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High-frequency (HF) signals are ubiquitous in the industrial world
and are of great use for monitoring of industrial assets. Most
deep-learning tools are designed for inputs of fixed and/or very
limited size and many successful applications of deep learning
to the industrial context use as inputs extracted features, which
are a manually and often arduously obtained compact represen-
tation of the original signal. In this paper, we propose a fully
unsupervised deep-learning framework that is able to extract
a meaningful and sparse representation of raw HF signals. We
embed in our architecture important properties of the fast discrete
wavelet transform (FDWT) such as 1) the cascade algorithm; 2)
the conjugate quadrature filter property that links together the
wavelet, the scaling, and transposed filter functions; and 3) the
coefficient denoising. Using deep learning, we make this archi-
tecture fully learnable: Both the wavelet bases and the wavelet
coefficient denoising become learnable. To achieve this objective,
we propose an activation function that performs a learnable hard
thresholding of the wavelet coefficients. With our framework, the
denoising FDWT becomes a fully learnable unsupervised tool that
does not require any type of pre- or postprocessing or any prior
knowledge on wavelet transform. We demonstrate the benefits
of embedding all these properties on three machine-learning
tasks performed on open-source sound datasets. We perform an
ablation study of the impact of each property on the performance
of the architecture, achieve results well above baseline, and out-
perform other state-of-the-art methods.

fast discrete wavelet decomposition | deep learning | high-frequency
signals | unsupervised anomaly detection | sparse decomposition

onitoring of industrial assets often relies on high-frequency

(HF) signal measurements, such as electric current, vi-
brations, or sound. One difficulty of dealing with such signals
in the industrial context is the conciliation between the high-
frequency sampling and low-dimensional decision states (e.g.,
healthy/unhealthy), in a context where, very often, labels are
not available. Therefore, many industrial applications require
unsupervised approaches able to extract meaningful and sparse
information from HF signals, to ease the process analysis, the
diagnostics, and more generally the optimization of the assets’
life cycles.

Before the recent developments of large storage capacity
and high computational powers, raw HF signals could not be
recorded, forcing companies to spend time and budget on
devising relevant features for later analysis, achieving in that
way a sparse representation of the input data. These features
could be of various natures, such as spectral features, based on
the Fourier transform, the fast Fourier transform, or wavelets
(1); on statistical features (moments, energy, entropy, etc.); or
on descriptive features (envelopes, amplitude, etc.) (2).

In recent days, storing HF data has become less of a technical
problem, and handling large datasets efficiently has been made
possible with the rise of deep learning. However, most deep-
learning tools are designed for inputs of fixed and/or very limited
size. Many successful applications of deep learning to industrial
context use as inputs extracted features, that is, a manually ob-
tained compact representation of the original signals. Very often
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these features are a spectrogram (3), wavelet coefficient statistics
(4), or others (5-7). Although such frameworks are extremely
successful, they still require careful feature extraction with the
right hyperparameters, which can be a time-consuming task. In
addition, the extracted features might be sensitive to unexpected
noise or to changing conditions, and the design of domain invari-
ant unsupervised features, whether with postprocessing or with
deep learning, is still an open research question (8).

With the development of convolutional neural networks
(CNN) (9), early works realized that a temporal CNN is equiva-
lent to a digital filter and that it could learn convolution kernels
similar to a Fourier transform or to wavelets (10), or also be used
to learn sparse representations (11). It was soon proposed to con-
strain the network to perform operations similar to the Fourier
transform (12, 13) or to wavelet transform either with continuous
wavelet transform (14, 15) or with discrete wavelet transform
(16-19). All these works demonstrate that by using architectures
or kernels inspired by spectral analysis, superior results could
be obtained on supervised deep-learning tasks. Yet, these
approaches are rarely adapted to unsupervised machine-learning
tasks and the link with the spectral transformation is often
restrained either to the network architecture only or to the
initialization of the convolution kernels. In addition, Fourier
transform-based deep-learning architectures become rapidly too
heavy to handle when the size of the input time series increases.

To mitigate the abovementioned limitations, we propose in
this work a deep-learning framework based on the fast discrete
wavelet transform (FDWT) that allows an automatic and easy
extraction of meaningful and sparse representation of the input
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signals. First, we propose here to mimic the FDWT cascade
architecture utilizing the deep-learning framework. We, thus,
propose to learn at each decomposition level on the one hand
the right high- and low-pass filters and on the other hand the
right hard-thresholding coefficients for denoising. Second, for
the learning of the filters, we take advantage of the long-known
advantageous properties of orthogonal wavelet filter banks with
the conjugate quadrature filter property to structure the learning
process while making sure the final network remains similar to a
FDWT operation. It also results in a very light architecture with
only few parameters to learn (a few hundred). This is opposite
to the general trend in deep learning to learn millions or billions
of parameters. Third, to learn the right hard-thresholding oper-
ation, we propose a learnable activation function that is continu-
ous and differentiable, and approximates the hard-thresholding
operation. It can, thus, be used as an integral part of the deep-
learning architecture and removes the need for human analysis
and decisions on these difficult tasks (20).

After presenting in 1. Background on the Cascade and FDWT
important properties and characteristics of the FDWT, we show
how to translate these properties into a deep neural network in 2.
Learnable Denoising Sparse Wavelet Network. In 3. Comparison be-
tween Traditional FDWT and DeSpaWN, we test our approach on
three tasks, one classification task and two unsupervised anomaly
detection tasks. Starting from the FDWT, we demonstrate how
each of our different contributions contributes toward better
results, well above the baseline. Finally, in 4. Comparison to Other
Frameworks, we compare our approach to several other archi-
tectures, such as the scattering transform (21), U-Net (22), and
a convolutional autoencoder. We show that without the need of
any preprocessing steps, with our particularly light architecture,
we achieve very competitive results.

1. Background on the Cascade and FDWT

A. Cascade Algorithm. The FDWT uses wavelets designed such
that the family of wavelets made of their scaling and trans-
lation by any power of 2 makes an orthonormal family (23).
Using such wavelets, and their corresponding scaling function,
FDWT decomposes successively each approximation of a signal
f into a coarser approximation a (low-pass—filtered version of the
signal f) and its detail coefficients d (also denoted as wavelet

coefficients, high-pass—filtered version of f). With an orthonor-
mal basis of L*(R), the decomposition of any function with such
a transformation is invertible. Additionally, one can demonstrate
that, due to the factor 2 in scale between the levels and in
translation between the coefficients, the decomposition at level
[ can be expressed as a function of the previous approximation,
subsampled by a factor 2 and the original nondilated wavelet
(interested readers are referred to ref. 23, chap. 7.3.1 for the
proof). Similarly, for the reconstruction at each level, it can
be expressed as the convolution of the conjugate of the origi-
nal wavelet with the previous level reconstruction, where zeros
have been interpolated between every sample. FDWT uses this
property to apply, in cascade, the exact same operation at each
level, using a single wavelet, but down-scaling and interpolating
with zeros the signals at each level of the decomposition and
the reconstruction, respectively. It is denoted as the cascade
algorithm. Fig. 1 illustrates the FDWT cascade algorithm, where
g is the wavelet, & is the scaling function, and g and h are their
respective conjugate filters.

B. CQF Properties. An interesting property of the fast discrete
wavelet transform was discovered in 1976 by Croisier, Esteban,
and Galand (23, 24) and was extended in 1984 (23, 25, 26).
It establishes the ground for finding filters, allowing a perfect
reconstruction of the input signal using the conjugate quadrature
filter (CQF) bank property. The quadrature property ensures a
symmetric response of the decomposition filters with respect to
the cutoff frequency and ensures thus an antialiasing property.
To do so, the filters can be designed such that the wavelet
function g is the alternative flip of the scaling function 4. The
conjugate property ensures that the reconstruction filters have an
anticancellation property. Both properties combined are usually
denoted as a CQF, which is formalized as follows:

=(=1)" - hl[—n],
=h _n]7 [1]
[n] = (=D A,

where h[—n] denotes the nth coefficient of /4 in reversed order.
To achieve a perfect reconstruction, the frequency content

conservation after applying the filters imposes that the sum of

the responses of both filters should be 2, which imposes further
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Fig. 1.

Cascade: FDWT versus DeSpaWN. The FDWT can be modeled as a convolution neural network, an autoencoder of 2L layers, comprising L encoding

blocks and L decoding blocks. Each encoding block has two outputs, one of which is connected to the corresponding decoding block with skip connections.
In this work, we propose to make the network learnable, that is, to learn the right filters. In addition, we propose a learnable hard-thresholding activation
function that allows one to learn the wavelet coefficient denoising operation at the same time. Red elements shown are learnable. The proposed architecture

mimics the denoising FDWT and is denoted as DeSpaWN.
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constraints on the filters’ orthonormality (23), usually considered
as part of the CQF properties.

C. Signal Denoising with FDWT. One of the major applications
of the wavelet analysis is signal denoising (27, 28). The usual
assumption is that regular and structured signals, once decom-
posed under the right wavelet basis, will naturally lead to a
sparse decomposition (23). They will activate only certain wavelet
coefficients at specific time and decomposition levels. As a con-
sequence, noise, by nature unstructured, activates the wavelet
filters at any level, but usually with a small amplitude. Thus, de-
noising usually consists of applying a hard thresholding function
to the resulting wavelet coefficients before applying the recon-
struction algorithm (29). However, finding the right thresholding
parameters is a difficult task that has been the topic of extensive
research (20).

2. Learnable Denoising Sparse Wavelet Network

A. Architecture Overview. In this research, we propose the denois-
ing sparse wavelet network (DeSpaWN). DeSpaWN utilizes a
fully learnable cascade network, mimicking an L-level wavelet
cascade, such as illustrated in Fig. 1. It, thus, consists of L
encoding blocks and L decoding blocks. Each encoding block
I is composed of two learnable convolutional layers g' and A'
with a stride of two, analogous to the wavelet and scaling filters
with down-sampling in the FDWT. The resulting coefficients are
fed to a specifically designed learnable hard-thresholding layer
HT', which is similar to a wavelet denoising operation and to
the next block for further decomposition. Similar to the FDWT,
each decoding block takes two inputs, the coefficients from the
previous block and the detail coefficients from its corresponding
encoding block /. It applies to each input a learnable convolution
transpose layer g' and h' with a stride of two and sums the results
of both layers together. We designed the deep neural network
with two main distinctive properties: First, all convolution kernels
and second, all positive and negative hard thresholds are learn-
able. This makes it possible to learn fully and in a completely
unsupervised way the most adapted denoising FDWT for the
input signals.

In addition, according to the work in ref. 30, a sparsely con-
nected deep neural network, such as the one proposed here, is
able to approximate representation systems that encompass and
are more general than the representation system provided by the
wavelet.

Opverall, with the proposed architecture, the network has (&, +
2) - L learnable parameters, where k, is the number of coef-
ficients of the wavelets. For example, mimicking Daubechies-4
wavelets, &, is set to 8 and the network has, thus, 10 - L learnable
parameters. Since L cannot be set larger than the nearest second
logarithm of the training input size, the number of parameters is
unlikely to exceed a few hundred.

B. Objective Function. In this work, we propose to learn the best
wavelet and scaling functions for achieving a sparse decompo-
sition. This means that we have two learning objectives: first, a
good signal reconstruction and second, a sparse decomposition.
Sparsity is usually measured by achieving the smallest /o norm
of the resulting coefficients. Yet, this is a nonconvex metric. A
typical convex surrogate of the ¢y norm is the ¢; norm. Part of
our objective function should be designed to minimize the ¢;
norm of the obtained wavelet coefficients. As a consequence, we
propose that for the second part of our objective function, we also
measure the ¢; norm of the reconstruction error to make the two
terms comparable.

We, thus, train our network with the following objective

function:
1
= Caragpy I+ L ({d'}hepppa®), 121
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where the first part of the loss is the averaged ¢; norm of the
residuals on the reconstruction and the second part is the sparsity
term, here proposed as the average of all wavelet coefficient
moduli and of the last layer approximation coefficient modulus,

1 L
L ({d'}e.n,a") = Card({dl}leu oy 2+t

lef1..1]

[3]

C. CQF-Constrained Architecture. As seen in the previous section,
the CQF property for the wavelet filters ensures a perfect and
antialiasing reconstruction. We, thus, propose to utilize this prop-
erty, at the same time to simplify the learning process and to
harness its advantages. As a matter of fact, using the CQF
property as defined in Eq. 1, learning a single kernel would define
the other three. The second advantage is that, based on the above
idea of penalizing the ¢; norm of the wavelet coefficient as a
surrogate for the nonconvex ¢o norm, the constraint-free learning
of the kernels might lead toward a state where the coefficients
of g and & are minimized to result in a small ¢; value in the
latent space, while the reconstruction is still possible due to large
coefficients in g and h, which goes against the original goal of
achieving sparsity. Constraining the values of g and h based on
those of g and/or /& mitigates this issue.

One option would be to learn a single kernel h°; use the CQF
constraints to derive ¢°, g%, and A°; and then impose that all
layers of the network use the same kernels, mimicking in that way
the traditional wavelet decomposition with a single wavelet basis.
However, we state that this approach would not benefit from the
full potential of deep learning.

Alternatively, we propose to learn one kernel per layer
{hl }le[LL] and to use the CQF property to constrain the other

three kernels of the layer (g’, k', §'). A similar alternative would
be to learn independently the low-pass &' and high-pass ¢' filters
but impose the partial CQF constraints such that z'[n] = h'[—n)
and g'[n] = g'[—n]. These two types of architectures learn at
each level the best wavelets to describe the signal at this scale in
a sparse way.

We implement all these different variations of the CQF prop-
erty and compare them in 3. Comparison between Traditional
FDWT and DeSpaWN.

Finally, with the proposed architecture we already cover our
three training objectives: a good and a sparse reconstruction
due to the objective function and a stable learning due to the
constraints imposed between decomposition and reconstruction
filters. Therefore, we do not try to impose further constraints on
the filters, in particular not the orthonormality property.

D. Learnable Denoising. One assumption behind the wavelet de-
composition is that a structured signal should lead to sparse
coefficients under the right wavelet basis. This is the property we
encourage by minimizing the /; norm of the wavelet coefficients
in our objective function. However, the addition of noise to the
input signal, which is by nature nonstructured, would lead to
a random activation of the filters, independent of the chosen
filters. This would, therefore, necessarily lead to a nonsparse
decomposition. The sparsity of the decomposition is, thus, sought
only once the noise has been canceled. This problem is usually
tackled under the assumption that noise would lead to small
activation of the filters. As a consequence, the impact of noise
on the decomposition can be removed by hard thresholding the
obtained coefficients. In ref. 31, guarantees are provided for
recovering and denoising signals observed in Gaussian noise
by applying the right hard-thresholding operation. Yet, finding
the right thresholding parameters is a difficult task and usually
depends on the use case and the specific dataset.

In this paper, we propose to make the thresholding step part of
our architecture to learn the best thresholding parameters and to
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Fig. 2. Hard-thresholding activation function. Proposed activation function
performs an operation close to an asymmetric hard thresholding. Both
thresholds, in the negative and positive half-space, are learnable parame-
ters. In our paper, « is set to 10 to simulate a “sharp” thresholding.

remove the need of handling it as a separate step. We introduce a
learnable hard-thresholding activation function as a combination
of two opposite sigmoid functions:

Vz eR, HT(z)
1 1
=z —+
l1+exp(a-(z+b-)) 14+exp(—a-(z—bt))

(4]

where o is a “sharpness” factor arbitrarily fixed to 10 in this
paper, and b4 and b_ are the positive and negative learnable
biases acting as the thresholds on both sides of the origin, as
illustrated in Fig. 2.

Denoting the sigmoid function 1/(1 + exp(—=z)) by o, Eq. 4
becomes

VieR, HT(z)=z [c(—a-(x+b-))+0o(a-(z—0by))].

[5]
To replicate the original FDWT without denoising, one can fix
in this layer b, and b_ to zero, enforcing, thereby, a linear
activation.

3. Comparison between Traditional FDWT and DeSpaWN

A. Machine Learning for Sound Data. We focus our experiments
specifically on sound data as they are a fast-growing field in in-
dustrial applications (4, 32). Sound-based analysis has raised the
interest of increasing numbers of companies for several reasons:
Experts and machine operators already listen to the machines
and are able to tell when the operation is not nominal. It should,
therefore, be possible to train a machine-learning approach for
continuous monitoring. Moreover, industrial processes are in-
herently noisy. Thus, it is expected that their sound contains
information on their process state. Since the sound is by nature
multiscale, it might also allow for the monitoring of several
systems at once. Monitoring industrial machines with sound is
also relatively simple and cheap. Hence, it is an attractive and
scalable solution. Microphones are easy to install or retrofit. They
are not intrusive. Hardware and software are readily available.

40f10 | PNAS
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Yet, sound data come with their own challenges such as high noise
levels due to the machines usually operating in factory environ-
ments and, hence, in noisy environments. Besides, finding how
to relate specific industrial processes to the recorded sound is a
difficult task. Automatic and noise-robust handling of sound data
is, therefore, of high interest for many industrial applications.

B. Classification and Anomaly Detection. The objective of
DeSpaWN is learning of a robust autoencoder. This robustness
is achieved through denoising with the hard thresholding of the
learned coefficients and through sparsity, forcing the network to
learn the most meaningful wavelet to describe the training data.
Thus, we state that once trained, the autoencoder should produce
for similar signals a similarly sparse latent space and achieve
similarly low reconstruction residuals. We use these properties
to design our classification and our anomaly detection strategies.

For classification, we propose an approach similar to dictionary
learning, which consists of training one autoencoder per class and
assigning to a sample the class corresponding to the autoencoder
that led to the minimal loss of the objective function in Eq.
2. This classification approach is common in signal processing
when signal models are learned or trained to capture very specific
properties of a class (17, 33).

For anomaly detection, we state that anomalies can be broadly
separated into two types: local intermittent anomalies in the
signal (an abnormal pulse due to an impact, e.g., a broken tooth
in a gear box) and trend anomalies, when the signal behavior
changes more globally (e.g., a change of frequency due to in-
creased friction). When dealing with long signals (several seconds
to minutes), capturing trend anomalies is usually achieved by
looking at global indicators, such as the network objective func-
tion. However, such approaches tend to hide local anomalies,
which are averaged out when the signal length increases. One
possible solution can be shortening of the input time series to
mitigate the impact of the average. However, this solution is not
always practical. Here, we propose instead to jointly use averaged
and local statistics. More precisely, per time series we propose to
use the average residual (Res), the maximum residual (MaxRes),
the average sparsity loss (average ¢; norm of the coefficients per
level, {le}le[l..L])’ and the maximum sparsity loss ({le}ze[l..L])-
We then apply a one-class classifier on this new latent space,
Res o MazxRes o {lﬂl} o {Kli}le[l,,L], of size (2+2 - L).

In this work, we achieved similar results using the one-class
isolation forest, the one-class support vector machine (SVM),
an elliptic envelope, or a one-class extreme-learning machine
(ELM) (34). We, therefore, report only results using the latter,
an ELM with 50 neurons.

C. Datasets. We test the proposed approach on two open-source
sound datasets. First, we test the model on an anomaly detection
task of sound data of industrial machines with the sound dataset
for malfunctioning industrial machine investigation and inspec-
tion (MIMII) (35). Second, we demonstrate that the network
can learn decomposition specific to its training data by solving a
dictionary learning classification task. We show that the approach
performs equally well independently of the type of sound used
as input to perform classification on the bird song dataset, as
proposed in ref. 17. Finally, we show the consistency of the
results by using this same dataset for anomaly detection. For both
datasets, we analyze the obtained latent space and demonstrate
that it can also be used to interpret the data at hand.
C.1. Malfunctioning industrial machine detection. The MIMII
dataset (35) consists of audio recordings of four types of indus-
trial machines, i.e., valves, pumps, fans, and slide rails, in normal
and malfunctioning states. It is, therefore, a good benchmark for
testing anomaly detection approaches on sound data.

The dataset has four individual machines of four machine
types. For each machine, sound from normal and abnormal
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Table 1. Characteristics of the MIMII dataset
Type ID  Normal Abnormal Operating conditions and
type of anomalies
Valve 0 991 119 Open/close repeat with
2 708 120 different timing. More
4 1, 000 120 than two kinds of
6 992 120 contamination.
Pump 0 1,006 143 Suction from/discharge to a
2 1, 005 111 water pool. Leakage,
4 702 100 contamination, clogging,
6 1,036 102 etc.
Fan 0 1,011 407 Normal operation.
2 1,016 359 Unbalanced, voltage
4 1,033 348 change, clogging, etc.
6 1,015 361
Sliderail 0 1,068 356 Slide repeat at different
2 1,068 267 speeds. Rail damage,
4 534 178 loose belt, no grease, etc.
6 534 89

operating conditions has been recorded without further label
on the operating state or on the faults, making the dataset very
suitable for unsupervised anomaly detection. Each machine has
been recorded under three different signal-to-noise ratio (SNR)
setups (0, 6, and —6 dB), where the noise denotes background
noise of other industrial processes. This results in 48 experiments
on which anomaly detection can be performed. It is interesting
to note that various anomaly types are collected and that several
anomalies can influence the same machine in different recording
samples. Table 1 gives an overview of the dataset, presenting
the number of samples for each machine and the conditions of
operation.

The data were recorded with an eight-channel microphone

array, at 16 kHz and 16 bits resolution. Each sample is 10 s
long, or 160,000 timestamps. With this, we can set L to 17. In
accordance with the work in ref. 35, the data recorded by the first
microphone only are used.
C.2. Bird song dataset. For the second experiment, we use a
different type of sound data to demonstrate the performance of
the proposed framework in a different context, especially since
industrial machines often make repetitive noise that is rather
easier to characterize. The recordings of bird songs in their
natural environment are also subject to environmental noise and
differences in the recording hardware that influence the recorded
sound. Since the data are labeled (contrary to the machine sound
data), it allows us to test the proposed architecture both in an
anomaly detection and in a classification setup.

The Xeno-canto Foundation collection bird song dataset (36)
is a dataset of bird songs from all around the world that are
collected by a large variety of participants. In ref. 17, the author
proposes to focus on the following birds: corn bunting (CB),
Eurasian skylark (ES), barn swallow (BS), sedge warbler (SW),
and common nightingale (CN). These species were selected
under the argument that all their recordings were recorded
by the same person, implying similar recording conditions and
probably similar and consistent hardware. This allows remov-
ing the hypothesis that detected fluctuations between record-
ings and bird species would be due to a change of recording
hardware.

For each of the above species, three recordings of about 5 min
are available. To establish a fair comparison, we apply the exact
same preprocessing as in ref. 17: decimation of the signals by a
factor of 4 since most of the signal energy is below 5 kHz and the
original sampling rate is 41 kHz. The recordings are split into a
collection of signals with 2'® samples (= 24 s). This leads to the
following number of signals:
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e CB, 30 signals;
o ES, 24 signals;
e BS, 21 signals;
o SW, 20 signals;
e CN, 20 signals.

As in ref. 17, a fivefold cross-validation is used, meaning that
80% of the data are used for training and 20% for testing at each
fold.

D. Ablation Study.

D.1. From FDWT to DeSpaWN. In this section, we aim to analyze
how the different contributions impact the results compared to
the traditional case where the coefficients from the FDWT would
be used as inputs to subsequent machine-learning tasks, such as
classification or anomaly detection. Thus, in this first evaluation,
to demonstrate how all the steps of the transition from the
traditional FDWT to our proposed framework impact the results,
we compare the results for the following architectures:

e db4 : Using the Daubechies-4 (db4) wavelets.

e db4+HT: Using the db4 wavelets with learnable hard thresh-
olding (HT) of the coefficients.

e CWN (CQF wavelet network): Learning a single kernel h°;
using CQF to fix the other three ¢°, h°, and §°; and using these
kernels for all levels.

e LCWN (layer-wise CQF): Learning one kernel i’ per level in
L, using CQF to fix the others.

e DeCWN (denoising CQF): Learning a single kernel h°, using
CQF to fix the other for all levels, and using the learnable hard-
thresholding activation function.

e DeSpaWN: Learning one kernel h' per level in L, using CQF
to fix the others, and using the learnable hard-thresholding
activation function.

e DeSpaWN-2: Learning two kernels, A' and g¢', per level in L,
using CQF to fix the others, and using the learnable hard-
thresholding activation function.

e FreeWN: Learning all kernels of all levels independently and
using the learnable hard-thresholding activation function.

For all experiments, we set L, the number of decomposition
levels to the nearest second logarithm of the length of the time
series. We set the kernel size to 8 and compare the results with
those achieved using Daubechies db4 wavelets (since they also
have eight coefficients) and with the baseline results on these
datasets. In Eq. 2, we set v, the weight on the sparsity term in the
loss arbitrarily to one. The architecture has, therefore, (8 4+ 2) - L
learnable parameters (eight kernel coefficients, two thresholds).

For reference, we also report results from the baseline models

[MIMII (35) and bird song (17)].
D.2. Results and discussion. From the comparative results pre-
sented in Table 2, it appears that the results are consistent
between the three machine-learning tasks. Consequently, the
impact of the different parameters and assumptions can be dis-
cussed at the general level.

DeSpaWN outperforms the baseline. On all tasks, the proposed
architecture DeSpaWN significantly outperforms the baseline
models found in the literature. Particularly on the MIMII dataset,
it reaches globally a performance improvement of 16%. Also,
compared to the baseline, DeSpaWN is much less impacted by
the noise level; when the SNR changes from 6 to 0 dB, DeSpaWN
experiences a drop of performance of 4% while the baseline has
a 9% drop. When the noise level increases to a SNR at -6 dB,
DeSpaWN performance diminishes while remaining well above
the baseline (+16%). This suggests that DeSpaWN is learning
a noise-independent representation of the signals, which makes
it much more robust to noise than other approaches. This is a
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Table 2. Comparative study on three machine-learning tasks: For the different architecture variations (one per column), comparative

results on the three considered tasks

DeSpaWN
y=1 v=0.5 v=5 db4 db4+HT CWN LCWN DeCWN DeSpaWN-2 FreeWN Baseline
Anomaly Detection on MIMII
Valve 92.8 92.7 91.0 92.7 92.7 92.7 92.7 92.9 93.0 93.0 61.3
Pump 84.5 82.0 72.6 77.9 78.3 78.2 78.1 78.0 84.2 75.8 72.3
Fan 86.2 84.8 84.9 84.6 84.7 84.9 84.8 85.3 85.5 83.8 79.0
Slider 91.0 89.4 78.7 89.8 90.0 89.4 89.6 89.7 90.1 89.3 78.6
6 dB 94.6 93.5 84.4 93.4 93.4 93.7 93.5 93.5 94.3 90.7 81.6
0dB 90.5 87.7 81.9 82.6 88.1 87.7 87.8 88.5 90.2 87.0 72.3
-6 dB 80.8 79.6 76.5 77.6 77.9 77.5 77.5 77.5 80.0 78.8 64.4
Avg. 88.6 87.1 81.4 85.5 86.4 86.3 86.3 86.5 88.2 85.5 72.8
Anomaly detection (1 versus 4 bird species)
Avg. 99.8 99.8 91.7 95.4 98.2 97.5 98.8 99.0 99.5 99.1 N.A.
#C: Classification with dictionary learning (bird song)
2 99.2 98.2 91.3 50.0 87.0 73.3 92.7 93.4 99.1 89.0 97.2
3 98.3 96.3 88.7 333 77.3 55.1 86.0 87.4 97.5 78.0 88.0
4 97.5 94.5 87.0 25.0 70.0 435 80.0 81.9 97.3 67.0 74.7
5 96.7 92.7 85.3 20.0 64.0 37.0 74.7 77.0 95.6 56.0 70.4
Avg. 97.9 95.4 88.1 32.1 74.6 52.2 83.3 84.9 97.4 72.5 82.6

For the anomaly detection tasks, on MIMII and on the bird song, we report the average AUC (%). Finally, for the bird song classification by dictionary
learning, we report the average accuracy (%). N.A., not applicable. Bold indicates best model for each experimental setup.

particularly important requirement in real applications that are
typically impacted by different types of noise at different levels.
Finally, in the baseline, the spectrogram with logarithmic mel
scale (log-mel) is extracted to be used as input to an autoen-
coder. With DeSpaWN, the raw data are used directly, without
requiring any preprocessing steps. This lightens the methodology
significantly since extracting a spectrogram requires the choice of
several hyperparameters such as the window type, the window
length, the window stride, whether to compute the density or
the magnitude, and whether to apply additional transformations
(log-mel, decibels, etc.). All these choices can influence the
results significantly.

Impact of the sparsity coefficient. From the first three columns of
Table 2, it appears that the sparsity term in the loss of DeSpaWN
(Eq. 2) influences the results. In addition, setting « to one,
without fine-tuning, always seems to be a near optimal choice.
This can be explained by our definition of the loss as the average
of the ¢; values, first of the residuals, and second of the coeffi-
cients moduli. Using the average makes them comparable. Using
smaller v influences the results slightly. However, increasing
can have quite a strong impact on the performance. This signifies
that even though sparsity is helping to get some robustness to
external factors, too much of it would be at the expense of the
reconstruction loss and at the expense of the ability to distinguish
variations in the signals, including anomalies or class-specific
coefficient behaviors.

Impact of hard-threshold learning. The second noteworthy ob-
servation is that the architectures without hard threshold are
performing significantly worse compared to others (db4 versus
db4+HT or LCWN versus DeSpaWN). This highlights the im-
portance of the denoising part of the architectures. The strength
of the architecture is its ability to learn the best thresholds for
the wavelet coefficients to become robust to small variations in
the signal. This strength is independent of whether the wavelets
are learned or not.

Impact of wavelet learning. For the classification task in par-
ticular, learning the right wavelet is pivotal for the architecture
accuracy. This is to be expected since the class attribution is done
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based on the network loss minimization. When fixing the wavelets
or even both the wavelets and the thresholding function (db4
and db4+HT), there are not many parameters left to optimize.
The architectures become generic and not fine-tuned per class,
making the class attribution based on the loss not much better
than a random guess (db4 has random guess attribution since all
architectures are identical). For anomaly detection, this effect is
mitigated by the property of the wavelets: Due to the CQF prop-
erty, wavelets are designed for good reconstruction and relative
sparsity (wavelets are used in signal processing since they inher-
ently tend to produce sparse signal representations). Hence, they
are already good candidates to create relevant signal description
and, thus, anomaly detection. Yet, learning the right wavelets still
brings some nonnegligible improvements (additional +1 or 2%,
averaged over several tens of experiments).

Impact of the CQF. The impact of constraining the wavelet basis
can be observed by comparing db4+HT (fixed Daubechies-4
wavelets), the DeCWN (learning of one global wavelet), the
DeSpaWN (learning one wavelet per layer), the DeSpaWN-2
(learning one wavelet and one scaling function per layer), and
the FreeWN (learning all kernels). As expected, constraining the
kernels tends to make the network less specific to the character-
istics of the training class and affects the classification perfor-
mance strongly. The most constrained architecture (db4+HT)
has the worst results (52%); DeCWN performs better (84.9%)
but not as good as DeSpaWN or DeSpaWN-2 (97.9 and 97.4%).
These two architectures are in fact quite equivalent in terms
of results. Leaving the kernel completely free (FreeWN) also
leads to a drop in performance. This is likely due to training
instabilities as explained in 2. Learnable Denoising Sparse Wavelet
Network.

E. Additional Diagnostics Potential.

E.1. Insights on MIMII. The good detection performance of
DeSpaWN indicates again that the signals are probably forming
well-defined clusters in the Res o MazRes o {1} o {6} ien.n
latent space. Anomalies would then appear outside of these
clusters and finding anomaly clusters could help to diagnose the
different conditions of the system. This can be visualized in two
dimensions, by performing a t-distributed stochastic neighbor
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Fig. 3. t-SNE of the slide rail latent space. Shown is representation in
two dimensions of the slide rail latent space for the four machines (one
machine per row), at the three different experimental SNRs (columns), using
t-SNE (perplexity of 30). One can distinguish different clusters, most likely
representing different operating conditions and anomalies.

embedding (t-SNE) on the latent space, as illustrated in Fig. 3. In
Fig. 3, the latent spaces of the different slide rail experiments are
shown after a t-SNE transformation with the default perplexity of
30. Clusters can be clearly identified in this representation. They
are likely to be formed by different anomaly types and operating
conditions. In all experiments, one can distinguish at least
two normal operating condition clusters, indicating different
conditions of operation and at least two anomaly clusters, well
separated from the normal conditions. With this representation,
only when the SNR decreases to —6 dB, some of the anomalous
points become less separated from the normal conditions. This
decrease in separability could be expected from the lower area
under the curve (AUC) 4 as reported in Table 2.
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The diagnostics possibilities offered by extracting characteris-
tic patterns of the learned coefficients of the proposed approach
for the different clusters analysis are illustrated for the slide rail 0
at 0 dB SNR in Fig. 4. Two different signals extracted from each
of the two normal measurement clusters are shown. In Fig. 4,
the raw signals, their log-spectrogram, and the distribution of the
learned coefficients over the 18 levels are shown. The first signal
has its major components around the 10th level with some quite
large coefficients at the highest level of detail, while the other
signal is mostly “active” at the 12th level, with very little activation
of the last two levels (highest level of details). This indicates
that the operating mode has likely changed between these two
samples: The main information content changed from level 10
to 12, that is, a factor of 4 in the spectrum of the original signal.
Similarly, in Fig. 5, two unhealthy signals of the slider rail drawn
from two different clusters are depicted. The first signal has its
12th level more activated than healthy signals; the other signal
distinguishes itself with its much larger high-level coefficients.
These are likely two different types of anomalies.

Finally, Fig. 6 shows exemplarily the learned filters and hard-
threshold coefficients for a slider rail. The first layers, corre-
sponding to the high frequencies, have high hard-thresholding
values (up to 0.3 in absolute value). One can observe that the
corresponding wavelet coefficients in Fig. 4 are almost all zero.
This makes the filter of these layers irrelevant and this further
explains why the corresponding filters observed in Fig. 6 are
very close to the original Daubechie filters. It is probably where
most of the noise is concentrated. For lower frequencies, the
filters are farther away from the Daubechie wavelets and the hard
thresholding is much lower. It is probably at these scales that the
information required for the reconstruction is concentrated. This
interpretation matches the coefficient distributions observed in
Fig. 4. This gives a strong indication that the proposed architec-
ture can indeed selectively filter and threshold the layers based
on their information content.

E.2. Insights on the bird song dataset. Fig. 7 illustrates the /1
-residual space for all birds for the different cases. For each
plot, DeSpaWN is trained on the main bird class where all other
bird samples would have to be detected as anomalies. In each
case, one can observe that the samples corresponding to the
bird used for training form a well-defined and separated cluster,
allowing the one-class classifier to identify easily all other birds
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Fig. 4. Examples of normal signals. Shown are raw data, log-spectrogram, and obtained coefficient distribution per level for two normal measurements of

the slider rail 0 at SNR 0 dB.
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Fig. 5. Examples of abnormal signals. Shown are raw data, log-spectrogram, and obtained coefficient distribution per level for two abnormal measurements

of the slider rail 0 at SNR 0 dB.

as anomalies. The only exception is the corn bunting case (Fig. 7,
Right), which is mixed with the sedge warbler after training, par-
ticularly with this specific representation. These results explain
the classification accuracy drop observed when adding the sedge
warbler as the fifth species (Table 2).

4. Comparison to Other Frameworks

A. Scattering Transform, U-Net, and Autoencoders. In this section,
we propose to compare the results of DeSpaWN to other state-
of-the art frameworks found in the literature: the scattering
transform, vanilla convolutional autoencoders (CAE), and
U-Net.

First, we propose to compare to the scattering transform (21),
which has been extensively used in the context of audio signal
processing. It is a signal representation that is stable to small
deviations in its inputs and is able to characterize transient phe-
nomena like amplitude modulation. We use the Kymatio library
(37) to compute the coefficients from a two-layer scattering
transform. It requires the selection of two parameters (38): J the
maximum scale of the filters used, implying that the transform
will capture only frequencies superior to 27, and Q the number
of filters per octave. We propose to analyze two combinations of
parameters: 1) J =17 and @ = 1, which will result, for the first
layer, in a decomposition close to the FDWT with one filter per
octave and able to characterize low frequencies up to 27'7, and
2) J =10 and @ = 8 for the first layer (which defines wavelets
having the same frequency resolution as mel-frequency filters)
and @ = 1 for the second layer. The second choice of parameters
is motivated by previous research that proposed to consider
mel-spectrogram features on frames of around 60 ms (35). Sim-
ilar to the approach used with DeSpaWN, for the anomaly
detection task, we use a one-class ELM on the scattering coeffi-
cients. For the bird song classification task, since the scattering
transform does not create a signal-specific decomposition, the
dictionary learning approach cannot be mimicked. Therefore,
we use, for all approaches, the coefficients as input to an SVM
classifier to make the results comparable.

In addition, to highlight the relevance of the proposed ar-
chitectural choice of DesPaWN, we compare it numerically to
standard CNN autoencoders (CAE) and CNN U-Nets. The con-
sidered autoencoders (AE) are based on the work of ref. 39.
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The architecture has been used for fault diagnosis of rotating
machinery. We consider four encoding and decoding layers with
eight coefficients per kernel and a kernel size of Nag for each
layer. The impact of the addition of trainable parameters is stud-
ied by considering the range of Nag = [4, 8, 16, 32]. DeSpaWN
architecture has skip-connections at each level. Therefore, it can
be considered as a special case of a U-Net model. We then
compare our method to another U-Net architecture based on ref.
22 that was applied to electrocardiogram detection. We replace
the concatenation of the skipped connection with the addition to

0.54

0.0 A1

Layer

—0.5

—1.0 1

0.2 4

0.1 A

0.0

—0.1

-0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17a17b
Layers

Fig. 6. Learned coefficients and biases. (Top) Learned kernel for all layers
of a slider rail. Each color represents the filter from a different layer,
from the first (high-frequency) layer in dark blue to the last layers in red.
(Bottom) Learned positive and negative biases for each layer. The black lines
represent the range of values that are set to zero by the corresponding hard-
thresholding layer.
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tends to be well separated from others and has generally a more compact representation in the Res o £, than when tested with another DeSpaWN.

have an architecture closer to DesPaWN. Furthermore, we con-
sider L = 17 layers with a stride of 2 for each CNN layer and eight
coefficients per kernel. The kernel size Ny, of each filter is stud-
ied in the range Nyne: = [1,2,4, 8]. This grid was chosen since
larger kernel sizes led to decreasing performances. The main
differences between our model and this U-Net architecture are
one more filter at each skip connection, initialization of each pair
of filters as high-pass and low-pass, and replacing the rectified
linear unit (ReLU) activation function with the proposed learn-
able hard-thresholding function. For each method, the same loss
function as in Eq. 2 is used for training. The exact same process
is followed for anomaly detection and for classification as for the
results achieved with DeSpaWN (cf. B. Results of the Benchmark).

B. Results of the Benchmark. The results of the benchmark are
presented in Table 3, for two versions of the scattering trans-
form, four variations of the CAE, and four variations of the
U-Net. DeSpaWN and the scattering transform both provide
very competitive results and are both very solid candidates to
solve the tasks on the dataset studied here. One can note, how-
ever, a bigger drop in performance for the scattering transform
when the noise in the data increases (-20% and —16% when
comparing MIMII 6 dB with -6 dB). It is also worth noting that
the strength of each approach depends on the machine type,
where the scattering transform seems to be the most adapted to
tackle the pump and the slider while DeSpaWN performs better
on the valve and on the fan. For the bird song classification, very
similar results are achieved.

The autoencoders, both the traditional CAE and the U-Nets,
provide very competitive results for the valve system but not for
the other machines and are overall significantly worse performing
compared to the scattering transform and to DeSpaWN. It is
worth noting, however, that all approaches outperform the re-
ported baseline on these datasets.

5. Conclusion

In this paper, we proposed an architecture for learning a mean-
ingful and sparse representation of high-frequency signals in an
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unsupervised manner without requiring neither preprocessing
(feature extraction) nor postprocessing (e.g., denoising). This
architecture achieves very good results that are well above the
baselines and are competitive compared to other state-of-the-
art approaches on three machine-learning tasks for anomaly
detection and classification. We designed an end-to-end deep-
learning architecture, mimicking the cascade algorithm of the
FDWT but making it fully learnable. Using the deep-learning
framework, we demonstrated the benefits of learning the right
wavelets at each level of the decomposition. One of the additional
contributions is the introduction of a learnable hard-thresholding
function for automatic signal denoising.

The proposed methodology combines 1) a thorough theoret-
ical foundation on the wavelet properties, including cascade,
perfect reconstruction, and antialiasing filter basis with the CQF
property, and denoising with coefficient thresholding with 2)
the learning ability of deep learning. The proposed architecture
could demonstrate a significant improvement on sound data
processing, both for classification and for anomaly detection
tasks. Our approach allows the use of the raw HF data as input
to a deep-learning architecture, a setup usually avoided in the
literature due to the difficulty of designing efficient architectures
that are robust to changes in the input lengths. The proposed ar-
chitecture takes root in spectral analysis and can replace the usual
preprocessing steps such as spectrogram or wavelet coefficient
extraction. Since it is unsupervised, it can be used as an input
to subsequent learning methods. In addition, compared to other
deep-learning architectures, it is a very light framework with only
a few hundred learnable parameters, mitigating in that way the
high risk of overfitting. With its spectral interpretation, it also
provides diagnostics information to the domain experts that can
potentially improve the interpretation capabilities.

This work opens several doors for future directions. First, given
the high information content of the proposed latent space, other
unsupervised machine-learning tasks could be explored such as
system degradation monitoring; e.g., a drop in the sparsity of the
decomposition could be a sign of an increased signal complexity
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Table 3. Comparative study on three machine-learning tasks: For the different methodologies (one per column), comparative results

on the three considered tasks

DeSpaWN Scattering transform Auto Encoder U-Net
1 4, Q) (7, 1) (4. Q) (10, 8) Nae 4 Nae 8 Nae 16 Nag 32 Nunet 1 Nunet 2 Nunet 4 Nunet 8
Anomaly detection on MIMII
Valve 92.8 65.5 78.6 91.5 92.4 91.5 92.0 92.3 92.7 93.0 91.1
Pump 84.5 88.5 90.6 74.5 74.5 74.0 73.4 75.4 69.6 70.5 74.4
Fan 86.2 88.7 84.9 71.0 76.6 80.7 76.1 771 75.6 76.5 73.6
Slider 91.0 86.9 96.8 79.2 81.0 81.7 78.1 78.6 80.6 83 87.4
6 dB 94.6 91.2 95.4 83.4 87.5 86.6 85.0 86.3 84.0 84.7 85.2
0dB 90.5 84 88.6 79.7 81.3 81.5 80.8 82.5 79.8 83.0 83.8
-6 dB 80.8 72 79.1 74.2 74.6 73.9 74.0 74.0 75.0 74.0 75.0
Avg. 88.6 82.4 87.7 79.1 81.15 80.3 80.0 81.0 79.6 80.9 81.4
Anomaly detection (1 versus 4 bird species)
Avg. 98.6 93.8 94.0 85.4 86.1 86.3 86.3 89.6 88.9 89.2 90.0
#C: Classification with SVM (bird song)
5 97.7 97.9 97.3 87.6 92.2 92.3 90.2 83.4 85.7 87.1 88.4

For the anomaly detection tasks, on MIMII and on the bird song, we report the average AUC (%). Bold indicates best model for each experimental setup.

or of the presence of disturbing components due to system wear.
The architecture could be further analyzed in conditions with
controlled noise and signals to better understand its denoising
and stability properties. The architecture could also be extended,
such as in particular with the imbrication of this architecture in
stacked architecture to solve supervised machine-learning tasks.
In these cases, the learned wavelets and thresholding coefficients
could be learned not only for sparsity and for reconstruction
but also to maximize a supervised objective. The use of parallel
wavelets (number of kernels in a convolution layer) and the
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handling of multichannel inputs are further exciting potential
developments.
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