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Abstract

Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires
phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory
network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive
variation in gene expression in this network throughout development in a natural population, some of which has a heritable
genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and
may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later
development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes.
Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at
terminal positions within the network. These results indicate that the position and properties of gene interactions within a
network can have important evolutionary consequences independent of their immediate regulatory role.
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Introduction

The process of development is a balancing act in an

unpredictable world: it is often remarkably resilient, producing

consistent phenotypes in the face of new mutations and

environmental perturbations, but it is also adaptable, allowing

for the evolution of novel phenotypic traits in response to

environmental change. The first property is essential for the

survival of individuals and the second for the persistence of

populations. Yet these two critical aspects of development seem

diametrically opposed, since buffering stabilizes phenotypes while

adaptation permanently changes them [1–3]. An outstanding

challenge for both systems biology and evolutionary biology is

understanding the molecular mechanisms that allow development

to buffer phenotypes while retaining flexibility [4,5].

Key to understanding both buffering and adaptation is

measuring how, and to what extent, variation in developmental

gene function impacts downstream phenotypes [6,7]. At its core,

buffering must result from reduced variation in underlying

developmental processes such as cell fate specification and

morphogenesis. Although the detailed molecular mechanisms

underlying developmental buffering are not clear, they likely

involve redundancy, modularity, feedback loops, and threshold

(nonlinear) interactions among regulatory molecules that reduce

the downstream consequences of variation within regulatory

networks [8,9]. The extent to which variation in molecular

processes such as transcription, splicing, translation, and phos-

phorylation during early development affects later processes and,

eventually, organismal phenotypes remains poorly understood.

Measuring such variation during development is also critical for

understanding adaptation, as it provides the raw material for

natural selection. Several well studied cases demonstrate that

alleles segregating in wild populations influence morphology in

ecologically significant ways by changing specific regulatory

interactions during development that in turn alter gene expression

[10–12]. It remains unclear, however, whether such alleles are

common within natural populations and how they are able to

influence morphology despite buffering during development.

In this study, we examine three pertinent questions for

understanding the relationship between developmental buffering

and evolvability: How much variation in the expression of

developmental regulatory genes exists within a natural population?

What impact does this variation in gene expression have on

downstream genes within a regulatory network? And finally, how

does expression variation during development influence the mor-
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phological phenotypes that lie at the interface between organism and

environment and are therefore potential targets of natural selection?

To address these questions, we measured naturally occurring

variation in gene expression within a well-defined developmental

gene regulatory network, as well as the impact of expression

variation on downstream gene expression and on morphology. The

network of .100 genes that we examined (Figure 1) contains all of

the genes known to be involved in axial and cell type specification

during embryogenesis in the purple sea urchin, S. purpuratus [13–24]

as well as many of the important genes involved in mesoderm

specification and the formation of the larval skeleton. Most of the

.200 connections in this network are direct intermolecular

interactions identified from extensive experimental studies including

knock-downs, over-expression assays, cell transplantations, pro-

tein:DNA binding assays, and transient transfection assays. The

network thus provides a detailed account of gene regulatory

interactions necessary, though not sufficient, for early development.

Three additional features make this gene regulatory network

particularly useful for studying the consequences of variation in

gene expression during development. First, the network spans the

major phases of development: from the unfertilized egg, through

embryonic patterning and cell fate specification, to morphogenesis

and terminal cellular differentiation. It thus offers an opportunity

to examine how changes in the expression of regulatory genes

influence phenotypes throughout development. Second, the

network includes all of the regulatory genes and many of the

structural genes known to be involved in the formation of the

larval skeleton, a discrete and readily imaged three-dimensional

structure [25]. This allows one to quantify covariation between

molecular processes and the morphological structures they

produce within the context of a known topology of largely direct

regulatory interactions (Figure 1). Because variation in the size and

shape of the larval skeleton influences fitness [26–30], it provides a

relevant phenotypic readout of the consequences of variation in

gene expression throughout the network. Third, wild populations

of S. purpuratus harbor high levels of genetic diversity [31,32],

including substantial variation within cis-regulatory elements that

Author Summary

Animal development is highly stereotypic in the face of
changing environmental conditions and individual genetic
differences. At the same time, developmental processes
can evolve rapidly, suggesting that selectable genetic
variation is hidden beneath this apparent stability. To
better understand the relationship between these seem-
ingly opposed properties of robustness and evolvability,
we measured how natural variation in gene expression
propagates across a network of interacting genes under-
lying early development in sea urchins. We found that
gene interactions are not equal across development:
expression variation is well buffered during early develop-
ment by the use of on/off switch-like (rather than
continuously tunable) regulatory mechanisms, while dur-
ing later development it has a greater impact on the
expression of downstream target genes and on morphol-
ogy. Using a breeding design, we were able to detect a
substantial genetic component to the observed variation
in gene expression. Interestingly, the degree of genetic
contribution was greatest during early development and
specifically at points of switch-like regulation, suggesting
that the properties of developmental gene regulatory
networks that underlie robustness also promote the
accumulation of genetic variation that could seed adap-
tation.

developm
ent

redox gradient

skeletogenic endomesoderm ectoderm

maternal
zygotic

Alx1 Ets1

ES

Nrl

Msp-L

ActvB

Sip1

Not

Notch

Lhx2.9

Tbx2.3

Hes

Alx1

Nrl

Otx

Pmar HesC

Blimp1 Wnt8

TBr Delta

Tel Erg Hex Tgif FoxN2/3

Tcf GSK3 FrzldßCat

Dri FoxO VEGFR

SM27 SM50 Msp130

SM30-E GCad Ficolin CyP

C-lectin

Mif7 Dkk

SM32 CollA P16 P19

RBM8A

SoxC

FoxB

Nodal Lefty

ChordinGsc FoxG

BMP2/4Otx

Hnf6

Apobec GelsolinKakapo Endo16

Hnf6

GataCHex Snail

Brn124

Tgif Gcm

Blimp1Otx

EveHox11/13FoxASuH

Wnt8

Dri

HmxNkx2.2

DlxIrxA

Nk1

Mitf Bra

Lim1

SoxB1RhoA

Bra

HesC

Delta GataE

VegF

Hnf6

GCadSoxB1NotchEts1ßCatOtx

A B

10 h

18 h

24 h

28 h

38 h

45 h

90 h

TP1

TP2

TP3

TP4

TP5

TP6

TP7

Fmo1,2,3

Figure 1. Developmental gene regulatory network of S. purpuratus. (A) Development progresses from the egg (top), through cleavage and
gastrulation (middle), to a free living larva capable of feeding (bottom). Skeletogenic cell lineage indicated in red, skeleton in solid black. The seven
post-fertilization stages and times (hours) shown correspond to time points 1–7 discussed throughout this article. (B) The gene regulatory network is
initiated by maternal transcripts and proteins (top) that activate a cascade of subsequent gene regulatory interactions (see text for references). Names
of genes assayed in this study are shown in black, other genes in gray. Solid lines, colored to allow visual separation, denote experimentally verified
direct molecular interactions among genes: transcription factor:DNA binding (arrows = activators, bars = repressors) or ligand:receptor interactions
(nested arrowheads pointing to receptor). Distinct spatial territories of cell fates specific in the embryo are indicated by colored background and
name. Based on [13–24].
doi:10.1371/journal.pbio.1001696.g001
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mediate regulatory interactions within the network [33–36]. This

genetic variation provides a natural source of perturbation that

allows one to measure the impact of functional variation on

developmental processes and morphology. Because these pertur-

bations derive from natural rather than induced mutations, they

are directly relevant to understanding the operation and evolution

of development in the wild.

We measured variation in gene expression throughout the gene

regulatory network at multiple developmental time points in

crosses of outbred individuals of S. purpuratus collected from a

natural population. We also measured the phenotypic impact of

this variation, both on downstream gene expression and on the

resulting morphology of the larval skeleton. While several previous

studies have examined correlations between natural variation in

gene expression and ecologically significant traits from single genes

[10,12,37,38] or within short pathways [6,39,40], this is the first

study we are aware of that has sought to quantify expression

variation throughout an extensive gene regulatory network

spanning development from embryogenesis to the production of

organismal traits, and to relate variation in gene expression

throughout a developmental network and across developmental

stages to specific morphological trait consequences.

Results

In order to examine the extent and consequences of variation in

gene expression within the gene regulatory network, we set up a

666 cross using outbred parents derived from the same wild

population. We raised the 36 families as replicated cultures in a

randomized design within a growth chamber at the Duke

University Phytotron and sampled individuals from each culture

at seven time points during development (Figure 1A). From these

samples we measured transcript abundance in pooled samples of

several hundred embryos for 74 interacting genes within the

network using DASL, a multiplexed amplification assay, on the

Illumina BeadStation (see Methods). At time point 7 we also

quantified morphological variation in the larval skeleton using

standard landmarks in ,20–30 individuals from each family.

These data form the basis of the analyses detailed below.

Variation in Developmental Gene Expression Has a
Significant Genetic Component

Variation in developmental gene expression within a population

can arise from many sources, including genetic differences and

non-genetic parental influences such as egg quality, which

contribute to resemblance among relatives, as well as from

environmental influences and stochastic processes, which do not.

Because the cultures we analyzed were derived from a controlled

cross with known parents (the NCII breeding design), we were able

to estimate the magnitude of genetic and non-genetic parental

contributions (collectively, parental effects), based on correlations

in expression levels among related individuals relative to the

population as a whole. In the NCII design, male and female

contributions each provide a direct estimate of the additive

(heritable) genetic contribution to gene expression variation [41].

In the case of the male effects, the estimate is direct, as sperm

contribute to offspring phenotypes almost exclusively through

genetic effects. In the case of maternal effects, however, estimates

can be distorted by differences in additional maternal contribu-

tions such as mRNA or nutrients loaded into the egg (which may

themselves have a genetic component). For a variety of reasons

(discussed below and in Text S1), we believe non-genetic maternal

effects to be relatively minor subsequent to the first time point we

examined.

We observed pervasive parent-of-origin effects on gene expres-

sion throughout development. The expression levels of most genes

in the network (72/74) showed significant paternal and/or

maternal effects at one or more of the time points sampled. For

most of these genes, we could ascribe a direct contribution from

genetic variation at multiple time points (Table S1): some 70% of

the genes (52/74) showed significant paternal effects, evidence of

widespread genetic influences on quantitative variation in gene

expression, since paternal effects are likely to be largely genetic

[41].

In most cases, the magnitude of variation explained by parent-

of-origin was modest, consisting of quantitative differences in the

timing or level of gene expression on the order of 10%–15%

relative to mean expression level among families (Table S1). For

instance, up-regulation of Nkx2.2, which encodes a transcription

factor, was delayed in offspring of one female relative to other

families despite reaching typical levels later (Figure 2A), while

expression levels of SM30-E, which encodes a dominant compo-

nent of the biomineral matrix of the skeleton, were on average

higher and lower in offspring of two different males relative to

other families (Figure 2B).

In a few cases, differences in gene expression among families

were more substantial. The key regulatory gene Pmar, whose

product forms part of a double-negative gate that restricts

expression of skeletogenic genes to a subset of cells in the early

embryo [42], was expressed at sustained high levels in the offspring

of one female long after it was barely detectable in other families

(Figure 2C). Transcripts of VEGFR, which encodes a receptor that

mediates critical cell fate decisions [43], were abundant in the very

early embryo in offspring of just one female (Figure 2D), perhaps

reflecting maternal loading of transcripts. Because we assayed gene

expression in whole embryos, we cannot distinguish whether these

differences involved increased expression within their normal

spatial domains or ectopic expression involving additional cells.

What is clear, however, is that there was no detectable impact of

these two anomalous expression profiles on the subsequent

expression of known downstream targets, even though Pmar and

VEGFR both encode key regulators of the skeletogenic portion of

this regulatory network.

Genetic Contributions to Expression Variation Change
during Development

Zygotic transcription occurs at very low levels during the first

few cell cycles after fertilization in S. purpuratus and increases

dramatically by 4th–5th cleavage [44,45]. This corresponds

approximately to our time point 1, which should thus show strong

maternal contributions to variation in transcription levels.

Beginning with time point 2, maternal and paternal genetic

contributions should be equal in magnitude, and any significantly

larger maternal effects would constitute evidence for maternal-

specific genetic and non-genetic (e.g., environmental) contribu-

tions to gene expression variation [41]. Consistent with an

important role for genetic influences on gene expression, we

found that maternal effects were significantly greater than paternal

effects only at the first time point (p = 0.004, Wilcoxon) (Figure 3).

In contrast, the distribution of paternal effects remained fairly

constant across developmental time points, with an important

contribution to the average parental effect at each time point

coming from a few transcripts with relatively high paternal

contributions (Figure S1B). Furthermore, we observed a shift from

a modest, though significant, correlation between the magnitude of

maternal and paternal effects at time point 1 (Spearman

Rho = 0.54, p = 461025) to higher correlations at later time points

Evolution of a Gene Regulatory Network
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(Spearman Rho = 0.87, p = 2.261025), consistent with predomi-

nately zygotic transcription after the first time point.

The magnitude of parental influences on variation in gene

expression clearly changed during development (Kruskal-Wallis,

p = 2.961025, x2 = 61.21, df = 6) (Figures 3 and S1B), with the first

two time points showing significantly greater variation in parental

effects among families than later time points (mean s2
est = 0.286

versus 0.064; Wilcoxon, p = 3.4861028, W = 32,208) (Figure S1A).

Differences in the magnitude of parental variances among time

points remained significant even after excluding time point 1

(Kruskal-Wallis, p = 2.461023, x2 = 18.44, df = 5), suggesting that

the zygotic component of genetic influences on variation in gene

expression changes throughout development and that genetic

contributions to gene expression are at least as great during early

development as they are during morphogenesis. Importantly, we

obtain qualitatively similar results when we examine only

statistically significant paternal effects (Kruskal-Wallis,

p = 1.561023, s2
est = 0.038 versus 0.026 p = 0.09 Wilcoxon) or

when we look at mean parental contributions for genes only at the

times in which they are known from prior research (see above) to

be involved in direct regulatory interactions (protein:DNA and

protein:protein) (Kruskal-Wallis, p = 0.039, s2
est = 0.18 versus 0.07

p = 0.051 Wilcoxon).

Taken together, these results suggest that this wild population

harbors substantial amounts of genetic variation that influence

gene expression during even the earliest stages of embryonic and

larval development. This finding is consistent with the high levels

of genetic variation in known cis-regulatory sequences that

previous studies have documented in wild populations of S.

purpuratus, including SNPs within experimentally validated tran-

scription factor binding sites regulating the expression of FoxB,

Endo16, and SM50 [33–36].

The Nature of Regulatory Interactions Changes during
Development

In order to understand the impact that variation in the

expression of regulatory genes has on downstream targets, we

first examined correlation coefficients (r2) between pairs of genes
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Figure 2. Parent-of-origin effects on gene expression profiles. Changes in transcript abundance across seven developmental stages are
plotted for each family for four representative genes. Families are color-coded by parent of origin: dam in (A, C, D) and sire in (B). In each case, gene
expression profiles in the families derived from one parent stand out as distinct from all the other families (color versus grey in magnified time
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for which there is experimental evidence of a direct regulatory

interaction. We restricted these analyses to time points when each

interaction is known to occur (http://sugp.caltech.edu/endomes/;

no data are available for time point 7). The information in this

database has been painstakingly compiled, and represents

arguably the most complete picture of a developmental gene

regulatory network to date [13–24]. It is not, however, perfect:

most noted regulatory interactions are likely to be real, but many

others remain to be identified. This has a minor impact on the

comparison of correlation coefficients between known interactors

as compared with random pairs of genes thought not to interact.

However, inadvertently including some actual interactions in the

background model makes the test more conservative, so this is not

a major concern.

As expected, correlations over all stages were, on average,

significantly stronger between genes that are known to interact

than between genes with no known regulatory interactions

(p,0.01, permutation). However, the strength of these correlations

changed dramatically during development. During the first two

time points, r2 values were no greater, on average, for interacting

genes (whether via protein:DNA or protein:protein interactions)

than for non-interacting pairs (Figure 4A). In contrast, correlations

rose significantly during the subsequent time points, suggesting

that functional dependencies between genes become quantitatively

stronger and more tightly correlated later in development (p,0.01

for each of time points 3–6, permutation). Importantly, correla-

tions among pairs of genes expressed in the same tissue were often

negative and were not, on average, greater than those between

random pairs of genes (Figures S2 and S3). Changes in

correlations over development are thus unlikely to stem from

differences in tissue composition or developmental rates among

broods.

Regulatory interactions also differed qualitatively during devel-

opment. Some gene pairs showed strong dependencies throughout

development (e.g., GataERFmo1,2,3, Figure 5A), suggesting that

the expression level of the downstream target was sensitive to

variation in the expression level of its immediate upstream

regulator. In other cases, the expression of downstream genes

0.
0

0.
2

0.
4

 c
or

re
la

tio
n 

(r
2 )

10 18 24 28 38 45

10 18 24 28 38 45

= direct interactions 
= random pairs

developmental time (hr)

0.
0

0.
2

0.
4

0.
6

0.
8

fra
ct

io
n 

of
 li

ne
ar

 in
te

ra
ct

io
ns

1.
0

m
at

er
na

l t
ra

ns
cr

ip
ts

0.
5

0.
3

0.
1

A

B

*
*

*
*

Figure 4. Changes in regulatory interactions across development. (A) Mean correlation (r2) in expression between pairs of genes are plotted
for known direct regulator-target interactions (red) and random pairs of genes not thought to interact (purple). Error bars for random interactions are
based on boot strap replicates carried out independently for each stage; values for known interactors are counts at each stage and thus no error bars
are shown. Asterisks denote significant differences between interactors and random pairs of genes (p,0.01, by permutation, for all but time point 3,
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highly correlated from time point 3 onwards. (B) The proportion of sensitive regulatory interactions among known interactors is plotted. Many
regulatory interactions among zygotically expressed genes are insensitive (i.e., switch-like) during embryogenesis, with an increasing proportion of
sensitive (i.e., quantitative) interactions at later time points.
doi:10.1371/journal.pbio.1001696.g004
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appeared largely insensitive to quantitative variation in a direct

upstream regulator beyond some threshold level of expression

(e.g., DriRCyP, Figure 5B). This second example suggests a

situation in which the downstream gene is effectively buffered from

variation in the expression level of the upstream regulator, at least

within the bounds of normal variation encountered in the wild

population.

On the basis of these patterns of correlation, we next classified

each experimentally validated pair-wise regulatory interaction as

being either sensitive (expression levels of the two genes show a

statistically significant correlation; e.g., Figure 5A) or insensitive

(switch-like or Boolean; no quantitative relationship between

expression levels above a threshold; e.g., Figure 5B). Because the

quantitative and qualitative nature of a regulatory interaction can

change during development (Figure 5C), we analyzed each

interaction independently at each time point at which it occurs.

To ensure an equal power to detect sensitive edges at each stage of

development, we quantified overall levels of variation at each time

point (Table S2) and observed no relationship between these

numbers and the number of edges classified as sensitive/

insensitive. Furthermore, because the average expression levels

of the genes used in this test were approximately equal at each

time point, we can rule out influences from changes in the

accuracy of expression measurements between time points.

Interestingly, the relative proportion of sensitive and insensitive

edges changed over time (Figure 4B; x2 = 10.91, p = 0.032). The

proportion of sensitive edges increased substantially from early to

later stages of development when considering zygotic transcription

only. The first time point marks an exception. However, at this

time a large proportion of transcripts present are still maternally

derived [44,45], and covariances between genes are both

significantly greater and more structured than at subsequent

stages of development as revealed by comparisons of genetic

covariation matrices across time points (see Methods and Text S1).

Correlations among genes at this earliest time point we sampled

are thus likely confounded by differences in maternal provisioning

among females affecting sets of genes in unison rather than causal

relationships among interacting genes in the network, a result we

discuss further below.

Insensitive regulatory interactions may allow more genetic

variation to accumulate within the population by buffering

downstream phenotypes from the consequences of mutations

impacting the expression of upstream genes. To test this

possibility, we compared the size of paternal effects, the most

conservative estimator of genetic influences [41], for genes

upstream of insensitive versus sensitive regulatory interactions.

We observed significantly greater paternal effects upstream of

insensitive interactions than sensitive ones (mean s2
paternal = 0.029

for insensitive versus 0.016 for sensitive, p = 0.037, Kolmogorov-

Smirnov). In order to account for changes over developmental

time in average paternal effects and in the proportion of insensitive

interactions, we repeated the analysis incorporating the effects of

developmental time point in the model and the result was still

significant (p = 0.048). Thus, insensitive regulatory interactions

may contribute to buffering and may influence the distribution of

genetic variation across the network.

Variation in Gene Expression Influences Skeletal
Morphology

While gene expression is an important intermediate phenotype,

the ultimate products of developmental gene regulatory networks

are the morphological and physiological traits upon which natural

selection directly acts. To better understand how natural variation

in gene expression within the network influences ecologically
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relevant traits, we next examined associations between variation in

gene expression throughout the network and variation in the

morphology of the larval skeleton. Because the size and shape of

the larval skeleton is closely associated with feeding rates and

survivorship [27–29], morphological variation in this structure

(Figure 6A) is likely to be subject to natural selection.

After measuring the skeletons of larvae from each culture at

time point 7 using established morphological landmarks [46,47],

we carried out a principle components analysis (PCA), and found

that the first three principle components collectively explained

,89% of overall variation in size and shape (Table S3). These

factors showed strong evidence of parental effects, particularly

maternal effects (Table S4), as one might expect given the evidence

for a relationship between variation in maternal egg quality and

skeletal shape in echinoderms [47,48]. For each gene at each time

point, we then calculated Pearson’s correlation coefficient between

transcript abundance and each of these first three principal

components. After correcting for multiple comparisons, eight

genes showed statistically significant associations between gene

expression at one or more time points and one or more of the

principle components of skeletal variation (Figure 6B; Table S5;

Text S1). Although our gene expression measurements were based

on whole embryos, five of the eight genes are transcribed only in

skeletogenic cells at the time points we examined, suggesting that

their effects on skeletal variation are exerted through this cell type

alone.

Six of the genes reside within the skeletogenic subnetwork: three

(SM30-E, Msp130, SM50) encode abundant protein components of

the biomineral matrix of the skeleton [25,49], another (C-lectin)

encodes one of the most abundant proteins in the cells that secrete

the skeletal matrix [50], and two (FoxB and Hex) encode

transcription factors that are direct activators of the four structural

genes just mentioned [14]. The remaining two genes, Dkk and

Su(H), are regulators of Wnt and Notch signaling, respectively

[20,51], whose functions in sea urchin development have primarily

been studied before the onset of skeletogenesis. Interestingly, Dkk

is an abundant component of the phosphoproteome of adult

skeletal matrix [49], raising the possibility that it has a more direct

role in skeletogenesis.

Because the majority of associated genes (five of eight) are

expressed exclusively within skeletogenic cells, correlations be-

tween their expression and skeletal morphology could be explained

by differences in the number of skeletogenic cells among families.

For two reasons, this is unlikely to be the case. First, as mentioned

above, correlations in the expression of skeletogenic cell genes

among families are no greater than background, and are often

negative. Second transplant experiments that artificially increase

skeletogenic cell number by more than 2-fold, which is far outside

the normal range of variation, have no measurable impact on the

size or shape of the larval skeleton [52,53], arguing against a direct

link between skeletogenic cell number and skeletal morphology.

These results indicate that: (1) natural variation in the

expression level of several genes within the network has an impact

on an ecologically important structure in the larva; (2) the genes

with the largest impact are located at the termini of this gene

regulatory network; and (3) these genes primarily encode cell type-

specific structural proteins and their immediate regulators.

The Impact of Variation in Gene Expression on Skeletal
Morphology Changes during Development

Analyses focused on single gene associations (previous section)

may overlook cases in which an upstream regulator affects a

morphological trait through its influence on other genes. To

investigate this possibility, we carried out a two block partial-least

squares (2B-PLS) analysis [54]. This technique, which bears some

similarity to PCA, is applied to two sets of data, in this case gene
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developm
ental tim

e

Ets1

Ets1

Otx

Pmar HesC

Blimp1 Wnt8

TBr Delta

Tel Erg Hex Tgif FoxN2/3

ßCat

Tcf GSK3ßCat

Dri FoxO VegFR

SM27 SM50 Msp130

SM30-E GCad CyP

Otx

C-lectin

SM32 CollA P16 P19

SoxC

FoxBMitf

Hnf6

Alx1

ES

Nrl

Msp-L

ActvB

Ficolin

A B C

D E

multi-
timepoint

Figure 6. Correlations between gene expression and larval morphology. (A) Gene regulatory sub-network in skeletogenic cells (see Figure 1
for broader network context). Yellow boxes indicate genes encoding regulatory proteins; purple boxes indicate genes encoding structural proteins of
the skeleton and surrounding matrix. These boxes correspond to rectangles in the remaining panels, with a horizontal line separating the two classes
of genes. (B–E) Results of tests for correlations between variation in gene expression and variation in skeletal morphology. Gray indicates no
correlation; color indicates correlation with expression from a single time point; black indicates a correlation based on multiple time points (see Text
S1). (B) Morphological associations with expression based on PCA. SM30-E is related to PC I (primarily length), FoxB and Hex with PC III (primarily
aspect ratio). (C) Morphological associations based on partial least squares analysis. Very early effects (time point 1) operate through regulators high
in the network. (D) Morphological associations based on weighted contributions by partial least squares analysis. Four genes show associations from
early stages and three from late stages. (E) Morphological associations that are conservatively based solely on male genetic contributions. The three
strongest associations come from late expression. Note that SM30-E is identified in all four analyses.
doi:10.1371/journal.pbio.1001696.g006
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expression measures and morphological measures, and seeks to

find weighted groupings within each dataset that together

maximize the correlation between the two sets of traits. This

multivariate correlation is quantified by the RV statistic [55],

which is analogous to Pearson’s r2.

Using 2B-PLS analysis, we found a modest but statistically

significant overall relationship between variation in the expression

of active genes and in skeletal morphology (RV = 0.163, p = 0.002;

permutation). A large weight in this association (49%) was

attributable to the first pair of factors. 84% of the weighting in

the skeletal factor of this first pair was associated with the body rod

length and thus with the overall length of larvae (Tables S6 and

S7). Interestingly, the strongest associations showed a strikingly

nonrandom distribution among developmental time points. The

10% most highly weighted genes in the first expression factor

showed a strong enrichment (11 of 22 expression measures) for

expression at time point 1 (p = 5.4261027, x2 = 25.108, df = 1). A

further seven of these top 10% expression measures corresponded

to later stages of development (Table S8), including two

associations (time points 5 and 6) with SM30-E, which encodes a

major component of the skeletal matrix. Only a few expression

measures (three of 22) among the most heavily weighted

components of the first gene expression axis involved regulatory

genes at intermediate time points: Pmar, which encodes a

transcription factor critical in skeletogenic cell fate specification,

and SM50 and SM27, both of which encode components of the

skeletal matrix with primary functions in later in development

(Figure 6C).

Next, we examined the influence of gene expression on

multidimensional variation in skeletal morphology by calculating

the total contribution of each expression measure as the weighted

sum of its loadings on each of the six 2B-PLS factors. The 11 gene-

time point combinations that comprised the upper tail of the

distribution (top 5% of scores) were again heavily weighted

towards the top and bottom of the network (Figure 6D; Table S9).

Six of the expression measures correspond to transcription factors

expressed during the first time point, while two others involve

Pmar, which was also associated with skeletal size (previous

paragraph), at time points 2 and 3. Included in this list were

only two genes expressed later in development: SM30-E (time

points 5 and 6), a second gene that was also associated with skeletal

size in our PCA-based analysis (previous paragraph), and FoxO

(time point 6), which encodes a transcription factor that regulates

the epithelial-to-mesenchymal transition that skeletogenic cells

undergo prior to commencing biomineralization (L. Saunders and

D. McClay, submitted).

Thus, the 2B-PLS analyses indicate that the strongest gene

expression-morphology associations are concentrated bimodally,

in very early development and in terminal differentiation.

Variation in Gene Expression Influencing Skeletal
Morphology Has a Non-maternal Genetic Component

Since skeletal variation and many of the genes uncovered by our

correlation analyses are both influenced by maternal effects, the

correlations we observed between them could be due to

covariation with a common maternal influence. To test this

possibility, we sought evidence of a statistically significant

correlation between gene expression and a principal component

of skeletal variation by including a maternal parental term as an

additional factor in our linear models. For any gene-time point

expression measures that remain significant predictors of skeletal

variation even after accounting for maternal effects, we can reject

the hypothesis that maternal effects are the sole factor influencing

correlations between gene expression and skeletal variation.

Using this approach, we could not reject a model that included

only maternal influences for the majority of genes within the

network that showed some prior association with skeletal variation.

However, for four genes (FoxO, SM30-E, Msp130, and C-lectin) we

found significant support (p,0.01) for non-maternal co-variances

at time points 4 and/or 5 (Figure 6E). The relationship between

the expression of these four genes and skeletal morphology appears

to be independent of maternal effects, and thus is most likely due

to genetic contributions. Because our ability to detect maternal

genetic contributions is confounded by non-genetic components of

egg quality and is limited by the modest size of the cross, it is

certainly possible that additional associations between gene

expression and morphology have a genetic component.

Discussion

The position of a gene within a regulatory network may

determine the extent to which mutations altering its function

influence trait variation and adaptation [7,56]. One way to

measure this impact and to understand why certain genes and not

others underlie trait variation is to undertake a systematic analysis

of the distribution of functional variation during development that

contributes to the trait of interest. In this study, we assessed the

impact of natural variation on both proximate (gene expression)

and organismal (morphology) quantitative trait variation within

the context of a well-defined developmental gene network

(Figure 1). The results highlight the significance of a gene’s

position within the network, both for buffering the consequences of

genetic variation during development and for providing adaptive

modifications to development during the course of evolution.

Natural Variation in Network Function Is Extensive and
Has a Genetic Component

We observed extensive variation in gene expression within the

gene regulatory network in a natural population. Most involves

modest changes in the timing or level of gene expression, although

two genes in particular (Pmar and VEGF1R) showed striking

differences (Figure 2). Based on our NCII breeding design, we

found evidence for a genetic component to expression variation for

most genes (Table S1). The majority of these showed statistically

significant paternal influences even during early development and

despite the modest size of the cross, suggesting that genetic

contributions to variation are often substantial. This result is

consistent with the extensive genetic variation within regulatory

elements (including transcription factor binding sites) that previous

studies have reported for S. purpuratus [33–36]. Average levels of

genetically based variation in gene expression remained apprecia-

ble throughout development, with a modest drop after the second

time point (Figures 3 and S1). These results are consistent with a

previous study of genetic contributions to gene expression during

development [57], and extend them to natural populations and to

a broad range of developmental stages.

Understanding the phenotypic consequences of variation in

gene expression within wild populations is important for three

reasons, which we discuss below: (1) much of it must be buffered so

as to avoid adversely affecting later developmental processes, (2) it

may influence quantitative variation in ecologically significant

organismal traits such as morphology, and (3) it may form the basis

for future adaptations.

Developmental Buffering Impacts Network Function and
Genetic Variation

An important question is whether the variation in gene

expression encountered in nature is buffered or propagated across
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a gene network during development [2,5,58]. Consistent with

what one would expect of transcriptional regulators and their

targets, we found that covariation in gene expression was generally

higher for direct regulatory interactions than for random pairs of

genes within the network (Figure 4A). However, the levels of

covariation we observed were generally modest or nonexistent,

indicating that the effects of variation in gene expression are

buffered throughout the network. One possible mechanism for

buffering transcriptional regulation is through threshold, or switch-

like, interactions. Switch-like regulation of target gene expression

can arise in several ways, including cooperative binding of

transcription factors [59–61] and transcription factor saturation

at binding sites [62,63]. In either case, changes in transcription

factor concentrations above a certain threshold would have

relatively little impact on the expression of their target genes.

We found that many regulatory interactions in S. purpuratus show

either switch-like behavior (e.g., Figure 5B) or a low degree of

correlation, suggesting that transcriptional regulatory interactions

can contribute to developmental buffering. Other regulatory

interactions within the network, however, showed stronger

correlations between regulator and target (e.g., Figure 5A). An

important topic for future research will be understanding what

makes these interactions different. Do they represent cases in

which cooperative regulatory interactions play a less important

role in regulating gene expression levels or where transcription

factor binding sites are rarely saturated? The fact that less buffered

interactions often lie upstream of terminal differentiation genes

may point to an important difference in how genes are regulated

during cell fate specification versus differentiation.

Our results indicate that variation in gene expression is buffered

particularly well during early development. One manifestation of

this is an overall increase in covariation between the expression

levels of neighboring genes within the network as development

proceeds; in early embryos, the expression levels of genes involved

in direct regulatory interactions are no more correlated than those

of random pairs of genes, while at later stages, expression levels of

direct interactors are significantly more correlated than random

pairs (Figure 4A). Another indication of a change in the degree of

buffering during development is a substantial increase in the

proportion of sensitive regulatory interactions over time, from

about one-third during early embryogenesis to about two-thirds at

later stages (Figure 4B).

These qualitative shifts in the nature of regulatory interactions

may be related to changes in the overall function of the network

during development. Early development involves a series of binary

decisions between distinct cell fates. Buffering may be especially

important during this time, to ensure the fidelity of all-or-nothing

cell fate decisions and to allow for the proper integration of distinct

sets of regulatory inputs. Buffering may also be important during

early development to screen out environmental variation that

might otherwise influence these critical processes. Consistent with

this expectation, we previously reported minimal influences of

ecologically relevant thermal stress on gene expression throughout

this network [64]. Later development, in contrast, involves the

inherently quantitative processes of growth and morphogenesis.

Quantitative regulatory interactions among genes in a network

may be especially important during post-embryonic stages in order

to fine-tune these quantitative processes in response to nutrition,

pathogens, physical conditions, and other environmental factors

[65].

Note that buffering and cell fate specification are not necessarily

related processes. Binary cell fate decisions may depend on a

threshold response to a molecular cue, but that cue may be a

property other than transcript abundance of a single upstream

gene. Conversely, quantitative processes like growth could be

based on the additive effects of many switch-like regulatory

interactions of small effect. Nor is buffering a necessary component

of cell fate specification, since there is no reason why a network

with reduced variation in gene expression could not execute binary

cell fate decisions.

Our results also suggest that developmental buffering can

influence the accumulation of genetic variation that influences

development in wild populations. We observed more genetically

based variation in the expression of genes upstream of switch-like

(insensitive) regulatory interactions than in those upstream of

quantitative (sensitive) interactions. Our results further suggest that

genetic variation in the natural population is not distributed

randomly across the gene network, but is instead a by-product of

the change in developmental mechanisms from cell fate specifi-

cation in the early embryo to morphogenesis and growth during

later stages. We hypothesize that by masking variation during

early development, switch-like regulatory interactions may allow

cryptic genetic variation to accumulate over evolutionary time at

nodes that operate early within the network. Cryptic genetic

variation is evolutionarily significant, because mutation or stress

can unmask it, sometimes with dramatic phenotypic consequences

[9,66,67]. Our results may also help to explain the observation

that expression profiles are often less conserved between species

during very early development than at subsequent stages [68], a

pattern that has long been noted for morphology across

developmental stages [69–72].

Variation in Gene Expression Influences an Ecologically
Significant Trait

The larval skeleton of sea urchins plays critical roles in feeding,

defense, and orientation [26–28,30], and natural variation in this

structure has an impact on mortality [27,29]. Thus, genetic

variation that influences the size and shape of the larval skeleton

will likely be a target of natural selection in the wild. We found that

variation in the expression of a few genes within the network is

associated with quantitative variation in the morphology of the

larval skeleton (Figure 6). These genes fall into two sets: one

expressed during early embryogenesis and the other during

skeletogenesis.

Correlations between the first set of genes and skeletal

morphology are unlikely to represent a causal relationship that is

mediated through transcription of the network genes we exam-

ined. Support for this inference comes from the lack of correlation

between the expression of genes in the middle portion of the

network (Figure 6C–6F) and skeletal variation: if early gene

expression influenced the skeleton through the network, the

expression of intermediate genes should also be significant in the

2B-PLS analysis. Another reason is that the association between

early genes and skeletal variation is fully explained by the maternal

parent. Thus, it seems likely that a single maternal input, such as

egg size or provisioning, independently influences variation in the

expression of early genes and variation in larval morphology. The

existence of such an input would explain why expression levels, as

well as breeding values, are relatively highly correlated at time

point 1 (Figures S2 and S3; Text S1) and is supported by

experiments demonstrating that variation in egg size and quality

influence the morphology of the larval skeleton [27,47,48].

Nonetheless, we cannot rule out the possibility that these genes

act through the network via processes other than transcription or

through interactions outside of this network such as changes in cell

size.

In contrast, the second set of genes are likely candidates for

directly contributing to variation in the larval skeleton. All are
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expressed during formation of the skeleton, most are expressed

exclusively within skeletogenic cells, and most encode protein

components of the biomineral matrix itself. That many of these

genes change expression in response to targeted chemical

manipulations that alter of the size and structure of the larval

skeleton [73–75] and that they covary with skeletal morphology

independent of maternal effects (Figure 6) provides further support

for a direct connection between their expression and skeletal

formation. These results are consistent with the idea that the

position of a gene within the network has consequences for

quantitative genetics and that mutations affecting the expression of

terminal structural genes are among the most likely to influence

variation in the size and shape of the larval skeleton. Importantly,

this hypothesis can be tested directly by manipulating gene

expression levels experimentally and measuring trait consequenc-

es.

Terminal genes may influence morphological variation simply

because fewer molecular events separate them from the trait of

interest than is the case for genes that operate farther upstream,

providing less opportunity for buffering. Other studies have also

found that the expression of terminal genes can influence an

organismal trait, as with abdominal pigmentation in Drosophila

[10,76,77]. It is important to bear in mind, however, that terminal

genes are not always major contributors to phenotypic variation.

In metabolic networks, variation in genes at the top of the network

often have the largest impact [78–80], while in developmental

networks, genes at intermediate positions sometimes contribute the

most to trait variation [37,38,81]. A clue as to why these cases

differ may lie in the nature of gene interactions. Most of the

interactions that regulate the structural genes of the sea urchin

larval skeleton are quantitative rather than switch-like, which

allows variation in immediate upstream regulators to influence the

expression levels of structural genes, whereas changes in more

upstream genes are buffered.

In light of the number of regulatory interactions that appear to

be buffered in this network, associations between genes encoding

transcription factors such as FoxO and skeletal morphology become

all the more surprising. Unlike structural genes such as SM30-E,

the impacts of changes in transcription factor expression are

necessarily indirect, and it is worth considering why some

transcription factors, but not others, quantitatively influence

morphology. Differences in molecular mechanisms of action may

provide important clues. For instance, forkhead proteins, including

FoxO, often act as pioneer transcription factors, binding directly to

condensed chromatin and setting the stage for lineage-specific

transcription by recruiting chromatin remodelers and additional

transcription factors [82–84]. Forkhead transcription factors have

also been proposed to play a special role in fine-tuning gene

expression [85]. Although the regulatory targets of FoxO remain

unknown in sea urchins, it is tempting to speculate that the

quantitative association between FoxO expression and skeletal

morphology stems from a potentially rate-limiting role in priming

the chromatin landscape for transcription. More generally, this

result highlights the need to better understand the molecular

mechanisms that link genes with the organismal phenotypes that

they influence.

Expression Variation in Terminal Genes Provides Raw
Materials for Adaptation

Several elegant studies of adaptation in wild populations have

traced ecologically important phenotypes to changes in the

transcriptional regulation of a single gene during development

[10,12,38,86]. Moving forward, a central challenge in evolution-

ary genetics is understanding why certain genes, and not others,

contribute to adaptation. Systematically measuring variation and

correlations across a gene network and across developmental time,

as we have done here, provides one promising approach.

For a gene to contribute to adaptation, it must harbor variants

that influence its function, and this variation must be associated

with an ecologically significant organismal trait. Based on these

criteria, C-lectin, FoxO, and SM30-E are the strongest candidates

among the genes we examined for contributing to adaptive

changes in the size and shape of the larval skeleton in S. purpuratus.

Additional candidates are FoxB, Msp130, and SM50, though with

somewhat weaker support. Most of the remaining genes we

assayed show no clear correlation with skeletal morphology and

seem less likely to contribute. Five of the six candidates are

terminal differentiation genes and the other is a transcription

factor expressed during differentiation, suggesting that network

position is a significant factor in the genetics of adaptation for the

larval skeleton.

Several independent lines of evidence suggest that the larval

skeleton of S. purpuratus should be able to evolve adaptively. First,

this species has an enormous effective population size, non-

assortative mating, and extensive gene flow [32,87,88], all features

that favor the efficient operation of natural selection. Second,

populations of S. purpuratus harbor substantial genetic variation

(0.5%–3%) in noncoding regions of the genome [31,36,89],

providing abundant genetic variation upon which selection can

act. This includes extensive genetic variation within empirically

validated cis-regulatory elements and transcription factor binding

sites [33–36]. Third, evidence presented in this study indicates that

some of this genetic variation has an impact on phenotypic

variation in the size and shape of the larval skeleton.

Adaptation requires a fourth component that is more difficult to

assess, namely the ecological circumstances that favor phenotypic

change. As mentioned earlier, the skeleton plays several important

roles in larval feeding, defense, buoyancy, and swimming, making

it a likely target of selection [26,28–30]. The remarkable diversity

of skeletal size, shape, and configuration among living species of

sea urchins points to extensive adaptive changes over the past 250

million years of evolution [72,90], while signatures of positive

selection within the cis-regulatory elements of genes in the

skeletogenic network indicate recent adaptive changes within S.

purpuratus [34–36]. Thus, adaptation in skeletal size and shape has

likely been an important part of the evolutionary history of sea

urchins, and the variation we document here has the potential to

contribute to future adaptation.

Network Position Has an Impact on Trait Variation and
Adaptation

Our results reinforce the idea that the position of a gene within

a regulatory network position has important evolutionary conse-

quences [6]. Some regulatory interactions within the developmen-

tal network of sea urchins can buffer more variation than others,

and the distribution of these interactions is enriched during

embryogenesis relative to later development. As a consequence,

the accumulation of genetic variation affecting developmental

mechanisms within the population is likely to be nonrandom

across the network and across developmental time. We also found

that genetically based variation in the expression of a subset of

genes is correlated with variation in an ecologically relevant trait,

the larval skeleton. This variation is also not randomly distributed

across the network, but enriched in genes that encode structural

proteins and that have cell type-specific expression. This suggests

that the genetic basis for adaptation in the larval skeleton is likely

to come primarily from genes with terminal positions in the

network. Empirical investigation of well characterized gene
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regulatory networks may eventually allow one to formulate

predictions about the genetics of adaptation.

Materials and Methods

Cross Design, Rearing, and Sampling
The adult sea urchins used for the cross were collected during a

single SCUBA dive from a population in the Santa Barbara

Channel, Santa Barbara, California (US). Individuals were

shipped overnight to Durham, North Carolina and held in

aquaria containing artificial sea water (Coralife, Oceanic Systems

Inc.) at 12uC for ,48 h prior to spawning. Gametes were obtained

from similarly sized individuals (a proxy for similar age) and

fertilization was carried out following standard procedures [91].

With the resulting gametes, we set up a North Carolina II

breeding design [41,92] consisting of all pair-wise crosses between

six male and six female urchins. Each culture was raised in a

randomized design in artificial sea water at 12uC in controlled

climate chambers at the Duke Phytotron (Durham, North

Carolina). Temperature was monitored continuously using sensors

distributed throughout the growth chambers. Because we made

use of a randomized design, neither micro-environmental varia-

tion nor sampling order should influence our estimates of parent-

of-origin effects (or additive genetic variation). Uncontrolled

variation did, however, introduce phenotypic variation across

the experiment that improved our ability to detect patterns of

correlation between pairs of genes at each time point.

The 36 pools of zygotes generated by our cross were reared in

replicate, and all 72 cultures were sampled at seven developmental

time points: 10, 18, 24, 28, 38, 45, and 90 h post-fertilization.

These time points span very early embryogenesis through a free-

swimming larva capable of feeding (Figure 1A). All 72 cultures

came from crosses that yielded at least 95% fertilization rates, but

22 cultures had somewhat higher rates of malformed embryos, as

assessed by no or irregular early cell divisions. We excluded these

cultures from analyses at time points 1 and 2 because we could not

reliably separate healthy from malformed embryos. However, we

were able to include data from these cultures in our analyses for

time points 3 to 7 by taking advantage of the fact that healthy

embryos begin swimming between time points 2 and 3, allowing a

clean physical separation of healthy from malformed embryos. A

minimum of several hundred embryos were sampled from each

culture at each time point for RNA extractions, with numbers

varying somewhat owing to changes in total RNA per embryo

during development.

RNA Extraction and Gene Expression Measurements
RNA extractions were carried out using the Qiagen RNeasy 96

kit (Qiagen), quantified on a NanoDrop (Thermo Scientific), and

adjusted to between 10 and 100 ng/ml with water. RNA integrity

was checked in ten samples using an Agilent 2100 Bioanalyzer.

None of the samples showed evidence of RNA degradation.

Genomic DNA extractions were carried out using the Qiagen

DNeasy mini kit (Qiagen), DNA quantity measured on a

NanoDrop, and adjusted to between 20 and 100 ng/ml with

buffer AE.

We used Illumina’s DASL platform (cDNA-mediated anneal-

ing, selection, extension, and ligation) [93] to measure gene

expression from these samples. This assay is based on the

technology in the widely used GoldenGate genotyping platform

and is well suited to measuring the expression of a moderate

number of genes in a large number of samples. Briefly, fluorescent

probes complementary to the targets of interest are bound to beads

etched with a barcode. These probes are then annealed to cDNA

in solution and captured in a plate. The expression levels of

individual beads is read using a laser that simultaneously captures

information about the quantity of cDNA bound to any bead as

well as the barcode of that bead, thus identifying the identity of the

fluorescent transcripts being interrogated. On average, ,30

individual beads are measured per probe per sample.

We worked with Illumina to design a custom DASL assay

containing 384 probes that targeted exons of 77 genes, based on

annotations from SpBase [15] mapped to sea urchin build 2.1

(www.spbase.org). Where possible, we validated sequences from

the sea urchin genome sequence against targeted sequencing

efforts available in GenBank. We chose three to six probes with

Illumina final scores .0.8 (App version 6.4.1.0.0.0:2.0.0) for each

gene. Illumina recommends using three probes per gene to

improve measurement precision. We included more probes when

possible so that we could identify poorly performing probes on the

basis of the correlations of all probes targeting the same transcript.

The full set of probe sequences and the genes they target are

available upon request.

DASL assays were carried out on the Illumina BeadStation by

the Duke Genotyping Core Facility at the Duke Institute for

Genome Sciences & Policy. RNA and gDNA samples, used for

quality control, were processed and run separately. Raw bead-level

data was recorded directly instead of passing through the Illumina

BeadStudio software. At each stage of development, gene

expression measures were normalized to the expression of RBM8A

following correction for background fluorescence (Text S1). Note

that, as with all methods for measuring transcript abundance,

measurement error on the DASL platform is generally higher

when expression levels are very low. However, relatively few genes

in our set are expressed at very low levels during the develop-

mental stages when they are known to participate in regulatory

interactions.

Scaling Gene Expression Measurements
To facilitate comparisons among genes, we normalized trait

variances by the square of the mean expression of each gene over

all cultures. The square root of this quantity is thus the coefficient

of variation, an easily interpretable quantity in terms of percent

change relative to the mean, and is recommended for comparing

variances among traits [94]. An advantage of our network is that

gene activity is defined both by expression and functional

experiments. The coefficient of variation thus represents variation

around a mean level of expression sufficient for gene function and

is, thus, likely a more accurate predictor of the impact of variation

in expression than an un-scaled measure of a gene’s variance (i.e.,

some genes are naturally higher expressed than others, and a

variance of one unit is likely more important for a gene expressed

at only a few copies per embryo, than for a gene expressed at a

very high level).

Developmental Gene Regulatory Network Curation
In our analyses of this gene regulatory network, we benefitted

from extensive prior work by other labs, much of which has been

compiled into a Biotapestry [95] database available at (http://

sugp.caltech.edu/endomes/; Figure 1B). From this database we

extracted an XML representation of the network (version: 12 May

2009) and parsed the resulting information using custom scripts. In

the XML data, time series information is recorded as gene activity

reports every 3 h from 6–30 h post-fertilization. Since we reared

our culture at a different temperature than that of the Biotapestry

representation (12uC rather than 15uC), we converted times using

published developmental schedules [91]. Edges between genes are

also recorded along with the tissues in which the interaction occurs
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and the times over which the interaction occurs. At each

developmental stage, genes were determined to be ‘‘active,’’

(rather than ‘‘expressed’’) if they are expressed at detectable levels

and take place in one of the regulatory interactions noted in this

database (Table S10). Several nodes in the graphic representation

of the network involve interactions between multiple proteins. In

deciding which gene expression correlations would represent this

node, we deferred to the edge representations in the XML data

(e.g., the proteins TCF and b-catenin often work together to active

transcription, but only b-catenin is listed in the XML represen-

tation). Genes that act as their own regulators were not included in

subsequent analyses as we were not considering between time-

point correlations.

In order to design probes for the DASL assay, we needed to

assign each gene represented in the network to an annotated gene

in the sea urchin genome project (SpBase.org) [15]. In the vast

majority of cases, the assignment was either intuitive or could be

quickly determined by matching probes, primers, or DNA

sequence from prior publications to the sea urchin gene models.

One exception was the node annotated as ‘‘FvMo1,2,3,’’ which

represents three members of the flavin-containing monooxygenase

gene family that are co-expressed in developing pigment cells and

are strongly suspected to be co-regulated [96]. Unfortunately, it

was not possible to unambiguously assign these genes to the

current sea urchin genome assembly. We thus chose to use the well

annotated SpFmo2 gene as a proxy for the activity of this cluster

both because it had been used as a proxy in recent analyses of the

network [97] and because its putative cis-regulatory region

contains likely binding sites for both annotated upstream

regulators of the cluster (Gcm and GataE) [98].

Quantifying Skeletal Variation
We measured the size and shape of the larval skeleton at time

point 7 (90 h post-fertilization) by marking eight established

morphological landmarks in three dimensions [99] on images from

a dense z-stack taken at 3 mm intervals and used these landmarks

to define distances corresponding to lengths of the skeletal rods

that make up the larval skeleton. Images were taken of 18–30

larvae per culture, measured using ImageJ, and rod lengths

calculated using a custom Python script. We took two approaches

to examining the relationship between gene expression variation

and variation in the larval skeleton. First, we used PCA to collapse

our measures to three factors, which capture 88% of the between-

culture variation in skeletal rod lengths and show strong parent-of-

origin (particularly maternal) effects (Text S1). We then measured

correlations between each factor and the expression of each gene

at each time point (Table S5). For the second approach, we carried

out a two block partial least-squares analysis [54,55] to test for

components of the gene expression variation and skeletal variation

data that together maximized the correlation between the two

datasets. See Text S1 for further details of both approaches.

Classification of Regulatory Interactions
Correlations between the expression levels of interacting genes

vary both quantitatively and qualitatively (e.g., Figure 5). To better

understand how these patterns of correlation change over

development, we employed two methods. First, we asked if r2

values between directly interacting genes were, on average,

stronger than those between active genes with no known

regulatory interactions. To address this question, we compared

the average r2 values of all interacting genes at each time point to

the average of all non-interacting genes. To test for statistical

significance, we compared the observed results to 10,000

permutations of the data by randomizing the edges but keeping

the overall network topology intact. With the second method, we

asked a slightly different question: How does the qualitative nature

of regulatory interactions change over development? We classified

each edge (regulatory interaction) in our curated network

representation into one of two types: (1) Switch-like or ‘‘insensi-

tive’’ interactions, in which a downstream gene is insensitive to

quantitative variation in the upstream gene, and (2) ‘‘sensitive’’

interactions, in which there is a statistically significant (p,0.01)

relationship between variation in an upstream gene and its

downstream targets as assessed by standard linear regression. Both

sets of analyses were conducted with and without repressive

regulatory interactions with no impact on the statistical signif-

icance of the results.

Differences in Tissue Composition among Broods
Differences in tissue composition among broods could affect

gene expression variation and increase the apparent correlations in

expression values for genes expressed in the same tissue. To test for

this possibility, we made use of the fact that most of the genes

analyzed in our study are classified into one (or more) of nine non-

overlapping domains/tissues of expression at each time point in

the Biotapestry database (covering time points 1–6) from which we

extracted information about network topology. Figure S2 shows all

pairwise correlations for each gene marked as expressed within a

tissue (plus all tissues in the upper right). The large number of

negative correlations observed within tissues argues that changes

in tissue composition are not a driving factor underlying gene

expression correlations. This observation is supported by formal

statistical analyses: at no time point are correlations within a tissue

greater than between random genes (all p.0.2, 1,000 permuta-

tions), a result that holds when the analysis is restricted to genes

expressed in one, and only one, tissue per time point. For

thoroughness, we also conducted this analysis using correlations

among breeding values (Figure S3) with similar results (both

qualitatively and formally).

Estimates of Parental Effects and Genetic Variances
A requirement for the operation of natural selection is the

presence of additive genetic variance, that is genetic variation that

has a significant average effect on a phenotype across a range of

environments and genetic backgrounds. One metric of additive

genetic variance is four times the paternal or maternal covariance

among half-sibs, namely individuals that share one parent, but not

the other. In this experiment, estimates of these parental

contributions were estimated using a North Carolina II breeding

design using six outbred male and female S. purpuratus individuals

of approximately the same age as described more fully in Text S1.

Parental effects in the NCII design are typically estimated using

ANOVA methods. However, ANOVA methods are not well

suited for estimating error terms or significance in the face of

missing data. When analyzing gene expression data, we therefore

converted the standard mixed-effect linear model underlying the

NCII design into a Bayesian hierarchical mixed-effect model by

adding priors on the genetic and residual variances and fitting the

model using a Gibbs sampler, implemented in the MCMCglmm

package in R [100]. We took this approach for two reasons. First,

due to filtering for quality control of the gene expression measures,

certain samples with low quality expression measurements were

removed, resulting in an unbalanced design. Likelihood-based

methods, such as REML and Gibbs samplers inherently tolerate

unbalanced designs, while ANOVA methods require complicated

adjustments [41]. Second, since our sample sizes were small for

estimating variances, asymptotic closed form confidence-interval

estimates on variance components such as those produced from
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REML or ANOVA methods, are not reasonable, and return

confidence intervals that span zero for low variance estimates.

Bayesian credible intervals can be much more interpretable in

these situations as they do not depend on asymptotic assumptions

and can be enforced to be positive and asymmetric. In our

analyses, we used a diffuse inverse gamma prior centered at 10%

of the expression of each gene for each variance term (see Text S1

for fuller discussion). If fewer than 20 samples had expression levels

above background for a given gene at a given time point, no

variance measures were calculated. The significance of specific

linear models was calculated using DIC-based model comparisons,

as discussed more fully in the Supporting Information. To confirm

the validity of our approach, we also conducted more traditional

REML-based analyses (Text S1). The two sets of results were

highly concordant.

With an NCII design, it is theoretically possible to estimate the

genetic covariances between genes. Owing to the relatively small

size of our breeding design, however, we cannot accurately

estimate genetic covariances between individual pairs of genes. We

can, however, make attempts to compare the full set of genetic

covariances (the G-matrix) between time points. One measure of

genetic constraints in this case is the variance of the eigenvalues for

the G-matrix at each time point: high variances indicate that the

G-matrix is constrained primarily in one or a few directions, while

low variance (all eigenvalues having similar magnitudes) is

indicative of a relative lack of constraint. Via permutations tests,

we can see that the G-matrices at each time point are more

structured than random (Text S1), as one would expect from a

network of interacting genes. However, only at time point 1 is the

variance among eigenvalues statistically distinguishable from (and

larger than) other time points, highlighting the greater extent to

which genes at time point 1 (including those with no known

interactions) share a common genetic influence (Text S1).

Data Access
Data are available from the Dryad Digital Repository [101].

Supporting Information

Figure S1 (A) Mean levels of additive genetic variation [26(male

+ female effects)] at each developmental time point (log scale). Time

points 1 and 2 show a slightly increased level of additive genetic

variation relative to later time points that is highly significant

(Wilcoxon, p = 3.4861028). The difference remains significant

under a number of measures of additive genetic variation (see Text

S1). (B) Mean log parental effects at each of the seven time points.

Parental means for each gene were estimated with the mean of the

posterior distributions in our Bayesian model (see Text S1).

(EPS)

Figure S2 Edge correlations by tissue by time. Plotted are

histograms of the observed pairwise correlations between all genes

expressed in each of the nine tissues as annotated in the

Biotapestry database. Each page represents a different time point

(1–6) with the correlations over all annotated genes plotted in the

upper right. The blue bar notes 0 and the green bar the mean

pairwise correlation in that tissue. If fewer than two genes were

expressed in a tissue at a time point, the histogram is blank with a

single green bar at zero. Following conventions in the Biotapestry

database, abbreviations for regions are: Abo, aboral ectoderm; E,

endoderm; EC, ectoderm; EM, endomesoderm; M, mesoderm;

MAT, maternal; OE, oral ectoderm; P, primary mesenchyme/

skeletogenic cell lineage; VE, vegetal. Numbers following these

abbreviations refer to time points 1–6 of the present study.

(PDF)

Figure S3 Breeding value correlations by tissue by time.
Plotted are histograms of the observed pairwise correlations

between breeding values for genes expressed in each of the nine

tissues as annotated in the Biotapestry database. Each page

represents a different time point (1–6) with the correlations over all

annotated genes plotted in the upper right. The blue bar notes 0

and the green bar the average pairwise correlation in that tissue.

Following conventions in the Biotapestry database; abbreviations

for regions are: Abo, aboral ectoderm; E, endoderm; EC,

ectoderm; EM, endomesoderm; M, mesoderm; MAT, maternal;

OE, oral ectoderm; P, primary mesenchyme/skeletogenic cell

lineage; VE, vegetal. Numbers following these abbreviations refer

to time points 1–6 of the present study.

(PDF)

Figure S4 Morphological landmarks. Pluteus larva (,90 h

post-fertilization) with the larval skeleton visible. Red dots

represent standard morphological landmarks [46].

(EPS)

Figure S5 Examples of bead masks. These were used to

control for spatial artifacts in the raw bead data.

(EPS)

Figure S6 Distribution of number of beads used. Each

expression measurement in each sample is generated from the

average expression estimated by a number of beads attached to the

same probe.

(EPS)

Figure S7 Example MA plots. These show the dye-specific

biases associated with the two dyes used to measure gene

expression.

(EPS)

Figure S8 Corrections to the distribution of the inten-
sities of the different background-control beads. (A) The

distribution of background intensities by control bead before

correction. (B) The distribution of background intensities by

control bead after correction.

(EPS)

Figure S9 The distribution of ‘‘expression’’ levels for
DASL measurements applied to genomic DNA. For details

on how certain probes were removed on the basis of the

divergence of their expression.

(EPS)

Table S1 Single gene estimates of parental effects. For

each gene at each time point, summary statistics are provided for

the output of our generalized linear model. This includes the

mean, mode, median, and 90% credible intervals for male, female,

interaction, and residuals, as well as DIC scores for each effect.

The columns ‘male.sig’, ‘female.sig’, and ‘male.female.sig’ repre-

sent, respectively, whether or not the male, female, or interaction

effects were significantly greater than zero based on permutations

when using a REML-based approach (ASReml) for estimating

parental effects. The columns ‘mean’ and ‘var’ list the unscaled

mean and variance for each gene at each time point.

(TXT)

Table S2 Summary of a linear model describing the
relationship between variance and time point. The

intercept is forced to 0,0. As a result, the estimates are the mean

of the total variance at each time point. Importantly, there is no

relationship between variance levels and the fraction of sensitive

edges described in Figure 4B.

(DOC)
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Table S3 The relative weightings of each skeletal
measure in the first three principle components of
skeletal variation. These three axes explain 55.1%, 20.4%, and

13.4% of the total between culture variation in skeletal

morphology.

(DOC)

Table S4 Male, female, and interaction contributions to
between family variation in the principle components of
skeletal variation. ** indicates p,0.01 using a standard

likelihood ratio test.

(DOC)

Table S5 Single gene correlations with morphology.
This table provides the full set of correlations between each gene at

each time point and the first three principal components of larval

skeletal variation, as measured at time point 7.

(TXT)

Table S6 The weights of each skeletal measure’s
contribution to the six vectors summarizing skeletal
variation produced by the two block partial least-
squares analysis.
(DOC)

Table S7 Each of the six pairs of vector found by the two
block partial least-squares analysis contributes differ-
ent amounts to the total correlation between gene
expression and skeletal variation. The relative weighting

of each of the six pairs of vectors are described by the eigenvalues

given in this table.

(DOC)

Table S8 The top 10% of gene expression contributions
to the first 2B-PLS axis. The column ‘‘Gene_Cluster_Time’’

gives the gene name followed by the cluster number (see Text S1 –

‘‘Gene expression DASL processing’’) followed by the time point

at which the expression measurements were taken.

(DOC)

Table S9 By combining the gene expression contribu-
tions to each of the six axes weighted by the eigenvalue
corresponding to each axis, we get a measure of the
overall contribution of each gene_time expression to the
overall relationship between gene expression and skel-
etal variation. Above are the top 5% of total the weighted

contributions of expression measurements to the overall correla-

tion between gene expression and skeletal variation.

(DOC)

Table S10 Edge activity. This table describes each edge

extracted from the Biotapestry database, the times at which the

interaction occurs, the region in which it takes place, and whether

the interaction is activating or repressive. The times correspond to

the time points shown in Figure 1A. Note: only genes shown in

Figure 1B were considered in this study.

(TXT)

Text S1 Supplemental methods.
(PDF)
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