that reduction of MafA and PDX-1 expression leads 
to β-cell dysfunction found in T2DM. 

Furthermore, while there are several reports indicating the role of insulin signaling 
in endothelial cells [23–26], it seems that endothelial dysfunction is also associated with 
β-cell dysfunction. We assume that since pancreatic islets are easily damaged by ischemia 
or various stress, β-cell dysfunction is brought out by endothelial dysfunction. Actually, 
we recently reported that in vascular endothelial cell-specific knockout mice of PDK1, one 

Figure 1. Pancreatic β-cell glucose toxicity found in type 2 diabetes mellitus (T2DM). When pancreatic
β-cells are exposed to chronic hyperglycemia, β-cell function gradually declines. First, insulin
secretion is reduced. Second, insulin biosynthesis is reduced together with reduction of MafA and
PDX-1 expression. Third, β-cell number is decreased through the process of apoptosis and/or
de-differentiation.

MafA is a potent insulin gene transcription factor [12–15]. MafA expression level is
markedly decreased under diabetic conditions but it is preserved after reduction of glucose
toxicity with insulin or other anti-diabetic agents. Furthermore, we reported that serum
insulin levels were increased and blood glucose levels were decreased by preservation of
MafA expression in β-cells in obese type 2 diabetic db/db mice using the Cre-loxP system.
In addition, β-cell mass was preserved by MafA overexpression [15]. We think that these
findings show that reduction of MafA expression leads to β-cell dysfunction found in
T2DM. PDX-1 is also an insulin gene transcription factor and plays an important role in
β-cells, but its expression level declines after exposure to chronic hyperglycemia [12,13].
We think that such reduction of PDX-1 also leads to β-cell dysfunction found in T2DM.
Indeed, glucose-stimulated insulin secretion was enhanced, and glycemic control was
ameliorated by preservation of PDX-1 expression in β-cells using the Cre-loxP system [16].
Taken together, we believe that that reduction of MafA and PDX-1 expression leads to
β-cell dysfunction found in T2DM.

Furthermore, while there are several reports indicating the role of insulin signaling in
endothelial cells [23–26], it seems that endothelial dysfunction is also associated with β-cell
dysfunction. We assume that since pancreatic islets are easily damaged by ischemia or
various stress, β-cell dysfunction is brought out by endothelial dysfunction. Actually, we
recently reported that in vascular endothelial cell-specific knockout mice of PDK1, one of
the important molecules in insulin signaling, β-cell dysfunction, was brought out together
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with reduction of vascularity in islets, fall into ischemic state, and increase of inflammation
and endoplasmic reticulum stress in β-cells [26]. Since such phenotypes are very similar to
the phenomena found under diabetic conditions, we assume that endothelial dysfunction
is also, at least in part, associated with β-cell dysfunction found in T2DM.

3. SGLT2 Inhibitors Ameliorate Hyperglycemia by Increasing Urinary Glucose
Excretion

SGLT2 inhibitors are often used in patients with T2DM worldwide [4–11]. SGLT2
inhibitors lead to amelioration of glycemic control by enhancing urinary glucose excretion.
In addition, it is known that, under diabetic conditions, SGLT2 expression in the kidney
is augmented, leading to increase renal glucose reabsorption. There is a large amount
of evidence worldwide regarding the efficacy and safety of SGLT2 inhibitors in patients
with T2DM. Tofogliflozin has high selectivity for SGLT2 and canagliflozin has low selec-
tivity [27], but it is still controversial whether such difference is important or not for our
bodies. In addition, dual SGLT1/2 inhibitors were also developed, and their effects are
also promising. It was reported that dual SGLT1/2 inhibitors increased GLP-1 levels and
reduced postprandial glucose levels [28].

4. SGLT2 Inhibitors Have Some Favorable Effects on Pancreatic β-Cells

It has been shown that SGLT2 inhibitors protect pancreatic β-cells from glucose
toxicity [29–36]. Indeed, it was reported that an SGLT2 inhibitor luseogliflozin preserved
β-cell function in obese type 2 diabetic db/db mice [35]. Pancreatic β-cell mass was
significantly increased by luseogliflozin treatment. In addition, β-cell proliferation was
increased, and β-cell apoptosis was decreased by such treatment. Insulin biosynthesis
and expression levels of MafA and PDX-1 were also enhanced by such treatment [35].
Taken together, SGLT2 inhibitors have some favorable effects for the preservation of β-cell
function (Figure 2).
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Figure 2. Favorable effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on pancreatic β-cells
and various insulin target tissues. SGLT2 inhibitors ameliorates glycemic control and alleviates
hyperinsulinemia by reducing renal glucose reabsorption. Amelioration of glycemic control reduces
glucose toxicity, which finally preserves β-cell function and mitigation of insulin resistance in insulin
target tissues. Alleviation of hyperinsulinemia ameliorates fatty liver or nonalcoholic fatty liver
disease (NAFLD), reduces visceral fat, and increases glucose uptake into skeletal muscle, all of which
finally lead to mitigation of whole-body insulin resistance.
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In addition, to focus on the direct effects of SGLT2 inhibitor on β-cells, researchers
performed similar experiments for only 1 week with empagliflozin [34]. As a result, lipid
metabolism was not influenced, but empagliflozin showed protective effects on β-cells.
Insulin, MafA, and PDX-1 expression was increased by empagliflozin treatment. These data
indicate that SGLT2 inhibitor directly protect β-cells from glucose toxicity [34] (Figure 2).

Furthermore, we recently compared the protective effects of luseogliflozin on β-cell
function and mass between at an early and at advanced stage of diabetes and between
after short-term usage and long-term usage using diabetic db/db mice [36]. In terms of
the results, β-cell function was preserved by luseogliflozin treatment at an early stage of
diabetes, but not at advanced stage. Moreover, β-cell mass was increased by such treatment
only at an early stage. Furthermore, when db/db mice were treated with luseogliflozin
for a long period of time from an early stage, insulin biosynthesis and secretion were
preserved, even at an advanced stage [36]. Taken together, SGLT2 inhibitors have more
favorable effects at an early stage, and long-term usage of SGLT2 inhibitors have more
favorable effects on β-cells rather than short-term usage (Figure 2).

While various studies were actively performed regarding the role of α-cells [37], it
was shown that SGLT2 was present in α-cells and that dapagliflozin enhanced glucagon
secretion, leading to the increase of hepatic gluconeogenesis [38]. In spite of such aug-
mentation, blood glucose levels were decreased by dapagliflozin, probably due to the
increase of glycosuria. It was also shown that dapagliflozin facilitated glucagon secretion
and gluconeogenesis in healthy mice, which limited the reduction of blood glucose levels
induced by fasting [38]. It is noted, however, that the direct effect of SGLT2 inhibition
on glucagon secretion is currently a controversial topic. For example, one group showed
SGLT2 expression in human islets and thought dapagliflozin directly stimulated glucagon
secretion through SGLT2 inhibition in α-cells [38], whereas another group showed that
SGLT2 expression was not detectable in human or mouse islets [39]. Furthermore, very
recently, the importance of SGLT2 activity on glucagon secretion was evaluated by us-
ing isolated perfused rat pancreas. As the results, glucagon secretion was decreased by
high glucose, but it was not affected by SGLT2 inhibitors. They concluded that increased
glucagon secretion by SGLT2 inhibitor was not due to direct effect of SGLT2 on α-cells [40].

5. SGLT2 Inhibitors Have Some Favorable Effects on Insulin Resistance

It is known that SGLT2 inhibitors show favorable effects on insulin target tissues.
Usage of SGLT2 inhibitors lead to amelioration of fatty liver, reduction of visceral fat mass,
and mitigation of insulin resistance [41–47] (Figure 2). Indeed, tofogliflozin decreased
insulin resistance and ameliorated glycemic control in diabetic mice [46]. In this study,
C57BL/6 mice were given normal chow or high-fat chow containing tofogliflozin. As a
result, tofogliflozin decreased body weight and blood glucose levels in diabetic mice. In
addition, adipocyte size and fat mass were reduced by tofogliflozin, which finally enhanced
insulin sensitivity [46]. Excess insulin secretion was decreased by tofogliflozin, which led
to increase of lipolysis, β-oxidation, and ketone bodies. Such reduction of excess insulin
secretion increased gluconeogenesis and decreased lipogenesis. The decrease of lipogenesis
led to the decrease of triglyceride content in the liver. Furthermore, hyper-insulinemic
euglycemic clamp study showed that insulin resistance was reduced by tofogliflozin mainly
due to increase of glucose uptake into skeletal muscle [46]. Taken together, tofogliflozin
mitigates insulin resistance mainly through the increase of lipolysis in adipose tissues and
glucose uptake into skeletal muscle (Figure 2). In addition, it was shown that ipragliflozin
decreased fat mass mainly through the increase of fatty acid oxidation in high-fat diet-
induced obese rats and that tofogliflozin reduced fat accumulation in diet-induced obese
rats and KKAy mice [41,42].

It has been reported that SGLT2 inhibitors show some favorable effects in patients with
T2DM as well [43–45]. It was shown that dapagliflozin reduced blood glucose levels and
fat mass for a long time in patients with T2DM. In addition, it was shown that dapagliflozin
enhanced insulin sensitivity in skeletal muscle but increased hepatic glucose production
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(HGP) in patients with T2DM. In this study, patients with T2DM were randomized to take
dapagliflozin or placebo, and HGP was evaluated using the clamp technique. As a result,
HGP as well as plasma glucagon level were increased by dapagliflozin. They showed that
the improvement of glycemic control with dapagliflozin enhanced insulin sensitivity in
skeletal muscle but increased HGP. It was also reported that HGP and glucagon level were
enhanced by empagliflozin in patients with T2DM. We assume that the increase of HGP
does not necessarily indicate the aggravation of insulin resistance in the liver. It is possible
that such enhancement of HGP with SGLT2 treatment is, at least in part, related to the
decreased ratio of serum insulin/glucagon.

6. SGLT2 Inhibitors Have Some Favorable Effects on Nonalcoholic Fatty Liver Disease
(NAFLD) Though the Alleviation of Hyperinsulinemia

NAFLD is often observed in clinical practice, and the number of patients with NAFLD
has been markedly increased all over the world. NAFLD includes a simple fatty liver
and nonalcoholic steatohepatitis (NASH), together with fibrosis and inflammation [48–51].
Patients with T2DM have higher risk of NAFLD, and the presence of T2DM tends to
aggravate NAFLD [52–54]. It was also reported that patients with T2DM had higher risk
for liver cirrhosis and hepatocellular carcinoma [55]. Previously, hepatitis C virus and
heavy usage of alcohol were the main two causes of liver cirrhosis and hepatocellular
carcinoma. However, recently, hepatitis C has become curable and it has been noted that
various liver disorders are brought out in subjects without drinking alcohol. Diabetes
mellitus has become one of the risk factors of liver disorders instead of hepatitis C virus
and heavy usage of alcohol, and recently malignancies including hepatocellular carcinoma
have sometimes been regarded as diabetic complications in addition to classical diabetic
micro- and macro-complications. It is well known that thiazolidinediones have favorable
effects on NAFLD [56,57]. However, thiazolidinediones often increase body weight, and
thereby usage of thiazolidinediones is not necessarily appropriate in patients with T2DM
and NAFLD.

It has been noted that SGLT2 inhibitors have some favorable effects on the liver [58–61].
It was reported that ipragliflozin and pioglitazone were effective on NAFLD in patients
with T2DM and NAFLD [58]. The patients were randomized to take ipragliflozin or
pioglitazone. As a result, the liver-to-spleen ratio on computed tomography (CT) was
increased in either ipragliflozin or pioglitazone group. Diabetes markers such as HbA1c
and plasma glucose levels were similarly reduced in the two groups. However, body
weight and visceral fat area were significantly reduced only in the ipragliflozin group.
Moreover, they showed that both drugs had favorable effects on NAFLD and glycemic
control to a similar extent in patients with T2DM and NAFLD [58]. We also reported
the effects of three oral anti-diabetic drugs (dapagliflozin, pioglitazone, and glimepiride)
on NAFLD in a prospective clinical trial in patients with T2DM and NAFLD [60]. We
evaluated the alteration of the liver-to-spleen ratio on CT. As a result, glycemic control
was improved in the three groups to almost the same extent. Significant reduction of body
weight and visceral fat area was observed in the dapagliflozin group, and marked increase
of serum adiponectin level was observed in the pioglitazone group. The liver-to-spleen
ratio was significantly increased by dapagliflozin or pioglitazone, but not by glimepiride.
However, these two drugs seemed to have different mechanism of action. Dapagliflozin
showed favorable effects on NAFLD by alleviating hyperinsulinemia, while pioglitazone
exerted such effects by increasing adiponectin levels [60]. Taken together, SGLT2 inhibitors
are likely to have some favorable effects on NAFLD by mitigating hyperinsulinemia.

7. SGLT2 Inhibitors Have Substantial Cardio-Protective Effects

Various kinds of SGLT2 inhibitors have been used worldwide. There are various
clinical trials about cardio-protective effects of SGLT2 inhibitors [62–68]. For example,
the effects of empagliflozin on cardiovascular morbidity and mortality were shown in
patients with T2DM and high cardiovascular risk. Patients were randomized to take
empagliflozin or placebo. The primary composite cardiovascular events were observed in
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10.5% patients taking empagliflozin and in 12.1% patients taking placebo. Hazard ratio
(HR) in empagliflozin group was 0.86. Furthermore, there were significant differences
in rates of death from cardiovascular causes between empagliflozin and placebo group
(3.7% vs. 5.9%), hospitalization for heart failure (2.7% vs. 4.1%), and death from any cause
(5.7% vs. 8.3%). Taken together, patients with T2DM taking empagliflozin showed the
lower rate of primary composite cardiovascular outcome and lower rate of all-cause death
compared to those taking placebo. In contrast, myocardial infarction and stroke were not
well decreased.

The CANVAS program is another large-scale clinical trial examining the effects of
SGLT2 inhibitors on cardiovascular events. The CANVAS program collected the data from
two trials involving patients with T2DM and high cardiovascular risk. Patients in both
trials were randomized to take canagliflozin or placebo. The rate of primary composite
cardiovascular events was lower in patients taking canagliflozin compared to placebo (HR,
0.86). Taken together, it is likely that canagliflozin reduces the risk of cardiovascular events
in patients with T2DM and an elevated risk of cardiovascular disease.

While SGLT2 inhibitors decreased the combined risk of cardiovascular death and
hospitalization for heart failure in patients with or without T2DM in dapagliflozin and
prevention of adverse-outcomes in heart failure DAPA-HF trial and EMPEROR-Reduced
trial, meta-analyses of the two trials were performed recently in which the primary endpoint
was time to all-cause death. As a result, the estimated treatment effect was a 13% reduction
in all-cause death (HR, 0.87) and 14% reduction in cardiovascular death (HR, 0.86). The
usage of SGLT2 inhibitors reduced the combined risk of cardiovascular death by 26%
(HR, 0.74).

It is known that heart failure dominantly influences the prognosis in patients with
T2DM. Heart failure with low ejection fraction (EF) can be treated with diuretics and/or
anti-hypertensive drugs, but there are no promising drugs for heart failure with preserved
ejection fraction, which is characterized by left ventricular diastolic dysfunction. It has been
shown recently that SGLT2 inhibitors have some favorable effects on heart failure with
preserved EF. The reduction in inflammatory cytokine signaling by SGLT2 inhibitors may
explain such molecular mechanism. It is known that SGLT2 inhibitors decrease various car-
diovascular risks by improving glucose and lipid metabolism. Moreover, it is well known
that hypoglycemia increases cardiovascular events, and we should avoid hypoglycemia
especially in patients with cardiovascular event history. The risk of hypoglycemia with
SGLT2 inhibitors is quite low, especially in patients with its monotherapy.

It has been thought that increase of ketone bodies are not favorable for our body. For
example, it is well known that increased ketone bodies due to lack of insulin brings out
ketoacidosis. However, it has been shown recently that some amounts of ketone bodies
have favorable effects on the heart. SGLT2 inhibitors usually reduce a ratio of insulin
to glucagon. When this ratio is decreased, acetyl-CoA is converted to acetoacetate and
β-hydroxybutyrate in the liver. Such β-hydroxybutyrate is carried to the heart in the
bloodstream and taken up into the heart. β-Hydroxybutyrate is converted to acetoacetate
in the heart, which leads to increased acetyl-CoA. Increased acetyl-CoA activates the
TCA cycle and electron transporter chain in mitochondria and eventually increases ATP
production in the heart [64] (Figure 3). Furthermore, increase of hematocrit by SGLT2
inhibitors is likely to facilitate ATP production by increasing oxygen supply.
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Figure 3. Favorable effects of SGLT2 inhibitors on ATP production in the heart beyond their glucose-
lowering effect. SGLT2 inhibitors decrease a ratio of insulin to glucagon, which leads to increased
ketone bodies (acetoacetate and β-hydroxybutyrate) in the liver. Such ketone bodies are carried to
the heart. After this, they activate the TCA cycle and electron transporter chain in mitochondria and
finally increase ATP production in the heart.

8. SGLT2 Inhibitors Have Substantial Renal Protective Effects

While SGLT2 inhibitors have been used worldwide, there are various large-scale
clinical trials about renal protective effects of them [63–65,69–75]. It was reported that
canagliflozin had favorable effects on renal outcomes. The CANVAS program collected
data from two trials with patients with T2DM and high cardiovascular risk. Patients in each
trial were randomized to take canagliflozin or placebo [65]. As the results, canagliflozin
treatment showed favorable effects on the progression of albuminuria (HR, 0.73). Further-
more, canagliflozin treatment showed favorable effects on the primary composite renal
outcome (HR, 0.60) [65].

CREDENCE trial is another large-scale clinical study examining the effects of SGLT2
inhibitors on renal function. In this trial, patients with T2DM and albuminuric chronic
kidney disease were randomized to take canagliflozin or placebo. eGFR of each patient
was 30 to <90 mL/min/1.73 m2, and all patients took renin–angiotensin system inhibitors.
As a result, canagliflozin treatment reduced the primary composite renal outcome by
30% (HR, 0.70). Moreover, such treatment reduced the risk of end-stage kidney disease,
doubling of serum creatinine, or renal-cause death by 34% (HR, 0.66), and reduced the
risk of end-stage kidney disease by 32% (HR, 0.68) [69]. Taken together, SGLT2 inhibitor
canagliflozin decreased the risk of renal failure in patients with T2DM and kidney disease
for a relatively short period of time.

We also reported that effects of canagliflozin on albuminuria in patients with T2DM.
The alteration of urinary albumin excretion was positively correlated with the alteration of
systolic blood pressure. Furthermore, the alteration of blood pressure was an independent
factor for the alteration of urinary albumin excretion in multivariate analysis; the lower
the blood pressure, the better the albuminuria [76]. Taken together, canagliflozin reduces
urinary albumin excretion by reducing blood pressure in patients with T2DM (Figure 4).

It has been clearly shown recently that SGLT2 inhibitors have renal protective effects.
SGLT2 inhibitors improve renal outcomes by reducing urinary albumin excretion. There
are various possible mechanisms for renal protective effects of SGLT2 inhibitors including
the reduction of blood pressure, increase of ketone body production, increase of sirtuin-1
expression, and constriction of afferent arteriole through the tubule-glomerular feedback
system (Figure 4).

First, it was reported that the single-nephron glomerular filtration rate in diabetic
mice was higher compared to its control, but it was lower after treatment with em-
pagliflozin. In vivo imaging also revealed concomitant afferent arteriolar dilation and
increased glomerular permeability of albumin in diabetic mice, which was ameliorated
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after the treatment with empagliflozin [77]. Furthermore, they showed that empagliflozin
increased urinary adenosine excretion, which led to reduction of hyperfiltration through af-
ferent arteriolar constriction [77]. Second, it was reported that ketone bodies were increased
by empagliflozin, which led to preservation of ATP level in the kidney. Furthermore, they
showed ketone bodies reduced proteinuria in diabetic mice [78]. Third, while it was known
that sirtuin-1 played important roles in various tissues as an anti-aging factor by reducing
oxidative stress and inflammation, it was reported that under diabetic conditions, situin-1
expression in the kidney was decreased, which led to the progression of diabetic nephropa-
thy [79,80]. It was also shown that canagliflozin increased sirtuin-1 expression in the kidney
of diabetic mice and that SIRT1 expression levels were negatively correlated with SGLT2
expression levels in renal biopsy specimens from humans [79,80]. Taken together, SGLT2
inhibitors exert renal protective effects through a variety of pathways such as reduction of
blood pressure, increase of ketone body production, increase of sirtuin-1 expression, and
constriction of afferent arteriole through the tubule-glomerular feedback system (Figure 4).
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SGLT2 inhibitors reduce renal glucose reabsorption, which leads to the reduction of blood pressure,
increase of ketone bodies, increase of sirtuin-1 expression, and constriction of afferent arteriole. All of
such alterations lead to the recovery or renal function and the reduction of albuminuria.

9. SGLT2 Inhibitors Are Useful as an Adjuvant Therapy to Insulin Preparation in
Patients with Type 1 Diabetes Mellitus

There have been various clinical trials using SGLT2 inhibitors in patients with type 1
diabetes mellitus (T1DM). Dapagliflozin was approved as an adjuvant therapy to insulin
preparation in patients with T1DM who have poor glycemic control [81,82]. In Japan,
ipragliflozin as well as dapagliflozin can be used as an adjuvant therapy to insulin in
patients with T1DM. As an adjuvant therapy to insulin, SGLT2 inhibitors decrease blood
glucose levels with smaller dose of total daily insulin preparation. In addition, since SGLT2
inhibitors decrease body weight and insulin preparation increases body weight, starting
SGLT2 inhibitor and decreasing dose of insulin preparation leads to reduction of body
weight and amelioration of insulin sensitivity. When insulin dose is reduced, the risk of
hypoglycemia is also decreased. Since hypoglycemia brings out various clinical problems
such as acute coronary syndrome, fundus hemorrhage, and unconscious hypoglycemia
due to lack of catecholamine secretion, we should avoid hypoglycemia in clinical practice.
In addition, since hypoglycemia damages the brain and facilitates the development of
dementia, it is very important to reduce possible hypoglycemia risk, especially in elder
patients with T1DM. However, since there is some concern about diabetic ketoacidosis
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caused by SGLT2 inhibitors, we should bear in mind the possibility of diabetic ketoacidosis,
especially in patients with T1DM.

10. Side Effects of SGLT2 Inhibitors and Precautions When Using Them

As described above, SGLT2 inhibitors have amazing multifaceted effects that are far
beyond prediction. It is noted, however, that SGLT2 inhibitors have several side effects
such as urinary tract infection or genital infection. Indeed, it was reported that although
the effects of SGLT2 inhibitors on glycemic control were comparable to those observed
in large-scale clinical trials, there were safety concerns such as the frequent occurrence
of urinary tract or genital infection [83]. In addition, as described above, there is some
concern about diabetic ketoacidosis caused by SGLT2 inhibitors, and thus we should bear
in mind the possibility of diabetic ketoacidosis, especially in patients with T1DM. Renal
sodium reabsorption and glucose metabolism are closely tied with acid–base balance, and
many theories have been proposed to explain the increased risk of ketoacidosis (either
hyper- or eu-glycemic) in patients on SGLT2 inhibitors. Together with genital and urinary
infections (sometimes severe, limiting patient compliance or requiring hospitalization for
urosepsis and pyelonephritis), the risk of ketoacidosis associated with SGLT2 inhibitors
may generate confusion among treating physicians.

Recently, a new pandemic was induced by coronavirus infectious disease 2019 (COVID-
19) worldwide. The mortality in patients with COVID-19 is extremely high, and the main
reason of death is severe pneumonia [84]. In addition, the mortality in patients with both
COVID-19 and diabetes was found to be very high [85,86]. SGLT2 inhibitors may increase
the likelihood of COVID-19-related ketoacidosis in patients with severe insulin deficiency
in patients with T1DM or T2DM [87]. Therefore, we should always consider the benefits
and the demerits of SGLT2 inhibitors.

11. Conclusions

SGLT2 inhibitors decrease blood glucose levels by increasing urinary glucose excretion
and show amazing multifaceted effects that are far beyond prediction like some emerging
magical medicine. First, SGLT2 inhibitors have some favorable effects on pancreatic
β-cell function. Second, SGLT2 inhibitors mitigate insulin resistance in insulin target
tissues. Third, SGLT2 inhibitors have some favorable effects on NAFLD, at least in part
due to mitigation of hyperinsulinemia. Fourth, SGLT2 inhibitors have cardio-protective
effects. Indeed, in several clinical trials, SGLT2 inhibitors showed some favorable effects
on cardiovascular morbidity in patients with T2DM. Fifth, SGLT2 inhibitors have renal
protective effects. Indeed, in several clinical trials, SGLT2 inhibitors showed some favorable
effects on the progression of albuminuria in patients with T2DM. Sixth, SGLT2 inhibitors
are useful as an adjuvant therapy to insulin preparation in patients with T1DM. It is
noted, however, that SGLT2 inhibitors have several side effects such as urinary tract
infection or genital infection. Taken together, we believe that SGLT2 inhibitors have
amazing multifaceted effects beyond prediction, and thereby SGLT2 inhibitors would be
very promising from the clinical point of view in a variety of aspects, although we have to
be careful of their usage in several points.
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