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According to so-called saliency-based attention models, attention during free viewing
of visual scenes is particularly allocated to physically salient image regions. In the
present study, we assumed that social features in complex naturalistic scenes would be
processed preferentially irrespective of their physical saliency. Therefore, we expected
worse prediction of gazing behavior by saliency-based attention models when social
information is present in the visual field. To test this hypothesis, participants freely viewed
color photographs of complex naturalistic social (e.g., including heads, bodies) and
non-social (e.g., including landscapes, objects) scenes while their eye movements were
recorded. In agreement with our hypothesis, we found that social features (especially
heads) were heavily prioritized during visual exploration. Correspondingly, the presence
of social information weakened the influence of low-level saliency on gazing behavior.
Importantly, this pattern was most pronounced for the earliest fixations indicating
automatic attentional processes. These findings were further corroborated by a linear
mixed model approach showing that social features (especially heads) add substantially
to the prediction of fixations beyond physical saliency. Taken together, the current
study indicates gazing behavior for naturalistic scenes to be better predicted by the
interplay of social and physically salient features than by low-level saliency alone. These
findings strongly challenge the generalizability of saliency-based attention models and
demonstrate the importance of considering social influences when investigating the
driving factors of human visual attention.

Keywords: social attention, overt attention, physical saliency, visual perception, naturalistic scenes, eye
movements, gaze prediction

INTRODUCTION

Humans as social beings permanently face diverse forms of social interactions, which in turn
require possessing a broad set of social functions. Whereas previous research on social capabilities
largely focused on higher order functions (e.g., theory of mind and empathy), the basic processes
underlying these functions (e.g., social attention) are explored less extensively. However, social
attention is at the heart of every complex social capability because without first allocating attention
to other human beings or to aspects in the environment which they attend to, it is essentially
impossible to infer their intentions or to feel empathy with them (Adolphs, 2010).
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The majority of research on social information processing
relied on pictures of either schematic or isolated real faces to
study gaze orienting or face perception. Although such studies
provided evidence that observers exhibit a bias to direct their
attention to the eyes of another person (e.g., Walker-Smith et al.,
1977; Pelphrey et al., 2002; Henderson et al., 2005; Gamer and
Büchel, 2009) or to locations gazed at by others (e.g., Friesen and
Kingstone, 1998; Driver et al., 1999; Langton and Bruce, 1999;
Ricciardelli et al., 2002), the use of impoverished stimuli such
as faces shown in isolation from their surrounding massively
simplifies the challenges of natural human vision. In real life,
social elements such as faces, heads, or bodies of others are
typically – if at all – only one feature of the visual input among
several other aspects (e.g., various kinds of objects) and before
being able to process specific details of others’ faces, observers in
a first step need to allocate their attention to them (Birmingham
and Kingstone, 2009; Birmingham et al., 2009a; Kingstone, 2009).
In recent years, researchers started to seriously question the
impoverished approach and began to use more complex stimuli
such as photographs of naturalistic scenes containing people.
In this context, several studies yielded support that humans
have a tendency to direct their gaze to other persons (especially
their heads and eyes; e.g., Smilek et al., 2006; Birmingham
et al., 2007, 2008a,b, 2009a; Castelhano et al., 2007; Fletcher-
Watson et al., 2008; Zwickel and Vo, 2010; see also Kano and
Tomonaga, 2011). This research is of extraordinary importance
for the study of social attention because it laid the foundation for
the application of ecologically valid stimuli. However, previous
studies are not in every respect unimpeachable. For example,
even though previously used stimulus material depicted humans
in naturalistic environments, these photos frequently seemed
to contain people in relatively large size and, apart from that,
only a rather limited amount of complex information which
might have had the potential to capture the observer’s attention.
Correspondingly, there is a lack of studies which explicitly
identified non-social scene aspects that are at least equally
conspicuous (e.g., regarding low-level features) than depicted
persons and directly compared to what degree people and such
other locations receive attention.

In addition, most research on processing social information
is not connected sufficiently to prevalent attention theories.
Traditional models assume attention to be driven by stimulus
characteristics (so-called bottom-up processing) as well as
higher order motivational goals (so-called top-down processing;
Corbetta and Shulman, 2002; Knudsen, 2007; Corbetta et al.,
2008). Moreover, computational approaches within this
framework consider attention to be particularly directed to those
aspects of the visual field which are physically highly salient (Itti
and Koch, 2001). For example, according to the most prominent
of these computational models by Itti and Koch (Itti et al.,
1998; Itti and Koch, 2000), those locations of a visual input
that stand out from the background in terms of their low-level
features (i.e., color, intensity, and orientation contrast) are
calculated on various spatial scales using biologically plausible
center-surround differences. Subsequently, the distributions
of conspicuous locations of the different spatial scales and the
three low-level features are integrated into a so-called saliency

map which is considered to guide the allocation of attention.
Following the seminal work of Itti and Koch, a diverse set of
computational saliency approaches has been developed (for
reviews, see e.g., Judd et al., 2012; Borji and Itti, 2013). Although
research provided empirical support for saliency-based attention
models (e.g., when humans freely viewed or memorized visual
scenes; Parkhurst et al., 2002; Foulsham and Underwood, 2008),
there are several recent studies indicating circumstances under
which these models work less well or fail completely (e.g.,
under presence of top–down influences from visual search
tasks; Foulsham and Underwood, 2007; Henderson et al., 2007;
Einhäuser et al., 2008a; see also e.g., Stirk and Underwood,
2007; Einhäuser et al., 2008b; Santangelo, 2015; Santangelo
et al., 2015; but see e.g., Borji et al., 2013; Spotorno et al., 2013).
Importantly, prior research also shed light on the power of
saliency-based predictions in the context of social information.
For example, several studies yielded support that the influence
of physical saliency on gazing behavior may be especially weak
for socially relevant stimuli (e.g., Nyström and Holmqvist, 2008;
Birmingham et al., 2009a,b; Fletcher-Watson et al., 2009; Zwickel
and Vo, 2010; Hall et al., 2011; Scheller et al., 2012; Suda and
Kitazawa, 2015; see also Kano and Tomonaga, 2011; Solyst and
Buffalo, 2014) and a number of modeling approaches provided
evidence that further sources of information (e.g., locations of
faces) may be considered in addition to low-level saliency (e.g.,
Cerf et al., 2008, 2009; Marat et al., 2013; Xu et al., 2014; Parks
et al., 2015; for a review, see Tatler et al., 2011). However, the
attentional influence of physical saliency in the context of social
information has so far not been characterized sufficiently. For
example, in previous research, stimuli mostly only consisted
of isolated social features (e.g., faces, human figures) or visual
scenes which did not allow for a definite distinction between the
influences of social attention and low-level saliency. Specifically,
physical saliency of (parts of) people in these visual scenes
was frequently either not reported at all, higher than for the
majority of other considered image regions or not compared
statistically to those other locations. Moreover, to the best of
our knowledge, the power of saliency-based predictions has so
far not been compared systematically between scenes including
social information and scenes depicting only non-social aspects
in human observers (but only in capuchin monkeys; see Berger
et al., 2012).

To close these gaps, the present study aimed at characterizing
the role of human social attention in the context of popular
saliency-based attention models by means of ecologically valid
stimuli. One possible explanation for the described evidence
that saliency-based attention models may be particularly poor
in predicting gazing behavior for socially relevant stimuli
could be based on the mentioned findings from research on
allocating attention to other people (see also e.g., Nyström and
Holmqvist, 2008; Birmingham et al., 2009b). In particular, we
hypothesized that social features such as heads or bodies in
complex naturalistic scenes would be processed preferentially
regardless of their physical saliency. Therefore, we expected
saliency-based attention models to lose power in predicting
gazing behavior when social elements are present in the visual
field. To test this assumption, participants freely viewed color
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FIGURE 1 | Methods. (A) Example of a social (left) and a non-social (right) scene. (B) Example trial containing a social scene. Scenes were preceded and followed
by a fixation cross. Participants freely viewed each visual scene for 10 s while their eye movements were recorded. Note: Size of fixation cross is not to scale.
(C) Example original scene (top row), corresponding regions of interest (ROIs: red = head, magenta = body, yellow = area of lower saliency, green = area of higher
saliency; middle row, right), and heat maps for physical saliency (middle row, left) and fixation density (bottom row) overlaid on the original scene. Note: Cold colors
indicate low saliency or fixation density, warm colors represent high saliency or fixation density. Photographs of visual scenes reproduced by kind permission of A.
Marchewka (Marchewka et al., 2013) and F. A. A. Kingdom (Olmos and Kingdom, 2004).

photographs of complex naturalistic social (e.g., including heads,
bodies) and non-social (e.g., including landscapes, objects) scenes
while their eye movements were recorded (see Figures 1A,B).
Crucially, we systematically compared the extent to which
physical saliency predicted fixations between social and non-
social scenes and examined to what degree participants directed
their attention to social features or image locations with certain
physical saliency. Importantly, explicitly comparing the amount
of physical saliency of each of these regions as well as taking
care during stimulus selection that social features were not
confounded by low-level saliency enabled us to disentangle
potential influences of social attention and physical saliency.
Interestingly, saliency-based attention models were previously
demonstrated to perform best for the very first fixations after
stimulus onset (e.g., Parkhurst et al., 2002; but see Tatler et al.,
2005) and several studies provided support that a bias of
directing gaze to other people may also be present for such
early fixations (e.g., Birmingham et al., 2008a, 2009b; Fletcher-
Watson et al., 2008). We aimed at distinguishing both influences
on early eye movements more comprehensively by carrying out
detailed analyses of the first five fixated scene locations for
social and non-social scenes. Importantly, specifically examining
early, potentially automatic shifts of attention allowed us to
more closely inspect the nature of the mechanisms underlying

the allocation of attention in naturalistic scenes. Finally, we
applied a recently proposed linear mixed model analysis
approach (Nuthmann and Einhäuser, 2015) which constitutes
an important advancement over previous studies because it
enabled us to compare physical saliency and social features as
well as their interaction as predictors of fixations within a shared
model.

MATERIALS AND METHODS

Participants
Thirty-one volunteers (20 males; mean age: 26.6 years; range:
20–43 years; SD: 4.3 years) participated in the study. This sample
size was required for detecting medium effects (d = 0.50) in
paired comparisons (one-tailed) with a power of at least 0.85.
All participants gave written informed consent and received
monetary compensation. They reported normal or corrected
to normal vision and most of them were students of various
disciplines (65%). None of the participants reported to have
a history of neurological or psychiatric illness or to receive
centrally acting medication. The study was approved by the ethics
committee of the German Psychological Society (DGPs) and
conducted in accordance with the Declaration of Helsinki.
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Stimuli
The stimulus set consisted of 160 color photographs of complex
naturalistic scenes which depicted various kinds of indoor (e.g.,
from living or working places) and outdoor (e.g., from cities or
the countryside) scenes including mainly objects and occasionally
animals. We considered scenes as social if they included (parts
of) a human being (e.g., heads, bodies, or body parts). Half of
the scenes contained such social features (“social scenes”) and the
other half depicted solely non-social content (i.e., did not include
human beings, “non-social scenes”; see Figure 1A). Both social
and non-social scenes varied in emotional quality from negative
to positive (including neutral scenes).

The stimuli were taken from various image databases
(Emotional Picture Set [EmoPicS; Wessa et al., 2010];
International Affective Picture System [IAPS; Lang et al., 2008];
McGill Calibrated Colour Image Database [Olmos and Kingdom,
2004]; Nencki Affective Picture System [NAPS; Marchewka et al.,
2013]; Object and Semantic Images and Eyetracking dataset
[OSIE; Xu et al., 2014]) and the internet (e.g., Google picture
search, flickr). The stimuli were required to have sufficient depth
of field and complexity (i.e., to have several kinds of visual
information in the fore- and background), to be naturalistic (i.e.,
not drawn or manipulated with artificial photographical effects),
and previously unfamiliar to the sample. Scenes containing a lot
of conspicuous text were avoided. Moreover, stimuli had to be in
sufficiently high resolution and quality to allow for cropping or
rescaling to a resolution of 1,200× 900 pixels. Image editing was
performed with the software GIMP (Version 2.8.10, GNU Image
Manipulation Program, The GIMP Team).

These selection criteria were applied equally to all scenes
to minimize the risk of potential confounds between the
two sets of stimuli (i.e., social and non-social scenes). In
addition, stimulus comparability was validated using three
computational approaches to determine image complexity and
clutter according to Rosenholtz et al. (2007). Importantly, two-
sample t-tests (two-tailed) revealed social and non-social scenes
to be similar regarding the suggested measures of feature
congestion (t[158] = 0.07, p = 0.94, d = 0.01; social scenes:
M = 4.18, SD = 1.09; non-social scenes: M = 4.17, SD = 1.04),
subband entropy (t[158] = 0.67, p = 0.50, d = 0.11; social
scenes: M = 3.89, SD = 0.33; non-social scenes: M = 3.93,
SD = 0.39), and edge density (using Matlab R©’s [Mathworks, Inc.,
Natick, MA, USA] Canny (1986) edge detector; t[158] = 0.83,
p = 0.41, d = 0.13; social scenes: M = 4.79, SD = 2.08;
non-social scenes: M = 5.08, SD = 2.36). Moreover, stimulus
comparability was validated by means of image ratings obtained
from the participants after the actual experiment. In detail,
participants evaluated each image regarding valence and arousal
using computerized versions of the 9-point Self-Assessment
Manikin scales (SAM; Lang, 1980; Hodes et al., 1985; Bradley
and Lang, 1994) as well as with respect to personal relevance
on a self-constructed scale following the same principle as
SAM. Importantly, two-sample t-tests (two-tailed) on the average
picture ratings across participants showed social and non-social
scenes to be similar regarding valence (t[158] = 0.52, p = .60,
d = 0.08; social scenes: M = 4.78, SD = 1.76; non-social

scenes: M = 4.94, SD = 2.04), arousal (t[158] = 1.41, p = 0.16,
d = 0.22; social scenes: M = 4.51, SD = 1.33; non-social scenes:
M = 4.18, SD = 1.63), and personal relevance (t[158] = 1.25,
p = 0.21, d = 0.20; social scenes: M = 3.84, SD = 0.81; non-
social scenes: M = 4.01, SD = 0.91). Thus, potential differences
in attentional effects between scenes including human beings
and scenes depicting solely non-social content would neither be
due to confounds in image complexity nor due to confounds in
emotional quality.

Apparatus
The software Presentation R© 17.0 (Neurobehavioral Systems, Inc.,
Berkeley, CA, USA) was used to control stimulus presentation
and data recording. Each stimulus was presented centrally in
front of a gray background on a 20.1′′ LCD screen with a refresh
rate of 60 Hz. The size of each stimulus was 30.6 × 23.0 cm
corresponding to 32.5◦× 24.7◦ of visual angle at the fixed viewing
distance of 52.5 cm.

Eye movements were recorded at constant lighting conditions
from the right eye at a sampling rate of 1,000 Hz using
a video-based eye tracker (EyeLink 1000, SR Research,
Ottawa, ON, Canada) with a spatial resolution of 0.01◦ and
a spatial accuracy of 0.5◦. Additionally, physiological responses
(electrocardiography [ECG], respiration, skin conductance
[SCR], electromyography [EMG] of zygomaticus major) were
measured with a Biopac MP 100 (Biopac Systems, Inc.) device
but they are not part of this manuscript.

Procedure
All subjects participated in the study individually. They were
informed about the general procedure of the study and
completed the informed consent form as well as a questionnaire
asking for sociodemographic data and other aspects relevant
to the study (e.g., age, sex, defective vision). Subsequently, the
measurement instruments (see Section Apparatus) were attached
and participants were given a detailed verbal explanation of the
experimental task. In addition, they were asked to avoid large
head and body movements and to keep their heads in a head
rest ensuring a fixed viewing distance of 52.5 cm during the
experimental blocks. Before the beginning of the experiment, the
eye tracking system was calibrated using a nine-point grid and the
calibration was validated.

The experiment started with 6 training trials containing scenes
which were not part of the actual experiment but followed the
same principle (i.e., 50% social and 50% non-social scenes).
These training trials were followed by 160 experimental trials
containing 80 social and 80 non-social scenes in randomized
order. In each trial, participants were presented with a fixation
cross for 1 s followed by a visual scene for 10 s followed by
a fixation cross for a random period of time between 2 and
4 s. The task of the participants was to fixate the fixation cross
continuously when it was present and to freely view each visual
scene (e.g., as if they were looking at photographs in a newspaper
or magazine; see Figure 1B). Breaks were allowed after every
42 trials and were followed by a new calibration (including a
validation) of the eye tracking system.
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After the eye tracking experiment, the measurement
instruments were detached and the participants performed
ratings of the previously presented scenes and completed several
psychometric tests and questionnaires. These rating, test, and
questionnaire data will be pooled across several studies and are
not part of this manuscript.

Data Processing and Analysis
Data processing and analysis was performed with the open-
source statistical programming language R1 and Matlab R© R2014a
(Mathworks, Inc., Natick, MA, USA). The a priori significance
level of α = 0.05 was used for all analyses. As effect size
estimates, we report Cohen’s d (Cohen, 1988) for two-sample
t-tests, Cohen’s d for paired data (Dunlap et al., 1996; Cohen,
1988; Morris and DeShon, 2002) for paired t-tests, and η2

p for
analyses of variance (ANOVAs). Huynh-Feldt’s ε is reported for
all repeated-measures ANOVAs containing more than one degree
of freedom in the numerator to account for potential violations of
the sphericity assumption.

First, a saliency map (1,200 × 900 pixels) according to
the Graph-Based Visual Saliency (GBVS) model (Harel et al.,
2007) was calculated for each visual scene (see Figure 1C). The
GBVS model was implemented in the current study because it
was previously demonstrated to be one of the best performing
saliency-based attention models which is biologically plausible,
available with Matlab R© source code, and applicable without
initial machine learning of feature weights by means of ground
truth training data (Harel et al., 2007; Judd et al., 2012; Borji
and Itti, 2013; see also the MIT Saliency Benchmark website
of Bylinskii et al., 2016)2. In GBVS, those locations of a
visual input that are most different from their surrounding
in terms of their low-level features (i.e., color, intensity, and
orientation) are calculated on various spatial scales using graph-
based dissimilarity representations which are interpreted as
Markov chains. Subsequently, the distributions of conspicuous
locations of the different spatial scales and the three low-level
features are integrated into an overall saliency map. The values
of the saliency maps range from 0 to 1. Importantly, two-
sample t-tests (two-tailed) revealed that the saliency maps of
our social and non-social scenes had comparable mean values
(t[158]= 0.97, p= 0.34, d= 0.15; average mean for social scenes:
0.26; average mean for non-social scenes: 0.26) and standard
deviations (t[158]= 1.53, p= 0.13, d= 0.24; average SD for social
scenes: 0.20; average SD for non-social scenes: 0.21).

Second, the standard configuration of SR Research’s EyeLink
DataViewer software was used to parse eye movements into
saccades and fixations. Hence, saccades were identified as eye
movements exceeding a velocity threshold of 30◦/sec or an
acceleration threshold of 8,000◦/sec2 and fixations were identified
as time periods between saccades. These thresholds are common
in eye-tracking research (Holmqvist et al., 2011, pp. 150ff.) and

1https://www.r-project.org
2Please note that even though GBVS was implemented in the current study, all of
our major results were qualitatively similar both with the traditional Itti and Koch
model (Itti et al., 1998; Itti and Koch, 2000) and with a very recent model (Boolean
Map Saliency; Zhang and Sclaroff, 2016) which achieved high performance on the
MIT Saliency Benchmark website (Bylinskii et al., 2016).

were successfully used in a number of previous studies of our
group (e.g., Scheller et al., 2012; Boll and Gamer, 2014; Boll
et al., 2016). We decided to use constant thresholds across
all participants as compared to individualized data scoring to
ensure objectivity of data processing. For each trial, fixations
which occurred during scene presentation and started after
scene onset were considered for data processing and analysis.
Next, for each participant, x and y coordinates of fixations for
each scene were drift corrected with reference to the mean
position data of fixations during a 300 ms baseline time interval
directly before the onset of the respective scene (i.e., when the
central cross was fixated). In order to avoid the use of distorted
position data of baseline fixations (i.e., when participants did not
fixate the central cross) for drift correction, a recursive outlier
removal was conducted using each participant’s distribution of
baseline position data of all scenes. In detail, separately for x
and y coordinates, the lowest and the highest values of baseline
position data were removed from the respective distribution and
it was checked whether any of these two extreme values was
located more than three standard deviations below or above
the mean of the remaining distribution. If this was the case,
the extreme value was discarded permanently and the algorithm
was recursively applied to the lowest and highest values of
the remaining distribution. This process was performed until
there were no values left which met the removal criterion.
Subsequently, the baseline position data of all scenes including
a removed x or y baseline coordinate or missing baseline data
(number of social scene trials: M = 3.48, SD = 3.84; number
of non-social scene trials: M = 4.06, SD = 4.35) were replaced
by the means of all scenes with valid baseline position data.
After fixations were drift corrected, they were used to create
fixation density maps (see Figure 1C). For each participant and
scene, an empty two-dimensional map (1,200 × 900 pixels)
was generated, the respective fixations were weighted by their
fixation durations in milliseconds (average fixation durations:
M = 276.9 ms, SD= 47.8 ms for social scenes and M = 280.6 ms,
SD= 45.4 ms for non-social scenes), and these weighted fixation
values were additively assigned to the map at the pixel position
of the fixation. Afterward, the resulting map was smoothed with
a two-dimensional isotropic Gaussian kernel with a standard
deviation of 36 pixels corresponding to 1◦ of visual angle using
the R package spatstat (version 1.38-1; Baddeley and Turner,
2005). Therefore, two standard deviations (one in positive and
one in negative direction) of the kernel amounted to 2◦ of
visual angle roughly resembling the functional field of the human
fovea centralis. Finally, the scale of the fixation density map was
normalized to range from 0 to 1.

Third, for each participant and scene, the fixation density
map was compared to the saliency map using three different
metrics (Wilming et al., 2011). These metrics measured the
divergence of the distributions of physical saliency and fixation
density (Kullback–Leibler divergence, DKL, Kullback, 1959)
and the saliency-based prediction of fixation density (area
under the receiver-operating-characteristics curve, AUC, Fawcett,
2006; Pearson product-moment correlation coefficient, r). For
calculating these metrics, both saliency and fixation density
maps were rescaled such that their values aggregated to 1 each.
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In addition, exclusively for AUC, fixation density maps were
binarized by assigning a value of 1 if the fixation density value
was higher than this map’s mean fixation density value and 0
otherwise. Subsequently, for each participant, the mean of each
of the three metrics for comparing saliency and fixation density
maps was calculated separately for social and non-social scenes.
Finally, a paired t-test (two-tailed) was performed for each of the
three metrics to compare the participants’ means for social and
non-social scenes (n = 31). In this and all following analyses
involving eye movement data, trials were only considered as
valid if the aggregated time of blink occurrences (defined by the
EyeLink system as periods of missing pupil data) during scene
presentation was shorter than 2 s. This applied on average to 78.9
(SD = 2.0) social scene trials and to 78.7 (SD = 2.9) non-social
scene trials.

Fourth, the pixel coordinates of the following four regions
of interest (ROIs) were defined for each social scene: heads,
bodies (excluding heads and including torso, arms, hands, legs,
feet) as well as further areas of lower and higher physical
saliency (see Figure 1C). On average, 2.15% (SD = 2.46%)
of a scene were covered by heads, 8.95% (SD = 8.23%) by
bodies, 71.35% (SD = 8.26%) by areas of lower saliency, and
17.56% (SD = 2.07%) by areas of higher saliency. The two first-
mentioned ROIs were determined by drawing them manually
using GIMP. In order to define the two last-mentioned ROIs,
the social scene’s saliency map was considered for those image
regions which had not already been assigned to the head or body
ROI. Saliency values smaller or equal to the eighths saliency
decile were defined as area of lower saliency and the remaining
scene part as area of higher saliency. Whereas the selection of
the eighths saliency decile as the criterion for defining these two
ROIs was arbitrary, this cut-off fulfilled the purpose of enabling
us to identify image regions which contained no social features
(i.e., heads or bodies) but had particularly high physical saliency.
Importantly, the identification of such image regions constituted
an essential prerequisite for being able to disentangle potential
effects of attentional allocation to social versus physically salient
information. Next, for each social scene (n = 80), the defined
ROIs were used in combination with the saliency map to
specify the relative amount of physical saliency of each ROI by
dividing the mean saliency per ROI by the mean saliency of the
whole scene. Subsequently, a one-way ANOVA with repeated
measurements on the factor ROI (head, body, area of lower
saliency, area of higher saliency) was performed on these data.
It has to be mentioned that care was taken at the stage of stimulus
selection such that social features were not particularly often
image regions with highest physical saliency. This was another
necessary prerequisite for being able to disentangle potential
effects of social attention and physical saliency. In addition, for
each participant and social scene, the defined ROIs and the
fixation density map were used to determine the relative extent
to which each ROI was fixated. In detail, the sum of fixation
density values was calculated for each ROI and then divided by
the sum of fixation density values for the whole scene. Afterward,
this proportion score was normalized by dividing it by the area of
the respective ROI to control for the issue that the probability
of receiving more fixations is higher for larger than smaller

areas (Smilek et al., 2006; Birmingham et al., 2009a). Finally,
for each participant (n = 31), the mean of this relative area-
normalized sum of fixation density was calculated for each ROI
across all social scenes and a one-way ANOVA with repeated
measurements on the factor ROI (head, body, area of lower
saliency, area of higher saliency) was performed on these data. It
is worth mentioning that care was taken at the stage of stimulus
selection such that social features were not particularly often
located very close to scene center because previous research
provided evidence that humans typically exhibit a central fixation
bias, i.e., a tendency to fixate the center of images more than
the periphery when viewing them on a screen (e.g., Mannan
et al., 1996; Tatler et al., 2005; Tatler, 2007; Tseng et al., 2009;
Vincent et al., 2009). Thus, ensuring that social features were not
systematically located closer to scene center than areas of higher
saliency was a necessary prerequisite for avoiding potential effects
of social attention (versus physical saliency) to be confounded
with general central fixation tendencies. Importantly, the average
of the mean distance of social features to scene center (M= 9.60◦,
SD = 3.41◦ for heads; M = 9.71◦, SD = 3.16◦ for bodies) lay
between the corresponding distance to scene center values of
areas of higher saliency (M = 7.13◦, SD = 0.84◦) and areas of
lower saliency (M = 12.47◦, SD= 0.53◦).

Fifth, for each participant and scene, the drift corrected
fixations, which were already used to create fixation density
maps, were considered in combination with the saliency map
to determine the relative amount of physical saliency at each
of the first five fixated scene locations (see Freeth et al., 2011).
Because participants made on average 31.7 (SD = 4.0) fixations
when viewing social scenes and 31.1 (SD = 4.0) when perceiving
non-social scenes, the exploration of the first five fixations aims
particularly at investigating the influence of physical saliency on
very early eye movements. The relative amount of saliency at
each of the first five fixated locations was specified by dividing
the mean saliency of a circular area with a diameter of 2◦ of
visual angle (resembling the functional field of the human fovea
centralis) around the position of the respective fixation by the
mean saliency of the whole scene. Next, for each participant
(n= 31), the average of this relative mean saliency was calculated
for each of the first five fixated locations, separately for social
and non-social scenes. Subsequently, a two-way ANOVA with
repeated measurements on the factors fixation number (1, 2, 3,
4, 5) and scene content (social, non-social) was calculated on
these data. In addition, for each participant (n = 31) and social
scene, the mentioned drift corrected fixations and the defined
ROIs were used to specify for each of the first five fixations which
ROI was looked at. Afterward, for each participant and for each
of the first five fixations, the relative frequency that each ROI
was fixated across all social scenes was determined by dividing
the frequency that each ROI was fixated by the frequency that
any ROI was fixated. Furthermore, each relative frequency score
was normalized by dividing it by the mean area of the respective
ROI across all social scenes whose data were represented in
the respective relative frequency score. This normalization was
applied to control for the fact that the probability of receiving
a fixation is higher for larger than smaller areas (Smilek et al.,
2006; Birmingham et al., 2009a). Finally, a two-way ANOVA with
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repeated measurements on the factors fixation number (1, 2, 3, 4,
5) and ROI (head, body, area of lower saliency, area of higher
saliency) was performed on these data. It has to be mentioned
that trials of which baseline position data were replaced by mean
baseline position data for drift correction were excluded from
both described analyses involving the exploration of the first five
fixations because the probability is very high that participants
did not fixate the central cross directly before the onset of the
scene in these trials. Therefore, the starting position to view a
scene most probably differs systematically between these trials
and trials in which the instruction to fixate the central cross
before scene presentation was adhered. Whereas such a difference
in starting positions does not necessarily constitute a problem for
the creation of fixation density maps which comprise fixations for
the whole scene viewing duration, it could especially influence
the locations of fixations occurring very early after the onset
of a scene which would particularly bias the described analyses
involving the exploration of the first five fixations.

Finally, a recently proposed analysis approach which
combines a scene patch analysis with linear mixed models
(Nuthmann and Einhäuser, 2015) was used to further compare
the power of physical saliency and social features in predicting
gazing behavior. This approach constitutes an important
improvement beyond the previously described data analyses
because it enabled us to incorporate physical saliency and social
features as well as their interaction as predictors of fixations
in a shared model. Moreover, it facilitated the consideration
of trial specific data characteristics because it did not require
aggregation of participants and experimental conditions across
trials. In detail, each social scene (1,200 × 900 pixels) was
overlaid with a 12 × 9 grid to divide it into 108 quadratic
scene patches of 100 × 100 pixels each. Subsequently, for each
participant and social scene, the fixation density map was used
to calculate the mean fixation density of each of these quadratic
scene patches. This mean fixation density of each scene patch
was further divided by the average mean fixation density across
all patches of a scene to get a relative index of the extent that
a participant looked at each scene patch. Accordingly, for each
social scene, the relative mean saliency of each scene patch was
specified by means of the saliency map. Furthermore, each social
scene’s ROIs were used to determine the relative amount that
the area of each scene patch was covered by social features.
In detail, the relative area covered by one or more heads was
calculated for each scene patch and then divided by the average
relative area covered by one or more heads across all patches of a
scene. Correspondingly, the relative area covered by one or more
bodies was specified for each social scene’s patches. In addition,
in the context of this analysis approach, it is worth reconsidering
the mentioned empirical evidence that humans typically exhibit
a central fixation bias when viewing images on a screen (e.g.,
Mannan et al., 1996; Tatler et al., 2005; Tatler, 2007; Tseng et al.,
2009; Vincent et al., 2009). Although the implemented GBVS
saliency model already implicitly incorporates a central bias due
to the used graph-based dissimilarity representations (Harel
et al., 2007), we followed Nuthmann and Einhäuser (2015) by
also explicitly including the central bias, operationalized as the
Euclidean distance between the center of each grid cell and the

scene center, in our model analyses. Importantly, this enabled us
to compare physical saliency, social features, and their interaction
as predictors of fixations largely isolated from this general central
viewing tendency. Thus, the scene patch data (n = 264,276) of
all participants and social scenes (31 participants; M = 78.93548
social trials fulfilling the blink criteria described above; 108 scene
patches) were used to determine the power of the four features
(i) distance from scene center, (ii) relative mean saliency, (iii)
relative amount of heads, and (iv) relative amount of bodies of
a scene patch in predicting the relative mean fixation density
of this scene patch (i.e., the extent to which participants looked
at it) by means of linear mixed models. These models were
implemented using the lme4 package (version 1.1-7; Bates et al.,
2014) for R with the bobyqa optimizer. Model estimates were
chosen to optimize the restricted maximum likelihood (REML)
criterion and the predictor’s p-values were obtained based on
Satterthwaite’s approximation of degrees of freedom using the
lmerTest package (version 2.0-25; Kuznetsova et al., 2015).
The predictors were transformed to have mean 0 and standard
deviation 1. Importantly, the notation “mixed” in linear mixed
models refers to the fact that these models contain both fixed and
random effects. The following models with different fixed effects
were tested: We built models including one of the four predictors
exclusively (models 1a, 1b, 1c, 1d), a model containing both
distance from scene center and relative mean saliency (model
2), models incorporating distance from scene center, relative
mean saliency and either relative amount of heads or relative
amount of bodies (models 3a, 3b), and finally a model containing
all four predictors simultaneously (model 4). The model which
included all predictors at once was tested both with and without
interaction terms of relative mean saliency and relative amount
of heads or bodies (models 5a, 5b, 6).

Additionally, models were compared incrementally using
likelihood ratio tests. Therefore, all models were required to
have the same random effects structure which was specified as
including participant ID and scene ID as random intercepts. For
model comparison, model estimates were chosen to optimize
the maximum likelihood (ML) criterion instead of the REML
criterion. Furthermore, as the calculation of an index of goodness
of model fit is nontrivial in the context of linear mixed models,
an analog of the coefficient of determination (R2) was calculated
for each model using the square number of the correlation
between the observed data and the values predicted by the model
(Cameron and Windmeijer, 1996; Byrnes and Stachowicz, 2009).
In addition, the Akaike information criterion (AIC; Akaike, 1974)
was calculated (using the ML fitted models) because this index
of goodness of model fit also considers the principle of model
parsimony by penalizing models incorporating a larger number
of parameters.

Moreover, for a detailed visual inspection of the relationship
between the relative mean fixation density of a scene patch and
its distance from scene center, relative mean saliency, and relative
amount of heads or bodies, the scene patch data of all participants
and social scenes were used to determine the deciles of each
of the four predictors. For each of these four variables, each
scene patch was assigned to its corresponding decile category
and the average of relative mean fixation density was calculated
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for each of these decile bins. Because this data handling groups
the scene patches having the 10% lowest or the 10% highest
predictor values (or any 10% category in between) together, it
enabled us to visually inspect how the average of relative mean
fixation density was influenced by the decile bin containing lower
or higher predictor values (see Figure 5). Two things have to
be mentioned: First, because most of the scene patches did not
contain any parts of heads or bodies, before applying the decile
categorization to the relative amount of heads and the relative
amount of bodies of a scene patch, all scene patches depicting
no parts of the respective social feature (either heads or bodies)
were grouped into an additional bin and the decile categorization
described above was applied to all remaining scene patches (i.e.,
scene patches containing at least minimal parts of the respective
social feature). Second, because of the way the distance from
scene center predictor was specified, it had only 27 distinct values
appearing with different frequencies. Therefore, the decile bins
regarding distance from scene center could not contain 10% of
the scene patches each (but between about 7 and 13%).

RESULTS

Saliency-Based Prediction of Fixations
The paired t-test on the Kullback–Leibler divergence (DKL) of
the distributions of physical saliency and fixation density for
social and non-social scenes revealed saliency and fixations to
diverge significantly stronger for social than non-social scenes
(t[30]= 9.11, p < 0.001, d= 1.64). Consistently, the paired t-tests
on the area under the receiver-operating-characteristics curve
(AUC) and the Pearson product-moment correlation coefficient
(r) of saliency and fixation density maps revealed the saliency-
based prediction of fixations to be significantly worse for social
than non-social scenes (AUC: t[30] = 9.01, p < 0.001, d = 1.62;
r: t[30]= 10.04, p < 0.001, d = 1.80; see Figure 2).

Regions of Interest Analysis
In the one-way ANOVA on the relative area-normalized sum of
fixation density values with repeated measurements on the factor
region of interest (ROI; head, body, area of lower saliency, area
of higher saliency) for social scenes, we observed a significant
main effect of ROI (F[3,90] = 570.63, ε = 0.41, p < 0.001,
η2

p = 0.95) indicating that heads were looked at the most,
followed by bodies which were fixated more than areas of higher
saliency which were in turn looked at more than areas of lower
saliency (see Figure 3A). Paired post hoc t-tests (two-tailed) with
a Bonferroni-corrected significance level (α = 0.05/6 = 0.0083)
revealed all possible pairwise comparisons to be significant (all
t[30] > 13, all p < 10−13).

The one-way ANOVA on the relative mean saliency with
repeated measurements on the factor ROI (head, body, area of
lower saliency, area of higher saliency) for social scenes revealed
a significant main effect of ROI (F[3,237] = 153.91, ε = 0.63,
p < 0.001, η2

p = 0.66). This main effect indicates that areas
of higher saliency were physically more salient than the social
features heads and bodies which were in turn more salient
than areas of lower saliency (see Figure 3B). Paired post hoc

FIGURE 2 | Divergence (Kullback–Leibler divergence, DKL) and
correspondence (area under the ROC curve, AUC; Pearson
product-moment correlation coefficient, r) between saliency and
fixation density maps for social and non-social scenes. Physical
saliency and fixations were found to diverge significantly stronger for social as
compared to non-social scenes (DKL). Correspondingly, physical saliency
predicted fixations significantly worse for social as compared to non-social
scenes (AUC and r). Note: AUC’s point of origin is set to 0.5 because this
value corresponds to random guessing (Fawcett, 2006). Error bars denote
SEM. ∗∗∗p < 0.001.

t-tests (two-tailed) with a Bonferroni-corrected significance level
(α = 0.05/6 = 0.0083) revealed that except for the contrast
between heads and bodies (t[79] = 1.21, p = 0.23), all other
possible pairwise comparisons (all t[79] > 7, all p < 10−10) were
significant.

Time Course Analysis
The two-way ANOVA on the relative mean saliency with repeated
measurements on the factors fixation number (1, 2, 3, 4, 5) and
scene content (social, non-social) revealed a significant main
effect of scene content (F[1,30] = 23.32, p < 0.001, η2

p = 0.43)
indicating relative mean saliency of fixated locations to be lower
for social than for non-social scenes. Moreover, we found a
significant main effect of fixation number (F[4,120] = 308.16,
ε = 0.81, p < 0.001, η2

p = 0.91). Accordingly, relative mean
saliency of fixated locations was highest for the first fixation on
a scene and decreased progressively from fixation to fixation.
In addition, we observed a significant interaction of fixation
number and scene content (F[4,120] = 5.44, ε = 0.86, p < 0.001,
η2

p= 0.16). This interaction indicated that the lower relative mean
saliency of fixated locations for social as compared to non-social
scenes was most pronounced for the first fixation on a scene and
declined gradually from fixation to fixation (see Figure 4A).
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FIGURE 3 | Comparison of four regions of interest in social scenes.
(A) Relative area-normalized extent to which participants looked at each
region of interest (ROI). Social features (especially heads but also bodies) were
fixated significantly more than other image regions of lower and higher
physical saliency. (B) Relative amount of physical saliency of each ROI. Social
features constituted areas of intermediate saliency meaning that areas of
higher saliency were significantly more salient than heads and bodies which
were in turn significantly more salient than areas of lower saliency. Note: Error
bars denote SEM. ∗∗∗p < 0.001.

The two-way ANOVA on the relative area-normalized fixation
frequency with repeated measurements on the factors fixation
number (1, 2, 3, 4, 5) and ROI (head, body, area of lower
saliency, area of higher saliency) for social scenes revealed a
significant main effect of fixation number (F[4,120] = 38.96,
ε = 0.76, p < 0.001, η2

p = 0.57) representing the average of
the relative area-normalized fixation frequency across ROIs to
be different between the first five fixated locations. Additionally,
we found a main effect of ROI (F[3,90] = 388.27, ε = 0.35,
p < 0.001, η2

p = 0.93) indicating heads to be looked at more
than bodies and areas of higher saliency which were fixated more
than areas of lower saliency. Moreover, a significant interaction
of fixation number and ROI was observed (F[12,360] = 29.43,
ε = 0.27, p < 0.001, η2

p = 0.50). This interaction indicates that
the preferential fixation of heads was most pronounced for the
earliest fixations on a scene, had its maximum at the second
fixation, and gradually declined afterward (see Figure 4B).

Linear Mixed Model Analysis
The β and p-values of the linear mixed model analysis comparing
the power of the four features distance from scene center,

relative mean saliency, relative amount of heads, and relative
amount of bodies of a scene patch in predicting the relative
mean fixation density on this scene patch are given in Table 1.
This analysis revealed distance from scene center, relative mean
saliency, relative amount of heads, and relative amount of bodies
to be significant predictors of relative mean fixation density in
models including one of the four features exclusively (models
1a, 1b, 1c, 1d), in a model containing both distance from scene
center and relative mean saliency (model 2), in models including
distance from scene center, relative mean saliency, and either
relative amount of heads or relative amount of bodies (models
3a, 3b), and in a model including all four features simultaneously
(model 4). Moreover, if interaction terms of relative mean
saliency and relative amount of heads as well as relative mean
saliency and relative amount of bodies were added to the model
containing all four features concurrently, both interaction terms
were observed to be further significant predictors of relative mean
fixation density (models 5a, 5b, 6).

Comparing models incrementally using likelihood ratio tests
revealed that a model containing distance from scene center
exclusively (model 1a) fitted the data better than a model
containing no fixed effects but the same random effects
(χ2[1] = 16,462.00, p < 0.001). Furthermore, a model including
distance from scene center and relative mean saliency (model 2)
performed better than a model incorporating only distance from
scene center (model 1a; χ2[1]= 7,753.90, p < 0.001) and a model
containing distance from scene center, relative mean saliency,
and relative amount of heads (model 3a) fitted the data better
than a model including only distance from scene center and
relative mean saliency (model 2; χ2[1] = 27,905.00, p < 0.001).
Moreover, a model incorporating all four features concurrently
(model 4) outperformed a model containing only distance from
scene center, relative mean saliency, and relative amount of heads
(model 3a; χ2[1] = 4,253.80, p < 0.001). In addition, a model
including all four features and an interaction term of relative
mean saliency and relative amount of heads (model 5a) resulted
in a higher goodness of fit than a model containing all four
features but not the interaction term (model 4; χ2[1] = 991.63,
p < 0.001). Finally, a model incorporating all four features and
interaction terms of relative mean saliency and relative amount
of heads as well as relative mean saliency and relative amount
of bodies (model 6) performed better than a model including
all four features and only the interaction term of relative mean
saliency and relative amount of heads (model 5a; χ2[1]= 192.00,
p < 0.001). Additionally, model comparisons based on the AIC,
which indicates higher goodness of model fit by smaller AIC
values, revealed the same pattern of results as the likelihood ratio
tests (for the models’ AIC values, see Table 1).

For an additional visualization of the relationship between
relative mean fixation density and its predictors, see Figure 5.
For each of the four predictors, this figure depicts the average
relative mean fixation density of decile bins containing scene
patches with the 10% lowest or the 10% highest predictor values
(or any 10% category in between). This allowed the visual
inspection of how average relative mean fixation density was
influenced by the decile bin containing lower or higher predictor
values. Thereby, Figure 5 further illustrates that the relative mean
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FIGURE 4 | Fixation time course. (A) Relative amount of physical saliency at each of the first five fixated scene locations for social and non-social scenes. The
lower correspondence between saliency and fixations for social as compared to non-social scenes was significantly more pronounced for the earliest fixations.
(B) Relative area-normalized frequency that each of four regions of interest (ROIs) was fixated for each of the first five fixations on social scenes. The preferential
fixation of heads was significantly more pronounced for the earliest fixations. Note: “6+” indicates the mean value of the sixth to the last fixation. Error bars denote
SEM.

fixation density of a scene patch increased when this scene patch
contained a higher relative amount of heads but also when it had
higher relative mean saliency, when it contained a higher relative
amount of bodies, and when it had a shorter distance from scene
center.

DISCUSSION

In the present study, we measured eye movements of participants
freely viewing color photographs of complex naturalistic social
and non-social scenes to examine the role of human social
attention in the context of saliency-based attention models.
Consistent with our hypothesis, social features (especially
heads) were heavily prioritized during visual exploration.
Correspondingly, saliency-based attention models lost power in
predicting gazing behavior when social elements were present in
a visual scene. Importantly, this pattern was most pronounced
for the very first fixations. Finally, a linear mixed model approach
revealed social features, physical saliency, their interaction, and a
central bias to be significant predictors of gazing behavior within
a shared model.

The current finding that observers exhibited a strong
attentional preference for social features (especially heads) in
complex naturalistic scenes is in line with previous studies
yielding support that humans have a tendency to direct their

gaze to other persons (e.g., Smilek et al., 2006; Birmingham
et al., 2007, 2008a,b, 2009a; Castelhano et al., 2007; Fletcher-
Watson et al., 2008; Zwickel and Vo, 2010). However, contrary
to prior research, we explicitly identified image locations which
were physically more salient than depicted people and directly
compared to which extent social features and such other regions
received attention. Importantly, this enabled us to demonstrate
explicitly that gaze is allocated preferentially to other persons
even if more conspicuous non-social aspects are present in a
visual scene. After impoverished stimuli such as isolated faces
were extensively used in previous studies on social perception,
in recent years, researchers began to apply ecologically more
valid stimulus material (e.g., Smilek et al., 2006; Birmingham
et al., 2007, 2008a,b, 2009a; Castelhano et al., 2007; Fletcher-
Watson et al., 2008; Zwickel and Vo, 2010). The present findings
contribute to this emerging approach because, in real life, other
people are typically not the only conspicuous aspect of the visual
field (see also Birmingham and Kingstone, 2009; Birmingham
et al., 2009a; Kingstone, 2009).

In addition, the current study provides strong evidence
that the marked preference for social features cannot be fully
explained by physical saliency. First, we took care during stimulus
selection that social information was not confounded by low-level
saliency. Second, an explicit comparison of the physical saliency
of different image regions confirmed social elements to be image
regions with only intermediate low-level saliency. Importantly,
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the majority of previous studies investigating saliency-based
predictions in the context of visual scenes containing social
information (e.g., Birmingham et al., 2009a,b; Fletcher-Watson
et al., 2009; Suda and Kitazawa, 2015) neglected to consider
the two mentioned aspects sufficiently. Thus, the current study
extends prior reports by providing a clear distinction between

the influences of social attention and physical saliency on
gazing behavior for complex naturalistic scenes. Moreover, to
the best of our knowledge, the present study is the first that
systematically compared the extent to which saliency-based
attention models predict fixations between scenes including
social features and scenes depicting solely non-social content in

TABLE 1 | Parameters of linear mixed models predicting the relative mean fixation density on the patches of a social scene by their distance from scene
center, relative mean saliency, relative amount of heads, and relative amount of bodies.

β SE F dfnum dfden p R2 AIC

Model 1a 0.06 1,191,185

Distance from center –0.58 0.004 16,985.0 1 264,274 <0.001

Model 1b 0.09 1,183,820

Saliency 0.70 0.004 24,934.0 1 264,274 <0.001

Model 1c 0.11 1,176,886

Head 0.79 0.004 32,622.0 1 264,274 <0.001

Model 1d 0.04 1,195,675

Body 0.50 0.005 12,247.0 1 264,274 <0.001

Model 2 0.09 1,183,433

Distance from center –0.13 0.007 389.1 1 264,273 <0.001

Saliency 0.60 0.007 7,868.7 1 264,273 <0.001

Model 3a 0.18 1,155,531

Distance from center –0.17 0.006 686.7 1 264,272 <0.001

Saliency 0.49 0.006 5,873.5 1 264,272 <0.001

Head 0.72 0.004 29,430.5 1 264,272 <0.001

Model 3b 0.12 1,175,302

Distance from center –0.16 0.007 558.6 1 264,272 <0.001

Saliency 0.51 0.007 5,888.9 1 264,272 <0.001

Body 0.40 0.004 8,260.0 1 264,272 <0.001

Model 4 0.19 1,151,279

Distance from center –0.18 0.006 822.3 1 264,271 <0.001

Saliency 0.44 0.006 4,717.5 1 264,271 <0.001

Head 0.67 0.004 25,150.2 1 264,271 <0.001

Body 0.28 0.004 4,288.2 1 264,271 <0.001

Model 5a 0.20 1,150,289

Distance from center –0.19 0.006 860.4 1 264,270 <0.001

Saliency 0.43 0.006 4,604.2 1 264,270 <0.001

Head 0.60 0.005 15,801.9 1 264,270 <0.001

Body 0.29 0.004 4,532.0 1 264,270 <0.001

Saliency × head 0.12 0.004 993.5 1 264,270 <0.001

Model 5b 0.19 1,150,951

Distance from center –0.18 0.006 842.1 1 264,270 <0.001

Saliency 0.44 0.006 4,597.8 1 264,270 <0.001

Head 0.68 0.004 25,409.6 1 264,270 <0.001

Body 0.25 0.005 2,793.5 1 264,270 <0.001

Saliency × body 0.06 0.003 329.9 1 264,270 <0.001

Model 6 0.20 1,150,099

Distance from center –0.19 0.006 873.5 1 264,269 <0.001

Saliency 0.43 0.006 4,519.0 1 264,269 <0.001

Head 0.61 0.005 16,005.3 1 264,269 <0.001

Body 0.26 0.005 3,117.9 1 264,269 <0.001

Saliency × head 0.11 0.004 855.3 1 264,269 <0.001

Saliency × body 0.04 0.003 192.1 1 264,269 <0.001

Num, numerator; den, denominator; AIC, Akaike information criterion.
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FIGURE 5 | Predictors of fixations for social scenes. Average relative fixation density of decile bins containing scene patches with the 10% lowest or the 10%
highest values (or any 10% category in between) of the distance from scene center, the relative amount of physical saliency, the relative amount of heads, or the
relative amount of bodies in a scene patch. Greater distance from scene center and higher relative amounts of saliency, heads, or bodies of a scene patch are
indicated by higher values on the x-axes. A scene patch was fixated more when it contained heads to a higher degree but also when it was physically more salient,
when it depicted bodies to a larger extent, and when it was more central in the scene. Note: For the relative amount of heads and the relative amount of bodies of a
scene patch, all scene patches which did not contain any parts of the respective social feature (either heads or bodies) are depicted in a separate bin left of the
vertical dashed line. The decile bins of the remaining scene patches are illustrated right to the vertical dashed line. The decile bins regarding distance from scene
center did not contain 10% of the scene patches each (but between about 7 and 13%; for details, see Section “Materials and Methods”). Error bars denote SEM.

human observers. In agreement with studies yielding support
that the influence of physical saliency on gazing behavior may
be especially weak for socially relevant stimuli (e.g., Nyström
and Holmqvist, 2008; Birmingham et al., 2009a,b; Fletcher-
Watson et al., 2009; Zwickel and Vo, 2010; Hall et al., 2011;
Scheller et al., 2012; Suda and Kitazawa, 2015), this comparison
allowed us to demonstrate explicitly that the power of saliency-
based predictions is considerably reduced when social features
are present in a complex naturalistic visual input. Previously,
several studies indicated circumstances under which saliency-
based attention models work less well or fail completely, for
example under presence of top–down influences from visual
search tasks (Foulsham and Underwood, 2007; Henderson et al.,
2007; Einhäuser et al., 2008a). The current study contributes to
this literature by substantiating the notion that physical saliency
is insufficient in predicting gazing behavior when the visual field
contains social information (e.g., Nyström and Holmqvist, 2008;

Birmingham et al., 2009a,b; Fletcher-Watson et al., 2009; Zwickel
and Vo, 2010; Hall et al., 2011; Scheller et al., 2012; Suda and
Kitazawa, 2015).

Moreover, the present study revealed important insights into
the time course of the influences of social attention and low-
level saliency. Previous research indicated that saliency-based
attention models perform best for the very first fixations after
stimulus onset (e.g., Parkhurst et al., 2002; but see Tatler et al.,
2005). Additionally, several studies yielded evidence that a
bias of directing gaze to other people may be present (e.g.,
Birmingham et al., 2008a, 2009b; Fletcher-Watson et al., 2008)
or perhaps even strongest (e.g., Fletcher-Watson et al., 2008;
Kano and Tomonaga, 2011; Xu et al., 2014; Wang et al., 2015)
for such early fixations. Furthermore, there is support that such
tendencies may not be solely explained by physical saliency
(e.g., Birmingham et al., 2009b). The current study provides
a more comprehensive distinction of both influences on early
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eye movements by means of detailed analyses of the first five
fixated scene locations in complex naturalistic social and non-
social scenes. Importantly, we not only replicated the finding
that low-level saliency is higher at locations fixated very early as
compared to locations looked at later, but we also showed both
the preference for social features (especially heads) as well as the
lower correspondence between fixations and physical saliency for
scenes including social elements as compared to scenes depicting
solely non-social content to be most pronounced for the very
first fixations. These findings indicate that social attention and
physical saliency interact in predicting the very first fixations
during scene processing. More specifically, they demonstrate
that the preferential processing of social features in complex
naturalistic scenes does not only rely on a volitionally controlled
mechanism but instead reflects the influence of a reflexive
and automatic process that trades off physical saliency by the
presence of social features on very early fixations. This conclusion
substantiates prior reports which yielded support that certain
high-level visual stimuli (e.g., faces) may partly capture attention
automatically (e.g., Cerf et al., 2009; Kano and Tomonaga, 2011)
and further corroborates previous studies providing evidence
that social features may have the potential to override low-level
saliency (e.g., Nyström and Holmqvist, 2008; Birmingham et al.,
2009b). Building onto our findings, future research should try to
reveal further characteristics of the automatic versus controlled
mechanisms underlying the allocation of attention in complex
naturalistic scenes.

One may speculate why the magnitude of the reduced
correspondence between fixations and physical saliency for
scenes containing people already had its maximum at the first
fixation whereas the preferential processing of social features
(especially heads) only reached its peak at the second fixation.
A possible explanation may be that although attention was
driven reflexively by social elements instead of low-level saliency
beginning from the very first fixation, observers’ gaze often
reached these social features not until the second fixation. This
explanation is supported by the fact that the average of the
mean distance of social features to the scene center (M = 9.60◦,
SD = 3.41◦ for heads; M = 9.71◦, SD = 3.16◦ for bodies), i.e.,
where participants were instructed to look at before exploring
a scene, was about twice as large as the average saccade lengths
(M = 4.67◦, SD= 0.66◦ for social scenes; M = 4.86◦, SD= 0.73◦
for non-social scenes).

In addition, the results of the currently applied modeling
approach revealed further interesting aspects of the role of
social influences in the context of saliency-based attention
models. Several previous modeling studies provided evidence
that considering other sources of information (e.g., locations
of faces) besides low-level saliency may improve the power of
predicting fixations (e.g., Cerf et al., 2008, 2009; Marat et al.,
2013; Xu et al., 2014; Parks et al., 2015; for a review, see
Tatler et al., 2011). Furthermore, a number of studies yielded
support that such other sources of information may even have
a higher predictive value than physical saliency (e.g., Coutrot and
Guyader, 2014; Xu et al., 2014). However, previous studies mostly
only relied on the approach of comparing models encompassing
diverse sets of predictive features. Thus, research which allows

for disentangling different attentional influences in one and the
same model is very sparse (see e.g., Vincent et al., 2009; Coutrot
and Guyader, 2014). Moreover, with just a few exceptions (e.g.,
Wang et al., 2015), previous studies almost completely neglected
to investigate the interplay of considered predictors. Importantly,
the present study particularly targeted both aspects by applying
a recently proposed linear mixed model analysis approach
(Nuthmann and Einhäuser, 2015). This approach enabled us
to demonstrate explicitly that social features, physical saliency,
their interaction, and a central bias are significant predictors
of gazing behavior within a shared model. Notably, explicitly
considering central bias as a predictor within the modeling
approach gave us the possibility to examine the influences
of physical saliency and social features above this general
spatial viewing tendency. In accordance with their extraordinary
attentional prioritization, heads of depicted people constituted
the strongest of all predictors. Completed with evidence from
our model comparisons, our findings show that social features
add substantially to the prediction of fixations beyond low-level
saliency. Interestingly, the interaction terms revealed that a scene
location was not only looked at more when it generally included
heads or bodies but additionally when these social features were
physically salient at the same time. This finding, which is in
line with supplementary analyses of a recent study that did not
consider interaction terms as model predictors (Wang et al.,
2015), demonstrates the influences of physical saliency and social
features to be not totally independent from each other. Thus,
the current approach indicates that future models of human
visual attention need to integrate social influences and low-level
saliency as well as their interaction.

In the context of the present study, it seems interesting that
previous research yielded evidence that a number of mental
disorders which are particularly characterized by deficits in the
context of social situations (e.g., autism spectrum disorders,
social phobia) could be associated with altered orienting toward
socially relevant information (e.g., Pelphrey et al., 2002; Horley
et al., 2003; Birmingham et al., 2011; Boll et al., 2016).
However, just as research on social attention in general, prior
studies investigating patients with mental disorders mostly
relied on isolated face stimuli (e.g., Pelphrey et al., 2002;
Horley et al., 2003; Boll et al., 2016) and only very sparsely
on more naturalistic visual material (e.g., Fletcher-Watson
et al., 2009; Birmingham et al., 2011; Freeth et al., 2011).
In addition, although recent studies on (social) information
processing in clinical populations began to consider saliency-
based attention models (e.g., Fletcher-Watson et al., 2009; Freeth
et al., 2011; Wang et al., 2015), research of both domains
is not connected sufficiently. Importantly, the current study
makes a substantial contribution for closing the very same
gap regarding attentional processes in healthy human beings.
Thus, we also demonstrate aspects which might be highly
relevant for future studies aiming at enhancing the understanding
of (altered) social attention in people with mental disorders
such as autism or social phobia (cf., Itti, 2015). In particular,
our application of Nuthmann and Einhäuser’s (2015) linear
mixed model approach could be adapted to contrast clinical
and healthy control groups regarding the power of social
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features, physical saliency, their interaction, and other potentially
interesting factors in guiding attention.

Despite its strengths, some limitations of the current study
are also worth mentioning. First, when comparing different
sets of stimuli (e.g., social and non-social scenes), one has to
bear in mind that the sets could potentially differ in other
than the intended dimensions. However, we carefully applied
the same selection criteria (e.g., complexity, depth of field) to
all scenes to minimize the risk of potential confounds and
demonstrated both scene types to have comparable distributions
of low-level image saliency and to be similar both in image
complexity and in emotional quality. In addition, comparing
human observers’ gazing behavior between social and non-
social scenes is in fact more a strength than a weakness of the
current study because previous research has so far completely
neglected to make this important comparison. Second, it has
to be taken into account that we examined eye movements
of humans watching visual scenes under one specific viewing
condition: free exploration. Although free viewing is frequently
considered to basically resemble some kind of natural viewing
mode (e.g., Parkhurst et al., 2002; but see Tatler et al., 2011),
several studies yielded support that different task instructions
(e.g., free viewing vs. visual search) have a substantial impact
on observers’ gazing behavior (e.g., Yarbus, 1967; Welchman
and Harris, 2003; Birmingham et al., 2007, 2008a; Foulsham
and Underwood, 2007; Rothkopf et al., 2007; Einhäuser et al.,
2008a; Fletcher-Watson et al., 2008, 2009). Therefore, future
research should try to examine whether the findings of the
present study hold true under varying task demands. Third,
recent research provided evidence that social context (e.g., sitting
with others in a waiting room or eating together with them) may
modulate the extent to which humans attend to other people
(e.g., Laidlaw et al., 2011; Foulsham et al., 2011; Wu et al.,
2013; Gregory et al., 2015). Although the current study made
important advancements in terms of ecologically valid stimulus
material, our laboratory experiment did not allow for estimating
the influence of social context. Thus, it will be an important

challenge for future research to test the findings from laboratory
experiments in various social contexts (see also e.g., Kingstone,
2009).

In sum, the present study makes a distinct contribution to
elucidate the role of human social attention in the context
of saliency-based attention models. We showed that observers
strongly prefer social features (especially heads) over physically
salient locations during the exploration of naturalistic visual
scenes. Importantly, our findings indicate that this prioritization
of social information does not only rely on a volitionally
controlled mechanism but especially on a reflexive and automatic
process. The current study strongly challenges the generalizability
of saliency-based attention models and demonstrates the
importance of considering social influences when investigating
the driving factors of human visual attention.

AUTHOR CONTRIBUTIONS

AE and MG designed the study. AE collected and analyzed
the data. MG supervised data analysis. AE and MG wrote and
reviewed the manuscript.

FUNDING

This work was supported by the European Research Council
(ERC-2013-StG #336305).

ACKNOWLEDGMENTS

The authors thank Benjamin W. Tatler for helpful comments on
an earlier version of this manuscript and Judith Peth for helpful
discussions. Further thanks go to J. Noah Bremer, Justin M.
Mittelstädt, and Marie Bartholomäus for their help in stimulus
preparation for data collection and analysis.

REFERENCES
Adolphs, R. (2010). Conceptual challenges and directions for social neuroscience.

Neuron 65, 752–767. doi: 10.1016/j.neuron.2010.03.006
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Automat. Control 19, 716–723. doi: 10.1109/TAC.1974.1100705
Baddeley, A., and Turner, R. (2005). spatstat: an R package for analyzing spatial

point patterns. J. Stat. Softw. 12, 1–42. doi: 10.18637/jss.v012.i06
Bates, D. M., Maechler, M., Bolker, B. M., and Walker, S. C. (2014). Lme4 Linear

Mixed-Effects Models Using Eigen and S4. Available at: http://CRAN.R-project.
org/package=lme4 [accessed August 18, 2014]

Berger, D., Pazienti, A., Flores, F. J., Nawrot, M. P., Maldonado, P. E., and Grün, S.
(2012). Viewing strategy of cebus monkeys during free exploration of natural
images. Brain Res. 1434, 34–46. doi: 10.1016/j.brainres.2011.10.013

Birmingham, E., Bischof, W. F., and Kingstone, A. (2007). Why do we look at
people’s eyes? J. Eye Mov. Res. 1, 1–6. doi: 10.16910/jemr.1.1.1

Birmingham, E., Bischof, W. F., and Kingstone, A. (2008a). Gaze selection in
complex social scenes. Vis. Cogn. 16, 341–355. doi: 10.1080/13506280701434532

Birmingham, E., Bischof, W. F., and Kingstone, A. (2008b). Social attention and
real-world scenes: the roles of action, competition and social content. Q. J. Exp.
Psychol. 61, 986–998. doi: 10.1080/17470210701410375

Birmingham, E., Bischof, W. F., and Kingstone, A. (2009a). Get real! Resolving
the debate about equivalent social stimuli. Vis. Cogn. 17, 904–924. doi: 10.1080/
13506280902758044

Birmingham, E., Bischof, W. F., and Kingstone, A. (2009b). Saliency does not
account for fixations to eyes within social scenes. Vision Res. 49, 2992–3000.
doi: 10.1016/j.visres.2009.09.014

Birmingham, E., Cerf, M., and Adolphs, R. (2011). Comparing social attention
in autism and amygdala lesions: effects of stimulus and task condition. Soc.
Neurosci. 6, 420–435. doi: 10.1080/17470919.2011.561547

Birmingham, E., and Kingstone, A. (2009). Human social attention: a new look at
past, present, and future investigations. Ann. N. Y. Acad. Sci. 1156, 118–140.
doi: 10.1111/j.1749-6632.2009.04468.x

Boll, S., Bartholomaeus, M., Peter, U., Lupke, U., and Gamer, M. (2016). Attentional
mechanisms of social perception are biased in social phobia. J. Anxiety Disord.
40, 83–93. doi: 10.1016/j.janxdis.2016.04.004

Boll, S., and Gamer, M. (2014). 5-HTTLPR modulates the recognition accuracy
and exploration of emotional facial expressions. Front. Behav. Neurosci. 8:255.
doi: 10.3389/fnbeh.2014.00255

Borji, A., and Itti, L. (2013). State-of-the-art in visual attention modeling.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–207. doi: 10.1109/TPAMI.
2012.89

Frontiers in Psychology | www.frontiersin.org 14 March 2017 | Volume 8 | Article 418

https://doi.org/10.1016/j.neuron.2010.03.006
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.18637/jss.v012.i06
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
https://doi.org/10.1016/j.brainres.2011.10.013
https://doi.org/10.16910/jemr.1.1.1
https://doi.org/10.1080/13506280701434532
https://doi.org/10.1080/17470210701410375
https://doi.org/10.1080/13506280902758044
https://doi.org/10.1080/13506280902758044
https://doi.org/10.1016/j.visres.2009.09.014
https://doi.org/10.1080/17470919.2011.561547
https://doi.org/10.1111/j.1749-6632.2009.04468.x
https://doi.org/10.1016/j.janxdis.2016.04.004
https://doi.org/10.3389/fnbeh.2014.00255
https://doi.org/10.1109/TPAMI.2012.89
https://doi.org/10.1109/TPAMI.2012.89
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00418 March 28, 2017 Time: 16:37 # 15

End and Gamer Preferential Processing of Social Features

Borji, A., Sihite, D. N., and Itti, L. (2013). Objects do not predict fixations better
than early saliency: a re-analysis of Einhauser et al.’s data. J. Vis. 13, 1–4.
doi: 10.1167/13.10.18

Bradley, M. M., and Lang, P. J. (1994). Measuring emotion: the self-assessment
manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59.
doi: 10.1016/0005-7916(94)90063-9

Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., et al. (2016). MIT
Saliency Benchmark. Available at: http://saliency.mit.edu/ [accessed October 31,
2016]

Byrnes, J. E., and Stachowicz, J. J. (2009). The consequences of consumer
diversity loss: different answers from different experimental designs. Ecology 90,
2879–2888. doi: 10.1890/08-1073.1

Cameron, A. C., and Windmeijer, F. A. G. (1996). R-squared measures for count
data regression models with applications to health-care utilization. J. Bus. Econ.
Stat. 14, 209–220. doi: 10.2307/1392433

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. 8, 679–698. doi: 10.1109/TPAMI.1986.4767851

Castelhano, M. S., Wieth, M., and Henderson, J. M. (2007). “I see what you see: eye
movements in real-world scenes are affected by perceived direction of gaze,” in
Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary
Viewpoint, eds L. Paletta and E. Rome (Berlin: Springer), 251–262. doi: 10.1007/
978-3-540-77343-6_16

Cerf, M., Frady, E. P., and Koch, C. (2009). Faces and text attract gaze independent
of the task: experimental data and computer model. J. Vis. 9, 1–15. doi: 10.1167/
9.12.10

Cerf, M., Harel, J., Einhaeuser, W., and Koch, C. (2008). “Predicting human gaze
using low-level saliency combined with face detection,” in Advances in Neural
Information Processing Systems 20, eds J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis (Red Hook, NY: Curran & Associates, Inc.), 241–248.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Corbetta, M., Patel, G., and Shulman, G. L. (2008). The reorienting system of
the human brain: from environment to theory of mind. Neuron 58, 306–324.
doi: 10.1016/j.neuron.2008.04.017

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/
nrn755

Coutrot, A., and Guyader, N. (2014). How saliency, faces, and sound influence gaze
in dynamic social scenes. J. Vis. 14, 1–17. doi: 10.1167/14.8.5

Driver, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., and Baron-Cohen, S.
(1999). Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6,
509–540. doi: 10.1080/135062899394920

Dunlap, W. P., Cortina, J. M., Vaslow, J. B., and Burke, M. J. (1996). Meta-analysis
of experiments with matched groups or repeated measures designs. Psychol.
Methods 1, 170–177. doi: 10.1037/1082-989X.1.2.170

Einhäuser, W., Rutishauser, U., and Koch, C. (2008a). Task-demands can
immediately reverse the effects of sensory-driven saliency in complex visual
stimuli. J. Vis. 8, 1–19. doi: 10.1167/8.2.2

Einhäuser, W., Spain, M., and Perona, P. (2008b). Objects predict fixations better
than early saliency. J. Vis. 8, 1–26. doi: 10.1167/8.14.18

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit. Lett. 27,
861–874. doi: 10.1016/j.patrec.2005.10.010

Fletcher-Watson, S., Findlay, J. M., Leekam, S. R., and Benson, V. (2008). Rapid
detection of person information in a naturalistic scene. Perception 37, 571–583.
doi: 10.1068/p5705

Fletcher-Watson, S., Leekam, S. R., Benson, V., Frank, M. C., and Findlay,
J. M. (2009). Eye-movements reveal attention to social information in
autism spectrum disorder. Neuropsychologia 47, 248–257. doi: 10.1016/j.
neuropsychologia.2008.07.016

Foulsham, T., and Underwood, G. (2007). How does the purpose of inspection
influence the potency of visual salience in scene perception? Perception 36,
1123–1138. doi: 10.1068/p5659

Foulsham, T., and Underwood, G. (2008). What can saliency models predict about
eye movements? Spatial and sequential aspects of fixations during encoding and
recognition. J. Vis. 8, 1–17. doi: 10.1167/8.2.6

Foulsham, T., Walker, E., and Kingstone, A. (2011). The where, what and when
of gaze allocation in the lab and the natural environment. Vision Res. 51,
1920–1931. doi: 10.1016/j.visres.2011.07.002

Freeth, M., Foulsham, T., and Chapman, P. (2011). The influence of
visual saliency on fixation patterns in individuals with autism spectrum
disorders. Neuropsychologia 49, 156–160. doi: 10.1016/j.neuropsychologia.2010.
11.012

Friesen, C. K., and Kingstone, A. (1998). The eyes have it! Reflexive orienting is
triggered by nonpredictive gaze. Psychon. Bull. Rev. 5, 490–495. doi: 10.3758/
BF03208827

Gamer, M., and Büchel, C. (2009). Amygdala activation predicts gaze toward fearful
eyes. J. Neurosci. 29, 9123–9126. doi: 10.1523/JNEUROSCI.1883-09.2009

Gregory, N. J., Lüpez, B., Graham, G., Marshman, P., Bate, S., and Kargas, N.
(2015). Reduced gaze following and attention to heads when viewing a “live”
social scene. PLoS ONE 10:e0121792. doi: 10.1371/journal.pone.0121792

Hall, C., Hogue, T., and Guo, K. (2011). Differential gaze behavior towards sexually
preferred and non-preferred human figures. J. Sex Res. 48, 461–469. doi: 10.
1080/00224499.2010.521899

Harel, J., Koch, C., and Perona, P. (2007). “Graph-based visual saliency,” in
Advances in Neural Information Processing Systems 19, eds B. Schölkopf, J. C.
Platt, and T. Hofmann (Cambridge, MA: MIT Press), 545–552.

Henderson, J. M., Brockmole, J. R., Castelhano, M. S., and Mack, M. (2007).
“Chapter 25–Visual saliency does not account for eye movements during visual
search in real-world scenes,” in Eye Movements: A Window On Mind And
Brain, eds R. P. G. van Gompel, M. H. Fischer, W. S. Murray, and R. L. Hill
(Amsterdam: Elsevier), 537–562. doi: 10.1016/B978-008044980-7/50027-6

Henderson, J. M., Williams, C. C., and Falk, R. J. (2005). Eye movements
are functional during face learning. Mem. Cogn. 33, 98–106. doi: 10.3758/
BF03195300

Hodes, R. L., Cook, E. W., and Lang, P. J. (1985). Individual differences
in autonomic response: conditioned association or conditioned fear?
Psychophysiology 22, 545–560. doi: 10.1111/j.1469-8986.1985.tb01649.x

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Halszka, J., and van
de Weijer, J. (2011). Eye Tracking: A Comprehensive Guide to Methods and
Measures. Oxford: Oxford University Press.

Horley, K., Williams, L. M., Gonsalvez, C., and Gordon, E. (2003). Social phobics do
not see eye to eye: a visual scanpath study of emotional expression processing.
J. Anxiety Disord. 17, 33–44. doi: 10.1016/S0887-6185(02)00180-9

Itti, L. (2015). New eye-tracking techniques may revolutionize mental health
screening. Neuron 88, 442–444. doi: 10.1016/j.neuron.2015.10.033

Itti, L., and Koch, C. (2000). A saliency-based search mechanism for overt and
covert shifts of visual attention. Vision Res. 40, 1489–1506. doi: 10.1016/S0042-
6989(99)00163-7

Itti, L., and Koch, C. (2001). Computational modelling of visual attention. Nat. Rev.
Neurosci. 2, 194–203. doi: 10.1038/35058500

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.
doi: 10.1109/34.730558

Judd, T., Durand, F., and Torralba, A. (2012). A Benchmark of Computational
Models of Saliency to Predict Human Fixations. Technical Report. Cambridge,
MA: Massachusetts Institute of Technology.

Kano, F., and Tomonaga, M. (2011). Perceptual mechanism underlying gaze
guidance in chimpanzees and humans. Anim. Cogn. 14, 377–386. doi: 10.1007/
s10071-010-0372-3

Kingstone, A. (2009). Taking a real look at social attention. Curr. Opin. Neurobiol.
19, 52–56. doi: 10.1016/j.conb.2009.05.004

Knudsen, E. I. (2007). Fundamental components of attention. Annu. Rev. Neurosci.
30, 57–78. doi: 10.1146/annurev.neuro.30.051606.094256

Kullback, S. (1959). Information Theory and Statistics. New York, NY: Wiley.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2015). LmerTest Tests

Linear Mixed Effects Models. Available at: http://CRAN.R-project.org/package=
lmerTest [accessed July 14, 2015]

Laidlaw, K. E. W., Foulsham, T., Kuhn, G., and Kingstone, A. (2011). Potential
social interactions are important to social attention. Proc. Natl. Acad. Sci. U.S.A.
108, 5548–5553. doi: 10.1073/pnas.1017022108

Lang, P. J. (1980). “Behavioral treatment and bio-behavioral assessment: computer
applications,” in Technology in Mental Health Care Delivery Systems, eds J. B.
Sidowski, J. H. Johnson, and T. A. Williams (Norwood, NJ: Ablex), 119–137.

Lang, P. J., Bradley, M. M., and Cuthbert, B. N. (2008). International Affective
Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual.
Technical Report A-8. Gainesville, FL: University of Florida.

Frontiers in Psychology | www.frontiersin.org 15 March 2017 | Volume 8 | Article 418

https://doi.org/10.1167/13.10.18
https://doi.org/10.1016/0005-7916(94)90063-9
http://saliency.mit.edu/
https://doi.org/10.1890/08-1073.1
https://doi.org/10.2307/1392433
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1007/978-3-540-77343-6_16
https://doi.org/10.1007/978-3-540-77343-6_16
https://doi.org/10.1167/9.12.10
https://doi.org/10.1167/9.12.10
https://doi.org/10.1016/j.neuron.2008.04.017
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1167/14.8.5
https://doi.org/10.1080/135062899394920
https://doi.org/10.1037/1082-989X.1.2.170
https://doi.org/10.1167/8.2.2
https://doi.org/10.1167/8.14.18
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1068/p5705
https://doi.org/10.1016/j.neuropsychologia.2008.07.016
https://doi.org/10.1016/j.neuropsychologia.2008.07.016
https://doi.org/10.1068/p5659
https://doi.org/10.1167/8.2.6
https://doi.org/10.1016/j.visres.2011.07.002
https://doi.org/10.1016/j.neuropsychologia.2010.11.012
https://doi.org/10.1016/j.neuropsychologia.2010.11.012
https://doi.org/10.3758/BF03208827
https://doi.org/10.3758/BF03208827
https://doi.org/10.1523/JNEUROSCI.1883-09.2009
https://doi.org/10.1371/journal.pone.0121792
https://doi.org/10.1080/00224499.2010.521899
https://doi.org/10.1080/00224499.2010.521899
https://doi.org/10.1016/B978-008044980-7/50027-6
https://doi.org/10.3758/BF03195300
https://doi.org/10.3758/BF03195300
https://doi.org/10.1111/j.1469-8986.1985.tb01649.x
https://doi.org/10.1016/S0887-6185(02)00180-9
https://doi.org/10.1016/j.neuron.2015.10.033
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.1016/S0042-6989(99)00163-7
https://doi.org/10.1038/35058500
https://doi.org/10.1109/34.730558
https://doi.org/10.1007/s10071-010-0372-3
https://doi.org/10.1007/s10071-010-0372-3
https://doi.org/10.1016/j.conb.2009.05.004
https://doi.org/10.1146/annurev.neuro.30.051606.094256
http://CRAN.R-project.org/package=lmerTest
http://CRAN.R-project.org/package=lmerTest
https://doi.org/10.1073/pnas.1017022108
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00418 March 28, 2017 Time: 16:37 # 16

End and Gamer Preferential Processing of Social Features

Langton, S. R. H., and Bruce, V. (1999). Reflexive visual orienting in response to the
social attention of others. Vis. Cogn. 6, 541–567. doi: 10.1080/135062899394939

Mannan, S. K., Ruddock, K. H., and Wooding, D. S. (1996). The relationship
between the locations of spatial features and those of fixations made during
visual examination of briefly presented images. Spat. Vis. 10, 165–188. doi:
10.1163/156856896X00123

Marat, S., Rahman, A., Pellerin, D., Guyader, N., and Houzet, D. (2013). Improving
visual saliency by adding “face feature map” and “center bias”. Cogn. Comput.
5, 63–75. doi: 10.1007/s12559-012-9146-3
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