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The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches ac-

cessible to virtually any laboratory. Analyzing the large sequencing data derived from these studies, however, still demands

considerable bioinformatics expertise. Various methods have been developed to lessen this requirement, but there are still

three tasks for accurate CRISPR screen analysis that involve bioinformatic know-how, if not prowess: designing a proper

statistical hypothesis test for robust target identification, developing an accurate mapping algorithm to quantify sgRNA

levels, and minimizing the parameters that need to be fine-tuned. To make CRISPR screen analysis more reliable as well

as more readily accessible, we have developed a new algorithm, called CRISPRBetaBinomial or CB2. Based on the beta-bino-

mial distribution, which is better suited to sgRNA data, CB2 outperforms the eight most commonly used methods

(HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA) in both accurately quantifying

sgRNAs and identifying target genes, with greater sensitivity and a much lower false discovery rate. It also accommodates

staggered sgRNA sequences. In conjunction with CRISPRcloud, CB2 brings CRISPR screen analysis within reach for a wider

community of researchers.

[Supplemental material is available for this article.]

Genetic screens have become a favored tool for gathering informa-
tion about disease pathogenesis and cellular biology. Initially,
these screens were performed using chemical mutagenesis or
RNA inference (RNAi), which are effective but laborious processes
(Schlabach et al. 2008; Silva et al. 2008; Park et al. 2013;Mohr et al.
2014; Simon et al. 2015). Larger-scale, pooled approaches were fi-
nally made feasible by the advent of microarray (Luo et al. 2009;
Gilbert et al. 2014; Shalem et al. 2014; Wang et al. 2014; DeJesus
et al. 2016). Pooled shRNA (short-hairpin RNA) libraries can be bar-
coded and packaged into viruses, which are used to infect a popu-
lation of cells that are then selected for a desired phenotype (e.g.,
growth or fluorescence). Hybridizing microarray soon followed
for hit identification (Paddison et al. 2004). In later iterations of
this approach, next-generation sequencing (NGS) was used to
identify hits (Hu and Luo 2012).

The development and optimization of clustered regularly in-
terspaced short palindromic repeats and CRISPR-associated pro-
tein 9 (CRISPR/Cas9) systems have propelled pooled screen
approaches into even wider use. Besides the relative simplicity
and low cost, the robustness of hit identification has reduced
the requirement for redundancy in the number of targeting sin-
gle-guide RNAs (sgRNAs), which allows the same size library to

be more diverse (Sanjana et al. 2014; Xu et al. 2015). Moreover,
these pooled libraries have beenmade accessible through reposito-
ries such as Addgene (https://www.addgene.org/). CRISPR/Cas9
pooled screens are thuswithin the technical reach ofmost biomed-
ical researchers (Doench 2017). For all this accessibility on the ex-
perimental side, however, the resulting bioinformatics data sets are
enormous and complex. The analysis of thousands of genetic per-
turbations demands considerable bioinformatics expertise.

In our experience, most users are unaware of whether their
tool of choicemodels the data according to Poisson, negative bino-
mial, or Gaussian distribution, or of the relative strengths and
weaknesses of these models. The current roster of tools bears the
imprint of the history of RNA-seq data analysis: RNA-seq data
were initially modeled using Poisson distributions (Marioni et al.
2008), which is a natural choice for simple read counts. Poisson
distribution assumes that themean and variance are equal, howev-
er, and with biological data, the variance is often greater than the
mean. Analytic methods therefore turned to negative binomial
distribution, which can handle overdispersed data (Anders and
Huber 2010; Love et al. 2014). A number of popular tools still
use negative binomial distribution to analyze sgRNA screen data
(Li et al. 2014; Spahn et al. 2017), even though the structure of
the sgRNA screen data is very different from that of RNA-seq. In
the latter, there is huge variation in transcript lengths, from 60
bp to 2.4 Mbp, but all sgRNAs for any given gene are designed to
have the same length. This often leads to the variance being less
than the mean (Supplemental Fig. S1). We hypothesized that a

5Present address: University of Ottawa Brain and Mind Research
Institute, Ottawa Institute of Systems Biology, and Department of
Cellular and Molecular Medicine, University of Ottawa, Ottawa,
Ontario K1H 8M5, Canada
Corresponding author: zhandong.liu@bcm.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.245571.118.
Freely available online through the Genome Research Open Access option.

© 2019 Jeong et al. This article, published in Genome Research, is available un-
der a Creative Commons License (Attribution-NonCommercial 4.0 Internation-
al), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

29:999–1008 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/19; www.genome.org Genome Research 999
www.genome.org

https://www.addgene.org/
https://www.addgene.org/
https://www.addgene.org/
https://www.addgene.org/
https://www.addgene.org/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245571.118/-/DC1
mailto:zhandong.liu@bcm.edu
http://www.genome.org/cgi/doi/10.1101/gr.245571.118
http://www.genome.org/cgi/doi/10.1101/gr.245571.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


beta-binomial model, in which the variance can be either larger or
smaller than the mean, would better fit the data and more accu-
rately identify changes in sgRNA.

We therefore developed CB2, a new web-based algorithm
that uses beta-binomial distribution, and compared its perfor-
mance with that of the eight most commonly used algorithms
(HiTSelect [Diaz et al. 2015], MAGeCK [Li et al. 2014], PBNPA [Jia
et al. 2017], PinAPL-Py [Spahn et al. 2017], RIGER [Luo et al.
2009], RSA [König et al. 2007], ScreenBEAM [Yu et al. 2016], and
sgRSEA [https://cran.r-project.org/web/packages/sgRSEA/]), which
encompass both parametric and nonparametric approaches (Table
1).We applied all thesemethods to 10different biological data sets,
taken from fields ranging from cancer to basic cell biology (Koike-
Yusa et al. 2014; Parnas et al. 2015; Evers et al. 2016; Golden et al.
2017; Li et al. 2018; Sanson et al. 2018).

Results

CB2 is more sensitive in target gene identification than

existing methods

Identifying candidates by a statistical hypothesis test is a key com-
ponent in any screen analysis. In CB2, we adapted a beta-binomial
model (Baggerly et al. 2003) with a modified Student’s t-test to
measure differences in sgRNA levels, followed by Fisher’s com-
bined probability test (Fisher 1925) to estimate the gene-level sig-
nificance. We chose Fisher’s method for two reasons: first, to keep
the entire pipeline parametric and, second, to keep CB2 as fast as
possible (robust rank aggregation [RRA] requires permuting the
data, a nonparametric feature, so it runs slower than Fisher’s meth-
od). Furthermore, when we compared Fisher’s method against
RRA, we found that RRA is not effective in combining the P-values
estimated by beta-binomial distribution (Supplemental Fig. S2).

We compared CB2 with eight state-of-the-art methods on
three benchmark data sets evaluating gene essentiality (Evers
et al. 2016) using different technologies: CRISPR nuclease gene
knockout via Cas9 (CRISPRn) and CRISPRinterference (CRISPRi; a
CRISPR/Cas9 system with a catalytically inactive Cas9 fused to
the transcriptional repressor KRAB, which results in gene repres-
sion). These benchmark data sets (CRISPRn-RT112, CRISPRn-
UMUC3, and CRISPRi-RT112) were constructed based on 46 genes
that are essential for cell survival and 47 genes that are nonessen-
tial.We first testedwhether thesemethods could easily distinguish
between essential and nonessential genes. We found that each
method clearly discriminates essentiality by their gene rankings
(Supplemental Fig. S3A). In addition, gene rankings obtained

from each method, except PBNPA for the CRISPRi-RT112 data
set, are highly correlated (R2 is [0.86, 0.98] for CRISPRn-RT112,
[0.85, 0.98] for CRISPRn-UMUC3, and [0.72, 0.96] for CRISPRi-
RT112) (Supplemental Fig. S3B). CB2, ScreenBEAM, and MAGeCK
produced very similar gene rankings across all the benchmark
data sets. We also compared the precision-recall (PR) and receiver
operating characteristic (ROC) curves across the methods and cal-
culated the area under the curve (AUC) of each. CB2 recorded the
best PR-AUC and ROC-AUC scores for both CRISPRn screen data
sets (Supplemental Figs. S4, S5). HiTSelect had the best PR-AUC
and ROC-AUC scores for the CRISPRi-RT112 data set, for which
CB2 achieved comparable scores (Supplemental Fig. S6). Although
the gene ranking is similar among these methods (Supplemental
Fig. S3), the estimated P-values and false-discovery rates (FDRs)
are very different. These results highlight the importance of using
FDR to guide the gene selection process.

Although several CRISPR screens (Zhou et al. 2014; Parnas
et al. 2015; Aguirre et al. 2016) have prioritized candidate hits by
ranking, they do not provide statistical estimates of error rates.
These methods, therefore, rely on an arbitrary rule to select the
top candidate genes and are prone to biased selections and high
hit attrition rates. One solution is candidate selection by a quanti-
tative statistical measure such as a P-value or a false-positive rate
(FDR) cut-off. To assess the detection powers of FDR of established
CRISPR screen analysis methods and CB2, we measured the F1-
score (2 ×precision× recall/precision+ recall) of each method,
namely, the harmonic average of the precision and the recall, for
FDR thresholds ranging from 10% to 0.01%. CB2 outperformed
all other methods at every FDR cut-off level, and all other methods
lost their detection powers at more rigorous FDRs (Fig. 1A,B;
Supplemental Fig. S7). In other words, all methods showed a small
type-I error owing to the strong lethality phenotype of the CRISPR
assay, but CB2 showed a significantly lower type-II error than the
other methods (Supplemental Fig. S8). Across all paradigms tested
with different FDR cut-offs, CB2 performed the best, with a much
larger F1-score and recall. Thus, CB2 is both sensitive and specific
in selecting candidate genes.

To understand the differences produced by these methods,
we next tested a prototypical essential gene, RPL5, to compare
the gene-level enrichment across data sets and analytical tools.
In the first CRISPR screen on an RT112 cell line, we expected to
see the depletion of sgRNAs targeting RPL5 in group T1. Out of
the 10 sgRNAs that target this gene in the CRISPRn-RT112 data
set, six showed a strong decrease in the group T1. CB

2 estimated
an FDR of 2.07×10−19, whereas only three other methods
(HiTSelect, ScreenBEAM, and sgRSEA) estimated FDR to be <0.01

Table 1. Statistical models used by CB2 and existing methods

Name sgRNA-level statistics Gene-level statistics

CB2 Beta-binomial distribution Fisher’s method
HitSelect (Diaz et al. 2015) Poisson distribution (active number of sgRNAs) Stochastic multiobjective ranking method for gene-level statistics
MAGeCK (Li et al. 2015) Negative-binomial distribution α-RRA and MLE for the gene-level statistics
PBNPA (Jia et al. 2017) Nonparametric permutation test for each replicate
ScreenBeam (Yu et al. 2016) Normal distribution Bayesian hierarchical modeling
sgRSEAa Nonparametric permutation test
PinAPL-Py (Spahn et al. 2017) Negative-binomial model (control samples) α-RRA and STARS
RIGER (Luo et al. 2008) Kolmogorov–Smirnov-based nonparametric statistics for the gene-

level statistics
RSA (König et al. 2007) Hypergeometric distribution (sgRNA ranking) Ranking-based statistics for the gene-level statistics

All of the methods were used in the target identification benchmarking.
ahttps://cran.r-project.org/web/packages/sgRSEA/.
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(Fig. 2A). Next, we looked at the same gene in theUMUC3 cell line.
Five of the 10 sgRNAs targeting RPL5 decreased in group T1, and all
five sgRNAswere among those identified in RT112 cell line. CB2 es-
timated an FDRof 3.81×10−10 for RPL5, whereas none of the other
methods identified it to be significantly depleted with an FDR cut-
off below 0.01 (Fig. 2B). Lastly, in the CRISPRi-RT112 data set,
three of seven sgRNAs indicated depletions, but only CB2 was
able to estimate the FDR of 2.78×10−8, and the other methods

did not count RPL5 as a hit in the data set (Fig. 2C). Overall, CB2

produced more reliable hit identification than other methods
based on statistical cut-offs for the gene tested (COPS8 and
RPL27) (Supplemental Figs. S12, S13).

We performed the same analysis on two distinct data sets
(Sanson et al. 2018) to determine how CB2 performs compared
with other methods for genome-wide screening analysis. Sanson
et al. (2018) used novel optimized libraries for genome-wide

A

C

B

D

Figure 1. CB2 offers robust target identification with high precision and recall. (A,B) Benchmark results using data from Evers et al. (2016). (A) Heatmaps
illustrate FDRs of gene statistics from each of nine leading high-complexity pooled screen analysis tools. (B) F1-scoremeasurements at different FDR cut-offs
across all methods. At commonly used FDR cut-offs, CB2 can identify most of the essential genes with high rates of precision and recall. (C,D) Same rep-
resentation as in A and B, using data from Sanson et al. (2018).
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CRISPRn (Brunello), CRISPRi (Dolcetto), and CRISPRa (Calabrese)
screening and showed these libraries outperform other previously
established libraries, such as GeCKO (Sanjana et al. 2014) and
hCRISPRi-v2 (Horlbeck et al. 2016). For our analysis, we chose
twoscreens forbenchmarking, bothdata sets fromadropout screen
in A375 melanoma cells: One used the Brunello CRISPRn library
with tracr-v2 tracrRNA (CRISPRn-A375); the other used the
Dolcetto CRISPRi Set A library (CRISPRi-A375). Each data set con-
tains a control sample (plasmid DNA) and three biological repli-
cates. We used the gold-standard gene sets of 1580 essential and
927nonessential genes reportedbyHart et al. (2014, 2015) to assess
the performance of the methods. (We excluded PinAPL-Py from
benchmarking because it does not report statistics when the input
contains only one control sample.) CB2 outperformed othermeth-
ods at the stringent FDR cutoff level (Fig. 2; Supplemental Fig. S9).
CB2 outperformed all other methods in F-1 and PRmeasures at the
stringent FDR cut-offs on A375 genome-wide screen data sets of

Sanson et al. (2018). F1-score (top), precision (middle), and recall
(bottom) for eachmethod on two benchmark data sets are present-
ed as a function of FDR cut-off values (Fig. 1C,D; Supplemental Fig.
S9) andprovidedhigherAUCvalues of PR andROCcurves than the
other methods (Supplemental Figs. S10, S11).

These results indicate that CB2 more accurately estimates the
gene-level FDR. The use of FDR in selecting hits is critical in real
data analysis because the arbitrary selection of top genes is purely
heuristic. CB2 is better at identifying true hits based on multiple
concordant sgRNAs targeting the same gene.

CB2 is more specific in target gene detection than existingmethods

To test the idea that a beta-binomial model would better fit the
data andmore accurately identify changes in sgRNA, we compared
the sgRNA level statistics on several CRISPR pooled libraries con-
taining nontargeting sgRNAs as negative controls. Nontargeting

BA C

Figure 2. CB2 detects essential genesmissed by other leadingmethods: the case of RPL5. sgRNA quantification for RPL5 in cell line (A) RT112, (B) UMUC3
using CRISPRn, and (C) RT112 using the CRISPRi library. The top panels show counts per million (CPM) of sgRNAs that target RPL5 for each group (T0 and
T1), and the bottom panels indicate the reported the FDR for RPL5 in each screen across all themethods. A horizontal line at FDR=0.01 is used as a threshold
for statistical cutoff. CB2 outperforms all other methods of identifying RPL5 as an essential gene across all benchmark data sets.
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sgRNAs are not supposed to show any differential enrichment
and can be used to assess the quality of the method. Parnas
et al. (2015) used the Mouse CRISPR Knockout Pooled Library for
their genome-wide screen (GeCKO v2; Addgene 1000000052,
1000000053), which contains 1000 nontargeting sgRNAs. We
therefore used this data set to measure the specificity with which
CB2 and MAGeCK detect true negatives. We compared the unad-
justed P-values for sgRNAs because the FDR is controlled at the
gene level.

CB2 showed greater specificity (the proportion of actual neg-
atives that are correctly identified) than MAGeCK across a wide
range of P-value thresholds. At a P-value threshold of 0.01, CB2

had a specificity of 86% versus MAGeCK’s 68% (Fig. 3A). Next,
we plotted the log-fold change against the P-value levels in a volca-
no plot. The majority of the negative control sgRNAs were correct-
ly detected by CB2, whereas MAGeCK showed a one-side long tail
for positively changed sgRNAs, producing inflated P-values for a
group of negative controls (Fig. 3B). Many of these false positives
showed extremely low P-values (ranging from 10−5 to 10−40), indi-
cating a strong selection bias. To understand the impact of this se-
lection bias, we analyzed the rest of the sgRNA library with both
methods. At the same threshold (P<0.01), CB2 selected 12,648
sgRNAs, whereas MAGeCK selected 31,381 sgRNAs; 2971 sgRNAs
were identified by both methods (Fig. 4B). We applied the same
analysis to the CRISPRn-A375 data set (Sanson et al. 2018), which
contains 1000 nontargeting sgRNAs. CB2 shows higher specificity
thanMAGeCK, exceptwhen setting a P-value cut-off at 0.2. Similar
P-value distributions shown in Figure 3 were also found for this
data set (Supplemental Fig. S14).

We plotted sgRNAs unique to each method on a heatmap,
which showed a high concordance within each experimental
group for sgRNAs unique to CB2 (Fig. 4A). In contrast, sgRNAs
identified by MAGeCK showed a much noisier pattern, and sam-
ples from the same experimental group could not be clustered to-
gether based on these differentially enriched sgRNAs (Fig. 4A).

Next, we performed the same sgRNA-level comparisons on
two additional data sets. In the first study, a differentiation screen
was conducted to identify target genes that maintain naive pluri-
potency (Li et al. 2018) using the Mouse Improved Genome-wide
Knockout CRISPR Library v2 (Addgene 67988). The library con-
tains 91,319 sgRNAs targeting 18,542 mouse genes. To identify

differentially enriched sgRNAs, we kept the same threshold (P<
0.01) for both CB2 and MAGeCK. CB2 identified 732 sgRNAs
whereas MAGeCK identified 5105 sgRNAs (395 sgRNAs shared
between the two) (Fig. 4C,D), and we observed the same trend
as in screening data set of Parnas et al. (2015) screening data set
(Fig. 4A,B). We found the same trend on the data sets of Evers
et al. (2016) (Supplemental Fig. S15). Thus, CB2’s accurate
sgRNA-level statistics are attributable to its use of the beta-bino-
mial model.

CB2 provides more accurate alignment without

parameter tuning

Many CRISPR pooled screens use in-house scripts to quantify
sgRNA abundance (Gilbert et al. 2014; Golden et al. 2017; Iorio
et al. 2018; Li et al. 2018) or other alignment algorithms for
RNA-seq (Sanjana et al. 2014; Hart et al. 2015; Parnas et al. 2015;
DeJesus et al. 2016). These codes are often not shared publicly
and are not easily reusable. Both MAGeCK and PinAPL-Py provide
an integrated mapping function, but PinAPL-Py requires complex
parameter tuning and MAGeCK samples only the first million
reads to estimate the location of sgRNAs in FASTQ files.
Furthermore, there is no systematic comparison of mapping accu-
racy in the literature, and users lack reliable guidelines for selecting
mapping tools. We therefore introduced an adaptive hash-map-
ping algorithm into CB2 and tested all three methods on six pub-
lished data sets (Supplemental Table S1).

CB2 showed consistently greater mapping accuracy than
MAGeCK and PinAPL-Py (Fig. 5A). To understand why, we studied
the reads that are mapped by CB2 but not MAGeCK or PinAPL-Py
in the CRISPRn-RT112 data set (Evers et al. 2016). MAGeCK
mapped 64% of the reads compared with 75% by CB2 (Fig. 5A).
This is primarily because MAGeCK estimates the trimming win-
dows using the first N reads from the input (N is 100,000 by de-
fault). There is no guarantee that these windows are optimal for
the rest of the input files. If a sgRNA locates outside of the precom-
puted windows, MAGeCK will fail to detect it (Fig. 5B). PinAPL-Py
does not precompute sgRNA locations based on a subset of reads
but uses Cutadapt (Martin 2011) for flexible trimming followed
by the Bowtie 2–based alignment (Langmead and Salzberg
2012). We found that PinAPL-Py failed to identify some of the

sgRNAs because reads fail to align owing
to the incorrect trimming fromCutadapt
even under several different tuning pa-
rameters (Fig. 5B). This is likely because
of the frequent indels that occurred in
the 5′ adapter sequence region of the
reads (see Fig. 5B): Usually the quad-
nucleotide sequence “CACC,” which is
part of the U6 promoter, precedes the
sgRNA sequence. In contrast, the
“GTTT” sequence, which is the first 4 nu-
cleotides (nt) of the sgRNA scaffold se-
quence, was present in all the reads.
Given the fidelity of the GTTT sequence,
the sequences mapped by CB2 but
missed by other algorithms are likely ac-
curate and not false positives. CB2 is cur-
rently the only CRISPR/Cas9 online
screen analysis tool with parameter-free
mapping and high accuracy in sgRNA
quantification.

A B

Figure 3. Comparison of false-positive rate for nontargeting sgRNAs on screen data of Parnas et al.
(2015). (A) Specificity comparison between CB2 and MAGeCK for the six different P-value thresholds.
The y-axis indicates specificity, and the x-axis indicates the level of the P-value threshold for the specificity
calculation. (B) Volcano plots of the P-value of nontargeting sgRNAs. The y-axis indicates the negative
logarithm value of P-value, and the x-axis indicates the log2 value of fold-change. All of the data points
are from negative control sgRNAs. False positives were plotted in red. Horizontal blue lines at P=0.01 in-
dicate the threshold for statistical cutoff.
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CB2 is accessible, secure, and easy to learn with CRISPRcloud

We had previously developed a web-based application called
CRISPRcloud that could run any statistical testing and mapping
algorithm through the cloud-based infrastructure provided by
Amazon Web Service (AWS) (Jeong et al. 2017). We implemented
CB2 in the platform and added new features to increase speed
and data security (Supplemental Fig. S16). CRISPRcloud is compat-
ible with most modern web browsers (Google Chrome version 69
and later, Apple Safari version 11 and later, and Mozilla Firefox
48.0 and later) and operating systems (iOS, Windows, and Linux).
Our fast client-side sgRNA mapping program reduces input files
of several gigabytes into a singlemegabyte-sized file. By transferring
a much smaller file through the Internet, CRISPRcloud decreases
transfer time and prevents the sharing of raw input files, thereby
eliminating downloading errors and data privacy issues in one step.
Our adaptive mapping algorithm, via Angular (https://angular.io/)
and TypeScript (https://www.typescriptlang.org), provides an
open-source front-end web application platform. The enormous
computing power needed to perform these operations mean
that platforms built with a centralized server solution will have
load-balancing problems when many users submit their requests

simultaneously, leading to the longer user waiting times and rais-
ing the risk of system-wide failure. CB2 therefore provides a decen-
tralized, cloud-computing-based, scalable service through a
combination of AWS infrastructure that includes Amazon Elastic
Compute Cloud (EC2) (https://aws.amazon.com/ec2/), Amazon
Simple Storage Service (S3) (https://aws.amazon.com/s3/), and
Amazon Simple Queue Service (SQS) (https://aws.amazon.com/
sqs/). With this infrastructure, we launched a web service of
CRISPRcloud. CRISPRcloud enables researchers with no program-
ming background to preprocess, check the quality, statistically an-
alyze, query, and visualize their CRISPR/Cas9 pooled screening
data (Supplemental Table S2).

Discussion

The number of data sets for CRISPR/Cas9 screens in NCBI Gene
Expression Omnibus have more than tripled each of the past 3
yr (39 data sets in 2015, 121 data sets in 2016, and 408 data sets
in 2017). This expansion has outpaced the development of meth-
ods for analyzing the data, most of which use statistical models
that are better suited to RNA-seq than to sgRNA data. Here we
took into account the difference between the two types of data
to develop a new algorithm, CB2, and show that it is more sensi-
tive, specific, and selective than eight other leading tools.

We focused first on the central task for any analytic tool being
applied to sgRNA data: statistical hypothesis testing to identify tar-
get genes accurately from the screening data. Several methods that
facilitate analysis of RNAi pooled screening data (König et al. 2007;
Luo et al. 2008; Shao et al. 2013; Dutta et al. 2016) are not compat-
ible with CRISPR/Cas9 pooled screening data because of differenc-
es in effect size, sequence determinants, and on- versus off-target
effects (Li et al. 2014).MAGeCKwas the first tool specifically devel-
oped to analyze CRISPR/Cas9 pooled screening data, and it com-
bines a negative-binomial distribution model with a modified
robust ranking aggregation (α-RRA) algorithm (Li et al. 2014).
Subsequent methods (Table 1) used different strategies to improve
the accuracy of data analysis, but to our knowledge, there has nev-
er been a thoroughgoing attempt to benchmark these methods
and determine which performs best with sgRNA data. Our choice
of the beta-binomial distribution, which is not the approach
used by any of these analytic tools, was justified by both the theo-
retical and empirical considerations and proved able to provide far
fewer false positives than these other methods at comparable FDR
thresholds.

CB2 also addressed another difficult task: quantifying sgRNA
from NGS data. Except for the quantification algorithm provided
by MAGeCK, most studies use in-house algorithms or extend es-
tablished methods that were optimized for RNA-seq. CB2 proved
capable of fast and accurate alignment, with the ability to handle
indels.

Last but not least is the challenge of making powerful tools
readily accessible to the research community. Of the existing
tools, PinAPL-Py (Spahn et al. 2017) and CRISPRcloud (Jeong
et al. 2017) are the only two that support a graphical web interface
and require no additional program installation. These programs
are an important first step toward enabling the scientists who are
actually generating the CRISPR/Cas9 screen data to analyze their
large data sets. They still have limitations however: For PinAPL-
Py, users still need to provide the adapter sequence to be trimmed,
the error tolerance rate, and the quality threshold for trimmed
reads. CRISPRcloud is the only framework into which the user
can plug in any statistical tools or mapping algorithms, but

BA

DC

Figure 4. Discrepancy of sgRNA-level statistics between CB2 and
MAGeCK in two public CRISPR pooled screens. (A) Heatmaps of normal-
ized read counts of the detected sgRNAs from the screen data of Parnas
et al. (2015). (Left) A heatmap of sgRNAs detected by CB2 only. (Right) A
heatmap of sgRNAs detected by MAGeCK only. (B) Venn diagrams of
sgRNAs detected by CB2 and MAGeCK from the screen data of Parnas
et al. (2015). (C,D) Same representations of A and B using data from
Li et al. (2018).
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transferring a large amount of sequence data over the Internet has
inherent disadvantages such as long transfer times, vulnerability
to file copying errors, and possible data security breaches. By
taking advantage of the CRISPRcloud framework, CB2 is fully
web-based and designed to require only the minimal number of
parameters for data analysis, because fewer parametersmean short-
er learning curves for the majority of users. CB2’s power and
accessibility will enable more laboratories to extract biologically
relevant discoveries from CRISPR pooled screens.

Methods

Statistical hypothesis testing using beta-binomial distribution

for sgRNA-level differential analysis

We adapted a beta-binomial model proposed for serial analysis of
gene expression (SAGE) by Baggerly et al. (2003). Specifically, let pi
be the true proportion of an sgRNA in sample i.We assume the val-
ue of pi can vary from sample to sample and follows a beta distribu-
tion, pi∼Beta(α, β). Let Xi denote the number of read counts for a
sgRNA in the ith sample. We assume Xi follows a binomial distri-
bution, Xi|pi∼Binomial(ni, pi), where ni is the total number of
mapped reads in sample i. To combine the estimated p̂i acrossmul-
tiple samples of the same treatment group, we proposed a linear
model pA = ∑

wipi, where i is the index for samples and w is the
weight vector for samples in group A. Baggerly et al. (2003) proved
that as long as wT1=1, the expectation of E(pA) is unbiased. The
value of w is estimated through gradient descent methods by min-
imizing the variance on pA. Baggerly et al. (2003) showed that
wi / [(1/(a+ b))+ (1/ni)]

−1
.

CB2 performs the sgRNA-level differential analysis between
two groups using a Student’s t-test–like statistic (Baggerly et al.
2003):

t = pB − pA
����������
VB + VA

√ ,

where pA and pB are the proportions of sgRNA, and VA and VB are
the group variances of sgRNA, for groups A and B, respectively.

Test statistic t represents the strength of the difference of sgRNA
abundance between groups A and B. In other words, a large posi-
tive t-value indicates that the quantity of sgRNA in group B is great-
er than in group A, and a large negative t-value indicates that the
quantity of sgRNA in group B is less than that in group A.

The variance is estimated by

V̂ = max
∑

w2
i p̂

2
i −

∑
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i
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⎡
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To measure the statistical significance of the difference, we
approximate the p-value of a given t in a Student’s t-distribution
with a degree of freedom (df) defined by

df = (VA + VB)
2

V2
A

nA − 1
+ V2

B

nB − 1

,

where nA and nB are the numbers of replicates in groups A and B.

sgRNA p-value aggregation for gene-level statistics

Because multiple significant sgRNAs targeting the same gene hold
greater biological significance than a single significant sgRNA, we
must aggregate p-values to increase confidence in target identifica-
tion. To do so, we combine p-values of sgRNAs for a target gene us-
ing Fisher’s method (Fisher 1925) to assess overall differences at
the gene level. The combined chi-square statistical test is used:

x22k � −2
∑k

j=1

ln( pj),

where k is the number of sgRNAs targeting a gene in the
screen, and pj is the p-value of jth sgRNA for the gene. χ2 follows
a chi-squared distribution with 2k degrees of freedom. To correct
for multiple hypothesis testing, we adapted the Benjamini–
Hochberg procedure (Benjamini and Hochberg 1995) to estimate
the FDR.

BA

Figure 5. CB2 outperforms MAGeCK and PinAPL-Py in the percentage of mapped reads over six benchmark data sets. (A) Read mappability of CB2,
MAGeCK, and PinAPL-Py across six different data sets. (B) Representative examples of reads that were not mapped by MAGeCK or PinAPL-Py. Adapters
are highlighted with green; sgRNAs, with red. Yellow boxes show the predicted locations of sgRNAs by each method. Several parameters were used to
optimize performances of PinAPL-Py.
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Gene-level statistics benchmarking on existing methods

We used three different CRISPRn/CRISPRi pooled screen data sets
(RT112 and UMUC3 cell line screens with CRISPR; RT112 cell line
screen with CRISPRi) (Evers et al. 2016) and two different genome-
wide CRISPRn/CRISPRi pooled screen data sets (A375 cell line
screens) (Sanson et al. 2018), which provide ground-truth labels
of essentiality for each gene.With those screening data sets and la-
bels, we benchmarked the accuracy of essential gene detection by
CB2 with eight other published methods (HiTSelect, MAGeCK,
PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA). We
computed the FDR for each gene from each method in the bench-
mark and set five different levels of FDR cut-off (0.1, 0.05, 0.01,
0.005, 0.001) for essential gene classification. For example, if we
set FDR cut-off to 0.1, then a gene is predicted to be essential in
the cell line if the FDR of the gene falls below the cut-off value.
We calculated recall (a recall value close to one indicates a predic-
tion with a low false-negative rate), precision (a precision value
close to one indicates a prediction with a low false-positive rate),
and F-measure (the harmonic mean of PR) of all the methods at
each FDR level. To allow each method to archive its best perfor-
mance, we tuned parameters for the five parameter-tunable meth-
ods: MAGeCK (permutation parameter for RRA test), PBNPA
(no.sim parameter), RIGER (alpha parameter), sgRSEA (multiplier
parameter), and ScreenBEAM (burnin parameter) on CRISPRn-
RT112 data set. The F-measure was used as a measure for the pa-
rameter tuning. Most of the methods showed robust performance
regardless of the varied parameters, except sgRSEA and RIGER
(Supplemental Fig. S17). Therefore, we used the default parameter
for MAGeCK, PBNPA, and ScreenBEAM for other data sets and
used an optimizedparameter for sgRSEA andRIGER.We also calcu-
lated the AUC of the PR curves and ROC curves of all the methods
with FDR values.

CB2

The CB2 R package was used in the benchmarking (R Core Team
2019). Benchmarking of CB2 was performed without parameter
tuning because CB2 is parameter free. FDR values for negative
changes between two different groups fromCB2 statistical analysis
were used for benchmarking.

HiTSelect

We ran the HiTSelect MATLAB package (https://github.com/
diazlab/HiTSelect). Normalization by sequencing depth option
was selected for benchmarking.

MAGeCK

MAGeCK version 0.5.8 was used for benchmarking. We ran
MAGeCK with the “mageck test” command with the following
parameters: “‐‐norm-method,” “median,” and “‐‐adjust-method”
“fdr.” We performed 100 permutations for the modified robust
ranking aggregation (α-RRA) algorithm to estimate the gene-level
statistics on the benchmark data sets.

ScreenBEAM

The ScreenBEAM R package (version 1.0.0, https://github.com/
jyyu/ScreenBEAM)was used for benchmarking “data.type” param-
eter was set as “NGS,” and “do.normalization” was set as TRUE,
and “nitt” and “burnin” parameters for Bayesian computing
were set at 15,000 and 5000. ScreenBEAM does not provide the
one-sided p-value for negative selection, so for the FDR compari-
son with other methods, we changed the FDR of a gene to one if
the β of the gene is greater than zero.

PinAPL-Py

We used the PinAPL-Py website (http://pinapl-py.ucsd.edu) to per-
form the benchmarking. For the sgRNA read counting, we used
“GGCTTTATATATCTTGTGGAAAGGACGAAACACCG, GCTTTAT
ATATCTTGTGGAAAGGACGAAACACCG,” and “CTTTATATATC
TTGTGGAAAGGACGAAACACCG” for “seq_5_end” parameters
of “CRISPRn-RT112,” “CRISPRn-UMUC3,” and “CRISPRi-RT112”
data sets. We used CPM normalization and set the GeneMetric pa-
rameter as “aRRA” to perform a modified robust ranking aggrega-
tion (α-RRA). We used the combined FDR values for each gene in
the benchmarking.

RIGER

We used the Java implementation of RIGER (version 2.0; https://
github.com/broadinstitute/rigerj) to perform the benchmarking.
We set the “alpha” parameter at 0.1 on the Evers et al. (2016) data
sets andat1.0on the Sansonet al. (2018) data sets. log2 fold-change
values calculated by CB2 were used as an input of RIGER.

RSA

We used the Python implementation of RSA (version 1.9, https://
admin-ext.gnf.org/publications/RSA/). log2 fold-change values
calculated by CB2 were used as an input of RSA.

sgRSEA

The sgRSEA R package (version 0.1, https://cran.r-project.org/web/
packages/sgRSEA/) was used for benchmarking. We set the multi-
plier at 30.

PBNPA

The PBNPA R PACKAGE (version 0.0.2, https://cran.r-project.org/
web/packages/PBNPA/) was used for benchmarking. We set the
sim.no parameter at 10.

Specificity measure at sgRNA level

The specificity of detecting true-negative from thenegative control
sgRNAs is measured using (

∑N
i=1 1A(pi , u))/N, where N is the

number of nontargeting sgRNA, pi is the estimated p-value of the
i-th sgRNA, θ is the p-value threshold, and 1A is the indicator
function.

Algorithm for quantifying sgRNA abundance

Previous sgRNA abundance quantification methods

Recently published tools for CRISPR pooled screen analysis, in-
cluding CRISPRcloud (Jeong et al. 2017), MAGeCK (Li et al.
2014), CRISPRAnalyzeR (Winter et al. 2017), and PinAPL-Py
(Spahn et al. 2017), provide different methods for estimating the
abundance of sgRNAs in each sample from pooled libraries. In
most cases, input data consist of raw FASTQ-format sequencing re-
sult files.

CRISPRcloud was the first tool to offer an online user-
defined, light-weight quantification method that proceeds on
the user-client side. In contrast, CRISPRAnalyzeR and PinAPL-
Py run their quantificationmethods on the server-side. As a result,
CRISPRcloudminimized information passed through the Internet
by transferring only the processed count matrix to the cloud
storage.

However, as pointed out by Spahn et al. (2017), CRISPRcloud
quantification algorithm can produce erroneous mapping results
if the sgRNA sequences are staggered, because CRISPRcloud
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extracts sgRNA sequence for each read at a fixed location. Another
limitation of CRISPRcloud is the fact that the user must decide
where the extraction site is. Nevertheless, CRISPRcloud did not re-
quire tuning and was thus arguably more user-friendly than other
tools. For instance, in PinAPL-Py, users need to set many tuning
parameters for sgRNA quantification: adapter error rate parameter
for trimming, matching and ambiguity thresholds, and parame-
ters for alignment seed for the Bowtie alignment (Spahn et al.
2017).

We engineered CB2 to address precisely these issues. As a re-
sult, users no longer need to perform complicated parameter tun-
ing for the sgRNA abundance quantification; one must simply
provide the input files to CB2.

The binary representation of sgRNA sequence lowers the cost of computation

We used a binary representation for sgRNA sequence. This ap-
proach is memory efficient and improves the user experience at
the client side (Melsted and Pritchard 2011). It only needs max
(K, 2M) bits to store an sgRNA-sequence, where M is the length
of the sequence, and K is the bit size to store a primitive integer
in the machine (usually 64 bits) because we only need two bits
to save a nucleotide (i.e., “A” is “00,” “C” is “01,” “G” is “11,”
and “T” is “10”). The memory size is about half of that required
for storing a character string of the sequence; that is, 160 bits are
needed to store a 20-nt sgRNA sequence. Another benefit of binary
representation is that it lowers the time complexity for the shift op-
erator when comparing all k-mers of an sgRNA read using a sliding
window. This is an essential function for the quantification algo-
rithm in CB2. Compared with the string shift operator functions,
such as string copy, substring extraction, and concatenation, the
binary representation produces significantly shorter running
times. Algorithm 2 in Supplemental Methods illustrates how a
sgRNA library converted to a bit sequence and stored the converted
sequence into a hash table.

Sliding window–based algorithm gives a high-resolution quantification

with comparable running time

With a binary representation, we run the quantification algorithm
as follows: First, we build a hash table for the reference library, with
each key of the library in the hash table converted to the binary
representation. Second, for each read, we scan the sequence of
the read from 5

′
to 3

′
with the sliding window. In the ith iteration,

the sliding window contains a substring of the read sequence from
i to i+ k−1, where k is the length of the sgRNAs. The substring is
also converted to a binary sequence, and the hash table is quickly
checked to see if the sequence in the sliding window exists in the
reference library. If the sequence is found in the hash table, then
the count of the sequence is increased by one and the algorithm
proceeds to the next read. Otherwise, it moves to i+1-th iteration
and the bit-shift method will be applied to take the next sliding
window. Algorithm 1 in the Supplemental Methods represents a
procedure of the sliding window–based algorithm.

For the case of a reverse complement sequenced sample, the
entire procedure is repeated on the reverse complement reference
sgRNA library, and the reads are scanned from 3′ to 5′. After both
assays are performed (5′ to 3′ and 3′ to 5′ with the reverse comple-
ment reference sequences), mapping results between both se-
quences are compared. The one with a larger count corresponds
to the correct sequence mapping. We compared the mappability
of CB2 to those of MAGeCK (Li et al. 2015) and PinAPL-Py
(Spahn et al. 2017) across multiple data sets from previous studies
(Fig. 5).

Software availability

CRISPRBetaBinomial or CB2 is available as Supplemental Code and
at https://CRAN.R-project.org/package=CB2. All of the data and
scripts for the benchmarking are available in the Supplemental
Material and at GitHub (https://github.com/hyunhwaj/CB2-
Experiments). Parameters used in these experiments are described
above in the Methods. CRISPRcloud is available at http://crispr
.nrihub.org.
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