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Background and Purpose. 'e accurate prediction of prognosis and pattern of failure is crucial for optimizing treatment strategies for
patients with cancer, and early evidence suggests that image texture analysis has great potential in predicting outcome both in terms
of local control and treatment toxicity.'e aim of this study was to assess the value of pretreatment 18F-FDG PETtexture analysis for
the prediction of treatment failure in primary head and neck squamous cell carcinoma (HNSCC) treated with concurrent che-
moradiation therapy. Methods. We performed a retrospective analysis of 90 patients diagnosed with primary HNSCC treated
between January 2010 and June 2017 with concurrent chemo-radiotherapy. All patients underwent 18F-FDG PET/CT before
treatment. 18F-FDG PET/CT texture features of the whole primary tumor were measured using an open-source texture analysis
package. Least absolute shrinkage and selection operator (LASSO) was employed to select the features that are associated the most
with clinical outcome, as progression-free survival and overall survival. We performed a univariate andmultivariate analysis between
all the relevant texture parameters and local failure, adjusting for age, sex, smoking, primary tumor site, and primary tumor stage.
Harrell c-index was employed to score the predictive power of the multivariate cox regression models. Results. Twenty patients
(22.2%) developed local failure, whereas the remaining 70 (77.8%) achieved durable local control. Multivariate analysis revealed that
one feature, defined as low-intensity long-run emphasis (LILRE), was a significant predictor of outcome regardless of clinical
variables (hazard ratio< 0.001, P � 0.001).'e multivariate model based on imaging biomarkers resulted superior in predicting local
failure with a c-index of 0.76 against 0.65 of themodel based on clinical variables alone.Conclusion. LILRE, evaluated on pretreatment
18F-FDG PET/CT, is associated with higher local failure in patients with HNSCC treated with chemoradiotherapy. Using texture
analysis in addition to clinical variables may be useful in predicting local control.

1. Introduction

Concurrent chemoradiotherapy (CRT) is the mainstay of
treatment for early and locally advanced head and neck
squamous cell carcinoma (HNSCC) [1, 2]. 'e accurate
prediction of prognosis and failure in these patients is crucial
for optimizing treatment. Some clinical features are com-
monly accepted as risk factors, such as tumor size, local
anatomic invasion, nodal involvement, presence of distant
metastases, and HPV status [3–5].

Nowadays, imaging plays a central role in the in-
vestigation of tumor prognosis. Radiological images are
acquired as routine practice for almost every patient with
HNSCC and represent an immense source of potential data
for decoding tumor phenotypes and tumor heterogeneity
[6–10]. Image texture is defined as a complex visual pattern
within an image, consisting of simpler subpatterns with
characteristic features, and texture analysis allows the
mathematic detection of tumor heterogeneity. In the past
years, CT texture analysis has been investigated in oncologic
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imaging for its ability to predict treatment outcome in
patients with various tumors (lung, esophageal, and renal
cancer) [11–13]. New and more descriptive metrics of tumor
heterogeneity based on texture analysis (TA) of 18F-FDG
PET images are now used to further improve outcome
prediction [14–17] in different types of cancer [18, 19],
including HNSCC.

Despite the promising results achieved in preliminary
studies, TA still suffers from standardization issues, and the
scientific community agreement is missing [20, 21]. 'e
absolute values of the TA features used for stratifying pa-
tients depend on a number of variables, starting from image
acquisition parameters to the contouring algorithm
employed for tumor segmentation. Previous studies on
phantoms and patients exploited these dependencies trying
to find a common way to apply TA and standardize results
[20, 22–25]. In the present study, we retrospectively apply
TA to 18F-FDG PET/CT images of 90 patients affected by
HNSCC and treated with CRT in order to identify imaging
biomarkers able to predict patients’ outcomes such as overall
survival (OS) and progression-free survival (PFS). We
compared TA features prognostic values with standard
clinical variables such as age, sex, size and site of primary
tumors, clinical stage, and nodal involvement.

2. Materials and Methods

2.1. Patients. We enrolled 129 patients (median age 60 years,
range 22–87 years) with diagnosis of HNSCC consecutively
treated between January 2010 and June 2017 with concurrent
CRT with curative intent at the Radiation Oncology Unit of
our institution. 'e ethics committee of our hospital ap-
proved this retrospective study, and informed consent was
obtained from all participants. All patients underwent 18F-
FDG PET/CT before treatment for initial staging and were
followed up for at least 5 years after treatment or until death.
Patients’ medical records were retrospectively analyzed to
extract information for outcome assessment such as details
about therapy, last follow up date, disease status, pattern of
recurrence, death and cause of death. Patients’ de-
mographics and clinical characteristics, including age, sex,
site of primary tumor, clinical stage, and type of treatment
and are summarized in Table 1. Tumor sites were oral cavity,
larynx, oropharynx, and hypopharynx in 5%, 20%, 60%, and
15% of patients, respectively.

2.2. Treatment Regimens and Follow-Up. All patients were
uniformly treated with intensity-modulated radiation
therapy (IMRT) and concurrent platinum-based chemo-
therapy. Weekly cisplatin was the primary choice of che-
motherapeutic agent. Forty-three patients received
neoadjuvant chemotherapy before CRT. 'e decision re-
garding the use of adjuvant chemotherapy was in-
dividualized, based on the extent of disease, medical
conditions of the patient, and the radiation oncologist
opinion. Most of the patients were treated with a simulta-
neous integrated boost (SIB) technique, with a total dose
on gross tumor volume up to 66Gy or equivalent in
30–33 fractions (mainly 66Gy/2.2 Gy per fraction); the

high-intermediate risk cervical lymphatic areas received
54–60Gy or equivalent. Patients were followed after the
conclusion of treatment to evaluate local control. All patients
were followed clinically for at least 5 years after completion
of CRT, every 1–3 months for the first two years, every 4–6
months for the next three years, and annually thereafter.

'e follow-up evaluation included physical and endo-
scopic examinations jointly performed by radiation oncol-
ogist and otorhinolaryngologist. In addition, CT, MRI, and
18F-FDG PET/CT imaging were used to assess the clinical
response and were usually performed within 6 months from
the end of the treatment. Recurrence or distant metastasis
were diagnosed based on either a positive biopsy or
clinical/radiographic evidence of progression.'e follow-up
period was designated as the total time of follow-up, starting
at treatment initiation and ending either at histologically
confirmed local failure, or at radiologically systemic re-
currence, or at last failure-free patient contact.

2.3. 18F-FDG PET/CT Imaging Protocol. Patients underwent
imaging on a GE Discovery STE16 PET/CT scanner before
treatment using a standard PET/CT clinical protocol. Pa-
tients fasted for at least 6 h before the intravenous

Table 1: Patients’ clinical and demographic data.

Number of
patients (%)

N 90
Mean age (range) 60 (22–87)
≥60 years 52 (58%)
<60 years 38 (42%)
Gender
Male 68 (75%)
Female 22 (15%)
Primary site
Oral cavity 4 (4%)
Oropharynx 49 (55%)
Hypopharynx 10 (10%)
Nasopharynx 13 (15%)
Larynx 14 (16%)
Clinical T stage
T1 15 (17%)
T2 30 (35%)
T3 29 (33%)
T4 13 (15%)
Clinical N stage
N0 5 (5%)
N1 21 (24%)
N2 59 (66%)
N3 5 (5%)
Clinical stage
III 32 (35%)
IV 58 (65%)
Patient cohort after follow-up (PFS)
NED 62 (69%)
RD 28 (31%)
Patient cohort after follow-up (OS)
Alive 65 (72%)
Dead 25 (28%)
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administration of 18F-FDG (3.7MBq/kg). Serum glucose
concentrations were measured before FDG injection and
were less than 150mg/dl, or if between 150 and 200mg/dl,
the patient was hydrated and glucose concentration mea-
sured after 40–50min. 'e scans were acquired with the
patients immobilized in radiation treatment position using
a dedicated flat table and personalized thermoplastic masks.
PET images were corrected for random and scatter noise
components and then reconstructed on a 256× 256 image
matrix using 3-D VUE Point HD algorithm (two iterations,
28 subsets, postfilter 6mm) corrected for attenuation. Pixel
spacing was of 2.73× 2.73mm with 3.27mm slice thickness.

'e qualitative and quantitative PET imaging evalua-
tions were performed for each patient by two-blinded expert
nuclear medicine physicians using the PET/CT fused images
in transverse, coronal, and sagittal planes. A consensus was
then reached by comparison of the two evaluations. 'e
presence of abnormal FDG uptake, excluding the areas of
physiologically increased uptake, was considered suspicious
for malignancy. 'e readers had knowledge of all available
clinical and imaging information related to the patients.

An expert nuclear medicine physician together with
a medical physicist and a radiation oncologist, using a semi-
automatic segmentation technique, outlined the primary
tumor. 'e image segmentation of the whole primary lesion
for each section was performed with a dedicated Advantage
Workstation v 4.4 (GE Medical System, USA), using the 40%
SUVmax isocontour algorithm to avoid operator dependence
in contouring and any other manual adjustments. We as-
sumed 40% threshold to acquire standardization with other
works that perform prediction analysis [15]. Contours were
then checked by visual inspection.

2.4. Texture Analysis. We extracted 75 features from each
segmented tissue volume using an Open-Source Package
“CGITA” version 1.3 [26]. Features were derived from data
contained in the voxels of the segmented structures and can
be grouped into different categories. First-order features
were derived from the histogram of voxel intensities
(SUVmean, SUVmax, skewness, kurtosis, etc.). Second-
order textural features were based on matrices that con-
tained information about the regional spatial arrangement of
the voxels such as their homogeneity, contrast, and
coarseness simulating the human perception of the image.
Higher-order features such as Grey-level run length features
focused on local collinear voxels with the same grey level.

'e TA features analyzed are reported in Table 1 of
reference [26]. A detailed description of the features is also
reported in the supplemental material of the paper of Aerts
et al. [27]. Images were digitized in 64 digitization bins
according to the minimum and maximum values in the
segmented volume. Tumor volumes smaller than 2.6ml were
excluded from the statistics due to insufficient number of
voxels to perform texture analysis. 'is choice was based on
previous evaluation about feature stability on NEMA IEC
quality assurance phantom (2.6ml corresponds to the vol-
ume of the 3rd sphere of the NEMA IEC phantom in the
increasing order) [24, 28].

2.5. Statistical Analysis. First, associations of demographic
and clinical characteristics of patients, such as sex, age,
clinical stage (III vs IV), and tumor site (oropharynx vs other
sites), with local control, progression-free survival (PFS),
and overall survival (OS) were tested with univariate and
multivariate analysis (Cox proportional hazard model). In
particular, given the high heterogeneity of the population,
we decided to create two tumor groups that are oropharynx
and other sites (hypopharynx, larynx, oral cavity, and na-
sopharynx) in order to test its effect on survival. Further-
more, correlation between clinical parameters and predictive
imaging biomarkers was investigated through spearman ρ.

Texture parameters were extracted and then compared in
patients with local control against patients with local failure.
To select both clinical and imaging variables that are more
related to clinical outcomes, we used a “least absolute
shrinkage and selection operator” (LASSO) method. LASSO
can “shrink” the effect of unimportant features and can set
their effects to zero together with removing redundancy
among the features.

Given the iterative nature of LASSO algorithm, it was
run one thousand times in order to have a statistics of the
most descriptive clinical and imaging features. 'e most
occurring features (more than 500 times over 1000 runs)
were selected to build the final image biomarker-based
multivariate Cox regression analysis. An internal 10-fold
cross-validation algorithm was applied for validation. Fi-
nally, hazard ratios (HR) and confidence intervals (CI) were
calculated. Discrimination, reflecting a correct ordering of
the relative predictions for individuals, and the model’s
ability to distinguish patients with local control against
patients with local failure, were determined by the Harrell’s
concordance-index (c-index) with R statistical package-
based code (https://www.r-project.org/). c-index is an ex-
tension of ROC curves for multivariable models with 0.5
value indicating random discrimination and 1 perfect dis-
crimination capabilities. 'e difference in prognostic value
between the Cox model developed with or without imaging
biomarkers was evaluated based on the comparison between
Harrell’s concordance indexes. Finally, Kaplan–Meier
curves have been calculated in order to show selected
predictor stratification capabilities.

3. Results

At amedian follow-up of 38months (range 24–848months),
one hundred patients (79%) were alive, 13 died due to
disease progression, and 12 due to other causes. Four pa-
tients were lost at follow-up.

Eighteen early-stage patients were excluded due to the
small tumor volume (<2.6ml) as textural features becomes
unstable or even undefined due to small number of voxels
involved; 13 patients due to technical problems regarding
PET/CT acquisition (different acquisition, reconstruction
protocols, or missing uptake data). 'e final number of
evaluated patients for statistical analysis was 90. Of these 90
patients, 62 showed no evidence of disease (NED) at last
follow-up; 28 patients (30%) had recurrent disease (RD), of
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which 21 patients developed locoregional recurrences and 7
isolated distant metastases.

'e pattern of recurrence was analyzed in 21 patients
who had locoregional relapse: “in-field” (if >80% of the
tumor recurrence resided within the prescription 95% isodose
surface) in 20 patients (95%), at RT field margin (if 20–80%
of the lesion was inside the 95% isodose surface) in no patients
(0%), and “out-field” in one patient (5%).

'e estimated 2- and 5-year OS rates were 86% (95% CI
79–92%) and 68 % (95% CI 58–78%), respectively. 'e
corresponding 2- and 5-year PFS rates were 70% (95% CI
58–77%) and 66% (95% CI 55–75%), respectively.

Results of univariate analysis are showed in Table 2. No
standard clinical and demographics parameters showed
a statistically significant correlation with PFS. Gender and
age showed significant correlation for OS. In particular,
gender seems to have a strong impact on survival in our
dataset (HR� 8.316). Clinical stage was correlated with both
PFS and OS with an HR of 1.76 and 1.92, respectively,
without any statistical significance.

At multivariate analysis, shown in Table 3(A), no
standard clinical parameters were correlated with PFS, and
the c-index resulted in 0.65 in the ability of prediction of the
model, without statistical significance. Regarding OS, the
multivariable Cox model showed a statistically significant
correlation with both gender and age with a c-index of 0.73
as can be seen in Table 4(A). It is noticeable that in any Cox
regression, tumor site seems to have no effects on survival
prediction for our population. We can then state that this
parameter will not influence our further models with im-
aging biomarkers.

'e LASSO algorithm revealed that four parameters,
including run percentage, low-intensity long-run emphasis
(LILRE), coarseness, and code similarity, showed significant
differences between local failure and local control groups,
and these parameters were selected, together with two
clinical variables (age and stage), to build a multivariate Cox
regression for PFS. No significant correlation exists between
the analyzed parameters as spearman rho coefficient is al-
ways below 0.6.

In Table 3(B) the resulting model for PFS is shown; the
Harrel c-index is of 0.76 with a statistical significance of
p< 0.01 at cross-validation. Also the comparison of the two
c-indexes underlined a difference between the two models
with statistical significance and p< 0.01. In particular
LILRE, which is the strongest predictor in the model, is
associated with the presence of long string of low grey level
pixel in the tumor contours. In Figure 1 the values of the
feature in RD and NED patients are shown. An evident
difference in median values appears between the pop-
ulations. 'e Wilcoxon Test scored a p value of 0.006 be-
tween RD and NED patients. Furthermore, in Figure 2, the
difference in a 2D render of the morphology of the 2
populations (representative patients) is revealed. In RD
patients, it is evident how the borders of the tumors are
sharper in comparison to NED patients. Finally, in Figure 3
(a), Kaplan–Meier survival curves for LILRE, where survival
curves are split by the median value of LILRE, and in
Figure 3(b), the effect of the use of chemotherapy (CHT) are

shown. Pearson correlation coefficient ρ calculated between
LILRE and the other clinical variables was always below 0.2,
confirming the independence of this imaging biomarker.

By adding imaging biomarkers and processing variables
in the same way of PFS dataset, we end up with the model
shown in Table 4(B). 'is model, which includes five var-
iables (gender, age, staging, low-intensity large-zone em-
phasis, and SUL peak), achieves a c-index of 0.76, but it is not
significantly different from the model with only the clinical
variables.

4. Discussion

To date, there is increased evidence suggesting that genomic
heterogeneity of aggressive tumors could translate into
intratumoral spatial heterogeneity, which can be represented
on anatomical and functional scales [18, 27, 29, 30].

'is is the central idea that underlies radiomics, in which
large amounts of information through advanced quantitative
analysis of radiological images are used as noninvasive means
to characterize intratumoral heterogeneity and to identify
important prognostic features of cancer [27, 31–34]. Nowa-
days, medical imaging plays a central role in the investigation
of intratumoural heterogeneity, as radiological images are
acquired as routine practice for almost every patient with
cancer. Medical images such as 18F-FDG PET/CTand CTare
minimally invasive and include an immense source of po-
tential data for decoding tumour phenotypes.

Texture feature-based analysis of clinical outcomes is
actively being investigated as a prognostic tool in radiation
oncology in order to identify potentially predictive radiomic
biomarkers for either clinical outcomes (local control and/or
treatment toxicity) or distinguishing local recurrence from
radiation-induced injury. Some studies have also been
performed to identify radiomic signatures for HNSCC. Aerts
et al. analyzed radiomic values of CTs from 1,019 patients
suffering from non-small-cell lung cancer or head and neck
cancer in relation to prognostic features and showed that
combining radiomic signature with TNM staging improved
the predictive power in all groups of patients [27]. Parmar
et al. investigated 440 radiomic features extracted from the
CTs of 878 lung cancers and HNSCC patients and showed
that, at multivariate analysis, the radiomic feature clusters
highly correlate with tumor stage and moderately correlate
with HPV status [34]. In an additional study, the same group
established a reliable machine-learning method for the
prediction of OS in HNSCC patients based on CT scan-
derived radiomic features. Here, training was performed on
440 radiomic features among a cohort of 101 HNSCC pa-
tients, while another 95 patients served as the validation
cohort. In this study, authors showed that machine-learning
methods had a high predictive power with a good stability
and believed that this technique could improve the appli-
cation of radiomics in cancer [35]. 'ese 3 publications all
suggest a relevance of radiomics in HNSCC and a potential
future role in HNSCC classification and treatment to im-
prove clinical decision-making. Recently, it was reported
that a 4-feature-based radiomic signature showed strong
correlation with survival and distant metastasis in
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oropharyngeal squamous cell carcinoma [36]. 'e concor-
dance index (CI) in training cohorts and validation cohorts
were ranging from 0.55 to 0.69.

Vallières et al. recently investigated the possibility of
constructing a prediction model integrating clinical in-
formation with radiomics analysis, using advanced machine
learning, in patients with HNSCC treated with chemo-
radiation. 1,615 different radiomic features were extracted
from PET and CT pretreatment images of 300 patients, and
the results demonstrated the potential of radiomics for
assessing the risk of specific tumor outcomes using multiple
stratification groups [10].

In this study, we analyzed a cohort of 90 patients with
diagnosis of HNSCC using a multivariate Cox model com-
paring features based on clinical variables and imaging bio-
markers. Univariate analysis showed how gender and age are
important predictors for OS. 'e effect of gender on overall
survival is a known phenomenon, as shown also recently in the
large European multicenter study [37]. 'is trial reported that
a significant effect onOPC survival was apparent for female sex
(aHR: 0.50; 95% CI: 0.29–0.85).

Models including imaging biomarkers were always su-
perior to those with only clinical variables, even if only in the
case of PFS, we had a statistically significant difference. 'e

Table 2: Univariate model of patients’ clinical data with progression-free survival (PFS) and overall survival (OS).'e number of patients is
90 for both PFS and OS, whereas the number of events is 28 and 25, respectively.

p value HR
95% CI for HR

Lower Upper
Univariate Cox regression for PFS
Gender (F vs M) 0.698 1.196 0.485 2.951
Age 0.099 1.027 0.995 1.060
Stage (III vs IV) 0.197 1.758 0.747 4.137
Tumor site (oroph vs other) 0.914 1.043 0.488 2.227
CHT (No vs Yes) 0.101 0.470 0.190 1.159
Univariate Cox regression for OS
Gender (F vs M) 0.038 8.495 1.149 62.820
Age 0.004 1.052 1.016 1.089
Stage (III vs IV) 0.169 2.010 0.797 5.070
Tumor site (oropharynx vs others) 0.772 0.886 0.391 2.009
CHT (No vs Yes) 0.838 0.895 0.307 2.608

Table 4: Multivariate analysis of the patients dataset for OS without
(A) and including (B) imaging biomarkers.

p value HR
95% CI for HR

Lower Upper
(A)
Gender (F vs M) 0.042 8.036 1.082 59.770
Age 0.017 1.057 1.012 1.109
Stage (III vs IV) 0.262 1.734 0.663 4.535
OvsL 0.895 0.937 0.395 2.029
Novscht 0.317 1.916 0.521 7.051
(B)
Gender (F vs M) 0.090 5.75E+ 00 7.90E2 01 4.81E+ 01
Age 0.011 1.05E + 00 1.01E + 00 1.09E + 00
Stage (III vs IV) 0.341 1.59E+ 00 5.82E2 01 3.83E+ 00
LILRE 0.635 7.08E2 05 9.72E2 25 8.35E+ 9
SUL peak 0.068 1.10E+ 00 1.009E+ 00 1.192E+ 00

Table 3: Multivariate analysis of the patients’ dataset for PFS without (A) and including (B) imaging biomarkers. Harrel c-indexes of the
models, which score their prognostic power, are 0.65 and 0.76, respectively. 'e two c-indexes are significantly different with a p value of
0.01.

p value HR
95% CI for HR

Lower Upper
(A)
Gender (F vs M) 0.713 1.191 0.469 3.026
Age 0.426 1.014 0.979 1.050
Stage (III vs IV) 0.160 1.894 0.777 4.617
Tumor site (oropharynx vs others) 0.902 0.953 0.445 2.042
CHT (No vs Yes) 0.176 0.489 0.173 1.378
(B)
Age 0.254 1.02E+ 00 9.86E2 01 1.06E+ 00
Stage (III vs IV) 0.440 1.43E+ 00 5.77E2 01 3.55E+ 00
CHT (No vs Yes) 0.012 2.03E2 01 5.84E2 02 7.06E2 01
Run percentage 0.176 1.97E2 01 1.87E2 02 2.07E+ 00
LILRE <0.001 1.41E2 83 4.05E2 128 4.90E2 39
Coarseness 0.970 4.12E2 01 2.32E2 21 7.33E+ 19
Code similarity 0.129 4.27E2 23 5.77E2 52 3.16E+ 06
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multivariable model developed with clinical variables alone
scored a c-index of 0.65, whereas including imaging bio-
markers, a c-index of 0.76 was reached in predicting patient
outcome as PFS. Furthermore, the comparison of the c-index
underlined the significance of the difference between the two
models. 'is improvement in patient stratification can be
addressed to the introduction of the textural feature LILRE
which is strongly associated with patient disease recurrence, as
shown in the box plot in Figure 1 and in Kaplan–Meier curves
in Figure 3(a) employing the median value of LILRE over the
entire population as split value. It is also interesting to notice
that this feature can be associated to morphological properties
of the image itself. 'ese findings underline the importance of
further studies to validate the use of imaging biomarkers to
improve patients’ stratification and prognostic accuracy.

Our study has several limitations, and should be con-
sidered as a preliminary experience with need for possible
methodological and technical refinements, beyond in-
dependent external validation. It is a retrospective study with

a relatively small population. 'e characteristics of enrolled
patients were heterogeneous, as well as disease sites, and the
selection of treatment might be biased, so that the signifi-
cance of features can be underestimated.

Despite this, it seems that heterogeneity is not influ-
encing the results as no standard Cox regression models
gives any statistically significant association with survival in
this cohort. Furthermore, no correlation was found between
our main predictor (LILRE) and tumor site. Additionally,
HPV status was not determined in all patients, and it has not
been considered as a predictive factor. Although especially in
oropharyngeal cancer infection with HPV has a predictive
value for treatment response [4, 38], no different radiomic
features were identified between HPV-positive and HPV-
negative patients.

In the other two analyses, statistically significant dif-
ferences in some texture features between HPV+ and HPV−
HNSCC were found, even if a single radiomic feature may
not have enough predictive power [39, 40].

LILRE = 0.0055
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Figure 2: Detail of the uptake of 2D slices centered in the middle of 2 tumor VOIs. On the left, the slice is taken from a RD patient and on the
right from a NED patient. It can be appreciated that a lower value in LILRE produces a more speculated uptake in the tumor, whereas in
NED patient, the uptake is more Gaussian like. (a) RD patient. (b) NED patient.
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Figure 1: Low-intensity long-run emphasis values calculated on different populations in arbitrary unit of measure: recurrent disease (RD)
and no evidence of disease (NED) patients.
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Despite the limitations of this study, our results appear to
be promising. In order to confirm these findings, external
validation will be performed, and for the case of oropharynx,
tumor HPV infection data will be included.

5. Conclusion

We compared a clinical variables alone statistical model with
another one which includes imaging biomarkers. Superiority
of the imaging biomarkers model was proven in the case of
PFS. Further studies will be aimed at confirming our findings
with an external dataset and to demonstrate the superiority
of models comprising imaging biomarkers also for overall
survival.
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'e data used to support the findings of this study are
available from the corresponding author upon request.
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