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Navigation in a static environment along straight paths without eye movements produces
radial optic flow fields. A singularity called the focus of expansion (FoE) specifies
the direction of travel (heading) of the observer. Cells in primate dorsal medial
superior temporal area (MSTd) respond to radial fields and are therefore thought to be
heading-sensitive. Humans frequently shift their focus of attention while navigating, for
example, depending on the favorable or threatening context of approaching independently
moving objects. Recent neurophysiological studies show that the spatial tuning curves
of primate MSTd neurons change based on the difference in visual angle between an
attentional prime and the FoE. Moreover, the peak mean population activity in MSTd
retreats linearly in time as the distance between the attentional prime and FoE increases.
We present a dynamical neural circuit model that demonstrates the same linear temporal
peak shift observed electrophysiologically. The model qualitatively matches the neuron
tuning curves and population activation profiles. After model MT dynamically pools
short-range motion, model MSTd incorporates recurrent competition between units tuned
to different radial optic flow templates, and integrates attentional signals from model
area frontal eye fields (FEF). In the model, population activity peaks occur when the
recurrent competition is most active and uncertainty is greatest about the relative position
of the FoE. The nature of attention, multiplicative or non-multiplicative, is largely irrelevant,
so long as attention has a Gaussian-like profile. Using an appropriately tuned sigmoidal
signal function to modulate recurrent feedback affords qualitative fits of deflections in
the population activity that otherwise appear to be low-frequency noise. We predict that
these deflections mark changes in the balance of attention between the priming and FoE
locations.
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INTRODUCTION
Neurons in the dorsal medial superior temporal area (MSTd)
of primate visual cortex selectively respond to radially expand-
ing random dot patterns that span large parts of the visual
field (Duffy and Wurtz, 1991, 1995). Gibson (1979) noted that
animals experience radially expanding patterns of motion during
navigation along a straight path, in the absence of eye move-
ments. The center of the radial motion is known as the focus
of expansion (FoE) and defines the direction of travel (heading)
during locomotion. Primate MSTd neurons exhibit selectivity
to the FoE location, and researchers have proposed that these
cells are important for heading perception during visually guided
navigation (Duffy and Wurtz, 1991; Born and Bradley, 2005).
Neurophysiological data indicate that primate heading sensitive
MSTd cells receive feedforward projections from cells sensitive
to local motion in V1 via cells that integrate motion over a
large receptive field in primate medial temporal area, MT (Eifuku
and Wurtz, 1998; Berezovskii and Born, 2000; Orban, 2008).
Objects that move independently of the observer in the envi-
ronment induce distinct patterns of motion that differ from the
patterns experienced by the observer in the object’s absence.

The object induces its own FoE when the independently moving
object approaches the observer. Depending on whether the object
approaches or recedes, the object size, and other contextual infor-
mation, the observer may shift his focus to different aspects of
the environment (Kishore et al., 2011; Wann et al., 2011). While
the effects of visual attention have been studied in ventral areas
(e.g., V4) and early dorsal areas (e.g., MT), the role attention plays
on MSTd neurons and visually guided navigation has only been
recently examined.

ATTENTION AFFECTS THE GAIN OF INDIVIDUAL NEURONS
Visual attention has been characterized in the psychological lit-
erature as a spatial “spotlight” with limited resources (Posner
et al., 1980), which enhances a subject’s visual search and lumi-
nance detection performance (Yeshurun and Carrasco, 1998)
and may reduce the subject’s response latency (Treisman, 1998).
Recent neurophysiological experiments have demonstrated that
attention directly modulates the activity of individual neurons
throughout the occipital and parietal cortices (Corbetta and
Shulman, 2002). In primate visual area V4, the response of neu-
rons increases to both an attended “target” object and proximally
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located behaviorally irrelevant objects (Connor et al., 1997).
When low contrast objects are presented within the receptive
field, attention increases the activity of neurons to the same
levels that would occur in response to objects of higher con-
trast (Reynolds and Chelazzi, 2004). Neural signals, which modu-
late the gain of visual neurons in extrastriate cortex, may originate
from top–down sources further up the visual pathways, since
changes in a neuron’s activity take ∼70 ms (Martinez et al., 1999)
after the visual display is presented to the subject. The apparent
response gain modulation observed in visual neurons is con-
sistent with the idea of resource limitation or normalization of
activity (Reynolds and Heeger, 2009), since the increased neu-
ral activity to an attended object may accompany a diminished
response to competing objects (Reynolds and Desimone, 2003).

MULTIPLICATIVE OR NON-MULTIPLICATIVE ATTENTION
While attentional gain modulation has been well documented,
exactly how an attentional signal acts on baseline neural responses
remains unclear. Some researchers have proposed that spatial
attention multiplicatively influences sensory bottom–up signals
such that the size and position of the receptive field of a neuron do
not change, but the preferred response and tuning curve distribu-
tions do (Martinez et al., 1999; Treue and Martnez Trujillo, 1999;
McAdams and Maunsell, 2000; Williford and Maunsell, 2006).
For instance, the response to the preferred motion direction of
single neurons in primate visual area MT has been shown to
increase when the monkey attends similar directions of motion
outside the cell receptive field, and the response to anti-preferred
motion decreases—suggestive of multiplicative changes in the
tuning curves (Martinez-Trujillo and Treue, 2004). Others have
proposed that attention acts non-multiplicatively on the sensory
signal, which may change not only the tuning properties of neu-
rons but also the spatial extent of their responses (Womelsdorf
et al., 2006, 2008). For instance, the receptive fields of MT neu-
rons have been shown to shift depending on whether the subject
attends objects inside or outside the receptive field.

MSTd AND ATTENTION
Dubin and Duffy (2007, 2009) investigated the responses of sin-
gle neurons in MSTd when monkeys were presented with radial
motion patterns and were primed to attend locations of the visual
field some distance from the FoE. The researchers found that neu-
rons selective for the FoE position showed an increased response
when the monkeys fixated the center of the visual display and
had to later saccade to the FoE location (behaviorally relevant
condition). Covert attention was assumed to travel between the
fixation and FoE locations during each trial because the FoE
appeared randomly in one of eight locations at 30◦ eccentric-
ity about the fixation point. In behaviorally irrelevant trials, an
attentional prime appeared and disappeared in one of the FoE
locations prior to the optic flow display onset and the monkeys
had to saccade to the prime location after the optic flow presen-
tation. The prime did not always coincide with the forthcoming
optic flow FoE location. The firing rate of neurons tuned to the
FoE position was enhanced, when the prime was close to the FoE
compared to when it was far away. Figure 1 shows the MSTd pop-
ulation firing rate results for the behaviorally relevant (red) and
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FIGURE 1 | Mean MSTd population firing rates, in the behaviorally
relevant (red), behaviorally irrelevant (blue), near (green), and far (cyan)
conditions. The timing of the mean MSTd population responses in the near
(135 ms), behaviorally relevant (216 ms), and far (312 ms) experimental
conditions, respectively, after the optic flow display appeared was
approximately linear. Data extracted from Figures 2C,D of Dubin and Duffy
(2009) and combined into a single figure.

irrelevant conditions (blue), averaged across all neurons, showing
an effect for behaviorally relevant or irrelevant trials. This plot is
derived from Figures 2C,D in Dubin and Duffy (2009). Figure 1
also shows the effects of distance between the attentional prime
and the FoE in the behaviorally irrelevant condition, where the
prime was located at 0◦ (near, green) or 60◦ (far, cyan) eccentric-
ity. The timing of the peak average population response of MSTd
neurons was related, almost linearly, to the distance in visual angle
between the prime and the FoE (r2 = 0.89). The green, red, and
cyan curves peak at 135, 216, and 312 ms, respectively. These
peaks correspond to the focus of “attention” at 0◦, 30◦, and 60◦
eccentricity relative to the monkey fixation point. Although the
mean MSTd population firing rates exhibit distinct peaks when
the prime appears near or far from the FoE location, behaviorally
irrelevant trials collectively yielded a flatter population response
(blue). Neurons that were not strongly tuned to the FoE location
in the near (gray, solid) and far (gray, dashed) prime conditions
showed lower mean population activities compared to neurons
tuned to the FoE. Why does the mean MSTd population peak
recede in time, and by what mechanisms?

This article introduces a computational model of MSTd to
mechanistically explain why the mean MSTd population response
peak recedes in time as the visuotopic distance traveled by atten-
tion increases.

Our neural model addresses the effects of spatial attention
on the neural dynamics, peak population response latencies, and
tuning curves of MSTd cells reported by Dubin and Duffy (2007,
2009). The model contains stages that correspond to primate
visual areas V1, MT, MSTd, and FEF. In model V1, units detect
local motion (Livingstone and Conway, 2003). To focus on the
dynamics of MSTd, we employ an analytic motion vector repre-
sentation in model V1. Model V1 projects to model MT, wherein
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we perform a long-range motion pooling over the model V1
responses over time. Cells in primate MT elicit aperture-resolved
responses to large fields containing uniform velocity patterns.
Model MT projects to model MSTd, which has units that respond
to large patterns of visual motion (Duffy and Wurtz, 1991). We
include model area FEF, which projects to MSTd, to provide
top–down attentional signals.

The spatial priming paradigm of Dubin and Duffy involves
saccadic planning, decision making, and expectation forma-
tion in monkey subjects. Area FEF in both non-human pri-
mates (Krauzlis, 2005) and humans (Corbetta et al., 1998;
Corbetta and Shulman, 2002) has been strongly implicated in
goal-oriented top–down selection and spatial orientation (Schall,
2004) in a tightly integrated ocular-motor and attention neu-
ral circuit that projects to MST (Colby et al., 1988). Our model
predicts that the attentional signals that modulate MSTd neu-
rons in the experiments of Dubin and Duffy originate in FEF.
The effects of attention have been documented in earlier visual
areas, such as V1 (Paradiso, 2002), however, there are no data
from V1 (or MT) during the modeled experiments and so we
do not attempt to address those attentional effects. We demon-
strate that recurrent competition between units in MSTd explains
the data of Dubin and Duffy (2007, 2009), irrespective of the
particular attentional signal used. Deflections in the population
temporal activity are predicted to signify dynamic shifts in neu-
ral activity between units sensitive to the FoE and the prime
locations, in other words as attention shifts from the prime
to the FoE.

MATERIALS AND METHODS
Our simulation conditions mimic the monkey behavioral
paradigm of Dubin and Duffy (2007) and Dubin and Duffy
(2009). In their experiments, two rhesus monkeys viewed radial
dot optic flow displays composed of 1000 dots moving at ∼40◦/s
on a 90◦ tangent screen. Single cells were recorded from area
MSTd 50–300 ms following the onset of the optic flow display.
The optic flow FoE appeared in one of eight locations regu-
larly spaced by 45◦ at 30◦ eccentricity around a centrally located
fixation point. The monkeys maintained fixation for 2 s during
a trial, then the optic flow display appeared for 1 s. Monkeys
were required to fixate within a 2◦ × 2◦ window of the center
of the screen and were rewarded for completing a saccade task.
On behaviorally relevant trials, a grid of eight targets, each cor-
responding to a possible FoE location, followed the optic flow
display and the monkeys had 500 ms to saccade to the target
that marked the position of the FoE during the trial. Dubin
and Duffy interleaved behaviorally relevant trials with those that
were behaviorally irrelevant. A square randomly appeared in one
of the eight possible FoE locations (the prime or cue) for 1 s,
and disappeared before the optic flow display onset. A delay
of 150–300 ms was introduced between the prime and optic
flow presentations. Instead of being instructed to saccade to
the location of the FoE, the monkeys were trained to saccade
to the location of the prime, irrespective of the FoE location.
Due to the random positioning of the prime, it could have
occupied the three nearest (near condition) or farthest (far con-
dition) positions relative to the FoE during the trial. The near

and far conditions therefore constituted subsets of the behav-
iorally irrelevant trials. Monkeys saccaded to the prime location
more than a second after the prime disappeared, hence it is
assumed that some attentional signal was maintained on the
prime location until the trial concluded. Behaviorally relevant
trials did not include a prime, but it is assumed that the mon-
keys attended the centrally located fixation point. The monkey
had no information to predict where the FoE would appear.
We simulated the two experimental conditions of Dubin and
Duffy (2007, 2009): behaviorally relevant and behaviorally irrele-
vant trials.

Dubin and Duffy analyzed neuronal tuning curves as a func-
tion of FoE location, and the average firing rates of neurons over
time across the trials were derived for subpopulations of cells that
showed statistically significant effects for the behaviorally relevant
and behaviorally irrelevant trials (near and far). Significance was
assessed using analysis of variance (ANOVA) with Greenhouse-
Greyser correction for non-spherical variance. Dubin and Duffy
recorded from 135 MSTd neurons in total, and 32 cells showed
significant effects to conditions assessed in the study. With respect
to experimental condition (behaviorally relevant and irrelevant),
16 exhibited significant effects for a single condition, 6 showed
significant effects to both conditions, and 6 showed a task by
FoE location effect (28 cells total). With respect to the relative
position between the FoE and the prime, 11 cells exhibited sig-
nificant effects for near vs. far, 4 for behaviorally relevant vs.
irrelevant task types, 1 for both types, and 6 for task by FoE
location (22 cells total).

In our simulations, we generated 1000 dot radial optic flow
displays that occupied 256 × 256 pixels, as shown in Figure 2.
Following the protocol of Dubin and Duffy, we constrained the

FIGURE 2 | A sample optic flow field used in the model simulations.

The base of each arrow represents the instantaneous position of one of
1000 dots, the direction indicates the dot’s instantaneous direction of
travel, and the arrow length is proportional to the speed.
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dot movement speed to follow a cos(θ)sin(θ) function, where
θ denotes the visual angle between the observer’s gaze or line
of sight on the FoE and each dot position located 1 m in
depth (Duffy and Wurtz, 1991). After adjusting the speed of
each dot according to this formula, we scaled the dot speeds
such that the average velocity of all the dots over the entire
trial was ∼40◦/s. Our results were the same whether we con-
strained dots to move at an average fixed speed (∼40◦/s) as
Dubin and Duffy did or simulated random dots observed at a
walking speed toward a simulated fronto-parallel plane 1 m in
depth. We simulated the dynamics of 128 MSTd neurons, each
having a receptive field centered on equally spaced positions
along the middle horizontal axis of the display. Each MSTd unit
had a large 90◦ × 90◦ receptive field, consistent with neurophys-
iological data (Duffy and Wurtz, 1995). To analyze the model
MSTd population results, we averaged the activity of all neu-
rons over 500 ms following the onset of the optic flow display.
For simplicity, we simulated FoE locations only along the cen-
ter horizontal axis. In order to derive neuronal tuning curves,
we selected 10 neurons tuned to similar FoE and analyzed their
responses to behaviorally relevant and behaviorally irrelevant tri-
als whereby the optic flow field FoE occupied one of nine evenly
spaced locations along the 90◦ middle horizontal axis. Our selec-
tion of 10 neurons is comparable to the 11 used by Dubin and
Duffy. For each FoE location and trial type, we averaged the
neurons’ activity 50–250 ms after the onset on the optic flow
display.

In the behaviorally relevant condition the monkeys could
not anticipate the FoE location and in the behaviorally irrel-
evant condition the prime disappeared over a second before
the monkey had to saccade. We find it unlikely that the differ-
ence in results can be attributed to residual bottom–up activ-
ity. We therefore assume that the monkeys attended the prime
position between the time it appeared and when the saccade
was made. Some spatial (attentional) neural signal indicated
whether the monkey should saccade to either the prime or FoE
location. In our behaviorally relevant trials (without a prime),
we simulated a spatial distribution that enhanced the activ-
ity of neural units sampling the FoE position. By contrast,
in the behaviorally irrelevant condition, the activity of neural
units sampling the prime location were enhanced. We modeled
the experimental conditions by adjusting the spatial position
of a Gaussian-distributed neural signal originating from FEF.
Microstimulation of FEF has been shown to locally modulate the
contrast sensitivity of cells in areas such as V4 (Reynolds and
Chelazzi, 2004).

G(x; c, μ, σ 2) : = c√
2πσ 2

e
−(x−μ)2

2σ2 (1)

Equation (1) specifies the Gaussian distribution that was sam-
pled to derive the spatial profiles of the neural signals from
model areas FEF to MSTd. In the behaviorally relevant condi-
tion, we set μ such that G was centered on the fixation point,
since the monkey was trained to saccade to the radial center
of the optic flow located 30◦ away. In the near and far con-
ditions, we set μ such that the Gaussian was centered 43%

and 86% closer to the edge of the screen away from the FoE
position. This simulates the 30◦ and 60◦ radial distance between
FoE and prime locations used by Dubin and Duffy in their
near and far conditions. We configured the Gaussian distribu-
tion to wrap around the population boundaries such that the
area under the curve for all conditions remained constant. Across
these three conditions, we fixed c = 6.5 and σ = 18.5◦. In the
experiments of Dubin and Duffy (2009), the behaviorally irrele-
vant trials encompassed both near and far conditions. To simulate
the behaviorally irrelevant condition, we averaged across all tri-
als with different prime locations (near and far). To investigate
whether or not the type of MSTd attentional modulation is
important, we applied the spatial signal from FEF in three dif-
ferent ways: by multiplying or adding the signal to the input
of MSTd, and by modulating the gain of MSTd sensory inputs.
Adding the attentional signal to the sensory input that MSTd
units receive can shift their receptive fields, which approximates
the behavior of non-multiplicative attention (Womelsdorf et al.,
2006). Multiplying the FEF signal with the sensory input MSTd
units receive enhances or suppresses existing activity, which
approximates the behavior of multiplicative attention (Martinez
et al., 1999). To ensure our model tested a variety of atten-
tion types, we multiplied the model FEF signal to the MSTd
sensory input such to only augment the gain of existing neu-
ral activity. In other words, units influenced by attention in
this case exhibit higher gain in their activations than those that
are not.

THE MODEL
As noted in the Introduction, the model contains stages
that correspond to primate visual areas V1, MT, MSTd, and
FEF. Model V1 projects to MT, which provides bottom–up
inputs to MSTd. FEF provides top–down attentional signals
to MSTd.

All simulations were run on a 8-core 2.66 Ghz Mac Pro with
64 GB of memory using Mathematica 8. Parameter values listed
in the text specify those that remained constant throughout all
simulations. Table 1 contains parameters values that varied for
different experimental conditions.

Equations in our model describe the temporal dynamics of
individual neurons or populations of neurons that densely sam-
ple the visual field. Model neurons obey ordinary differential
equations that feature shunting competitive dynamics (Grossberg,
1968). These equations perform a leaky integration of their

Table 1 | Parameter values used in simulations.

Attention case γMST δ n ζ w0

Non-multiplicative 0.03 1 3 0.0001 0.15

Multiplicative 0.014 1 3 4×10−14 0

Multiplicative gain 0.03 1 3 0.0005 0

Modified sigmoid 0 1.2 6 3×10−9 0.08

Modified sigmoid
(windowed)

0 1.1 6 2×10−9 0.065

Modified sigmoid
(distance-dependent)

0 1 6 4.5×10−9 0.057
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inputs and simulate many known properties of neurons, such
as divisive normalization (Heeger, 1992; Carandini and Heeger,
2011) and automatic gain control (Grossberg, 1983). Model
equations for area MSTd resemble the following membrane equa-
tion studied by Grossberg (1973), termed a recurrent competitive
field:

dxi

dt
= −αxi + (β − xi)(f (xi) + Ii) − (xi + γ)

∑
k�=i

f (xk). (2)

Equation (2) is a shunting equation that describes the activity,
x, of the ith cell in a neural network layer. The parameters α,
β, and γ define the passive decay rate (s−1), saturation upper
bound, and hyperpolarizing lower bound of the cell, respectively.
The terms (β − xi)(f (xi) + Ii) and −(xi + γ)

∑
k�=i f (xk) of

Equation (2) specify the shunting excitation by input I and
surround inhibition, respectively. In Equation (2), f (x) is a
signal function (Grossberg, 1973) that specifies the nature of
the feedback from cells in the same network layer. A sigmoidal
signal function, Equation (3), induces winner-take-all, pattern-
preserving, and uniformizing behavior when the activation
of units in the model falls in the faster-than-linear, linear, and
slower-than-linear regions of the signal function, respectively. For
a more comprehensive analysis of recurrent competitive fields,
such as those defined in Equations (2) and (9), see Grossberg
(1973). The parameters δ, w0, ζ, and n adjust the gain, threshold,
slope and position of the linear portion, and slope of the sigmoid,
respectively. In Equation (3), [·]+ denotes half-wave rectification,
max(·, 0).

f (w; δ, w0, ζ, n) = δ([w − w0]+)n

ζ + ([w − w0]+)n
(3)

V1
In model V1, we analytically compute first-order optic flow field
representations according to Equation (4) (Longuet-Higgins and
Prazdny, 1980), to create motion representations similar to those
shown in Figure 2.

It(x, y) : =
(

ẋ
ẏ

)
= 1

Z

(
x lz − lx

y lz

)
. (4)

In Equation (4), (ẋ, ẏ) represent the horizontal and vertical flow
components at the position (x, y) at time t, lz signifies the depth
component of the translational velocity of the observer (m/s), lx
indicates the horizontal component of the observer translation
(m/s), Z is the distance (m) from the observer to the point in
space represented by the dot. We use the notation It(x, y) to repre-
sent the vector-valued optic flow field (ẋ, ẏ) with spatial location
(x, y) at time t.

MODEL MT
Model V1 projects directly to Model MT, where cells have recep-
tive fields that integrate over particular velocities (speed and

direction). We define the pooled MT motion �M(x, y) according to

d �M(x, y)

dt
= −αMT �M(x, y)

+(It(x, y) ∗ GMT)(x, y; μMT, �MT, rMT) (5)

where ∗ denotes the 2D convolution operator, αMT represents
the passive decay rate (s−1) of each MT component unit, GMT

is a 2D discrete multivariate Gaussian kernel with mean μMT and
covariance matrix �MT normalized such that all points in the ker-
nel’s support sum to unity, and rMT defines the kernel radius (◦).
The points (x, y) refer to positions in 2D retinotopic coordinates.
For all simulations, we set αMT = 3. We model MT cells with
circular receptive fields, hence we set μ = �0 and �MT such that
σx = σy = σMT and the covariance ρ between x and y is zero. We
used σMT = 0.01◦ and rMT = 3◦ to conservatively simulate MT
cell receptive field properties found in neurophysiological stud-
ies (Born and Bradley, 2005; Churchland et al., 2005). Rather than
integrating each component of Equation (5), we used the analyt-
ical solution shown in Equation (6) to evaluate each model MT
cell at time t.

�Mt(x, y) = It(x, y)

α
∗ GMT(x, y)(1 − e−αt) (6)

MODEL MSTd
In model MSTd, we perform a template match between MT units
�Mt(x, y) and all templates �Ti(x, y). That is, for a given �Mt(x, y),

we match against �Ti(x, y) for all horziontal headings i. Templates
are defined as normalized radial optic flow fields computed
according to Equation (4) (Layton et al., 2012). We used 128
templates, each with a different FoE position uniformly sampled
along the 90◦ middle horizontal axis. We weight the template
match using inverse Euclidean distance. In Equation (7), we
obtain a scalar value pt

i for time t at the horizontal heading i,
representing the cosine similarity (i.e., inner product) between
distance-weighted vectors at each time and those in the template.

pt
i = λ

∑
{x,y}

Wi(x, y)

⎛
⎝∑

{ẋ,ẏ}

�Ti(x, y) � �Mt(x, y)

|| �Mt(x, y)||

⎞
⎠ (7)

In Equation (7), Wi(x, y) represents a distance-dependent weight-
ing from the horizontal heading indexed i. We use inverse 2D
Euclidean distance, scaled by a parameter λ to adjust the effec-
tive spatial extent of the templates. We selected λ = 200, which
broadly scales the distance-dependent weights across the visual
field. The inner summation performs component-wise multi-
plication (denoted by the � operator) between vectors in the
template �Ti(x, y) and on MT �Mt(x, y) for every spatial location.
The resulting vector is normalized by the L2 (Euclidean) norm
(denoted || �Mt(x, y)||) and then the vector components {ẋ, ẏ} are
summed.

We subsequently smoothed then sharpened the 1D pattern
match distribution in MSTd according to

Pt
i : = (pt ∗ GMST)nMST(i;μMST, σMST, rMST) (8)
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where ∗ is 1D cyclic convolution and GMST is a normalized 1D
Gaussian kernel. We set the radius rMST to 40◦, σMST = 10◦, and
mean of the MST kernel GMST μMST = �0. We sharpened the
resulting distribution with nMST = 30.

Finally, we introduce a dynamical competitive network to
describe each MSTd unit B at location i according to Equation (9).

dBi

dt
= −αMSTBi + (βMST − Bi)(f (Bi) + Pt

i )

−(γMST + Bi)
∑
k�=i

f (Bk). (9)

In Equation (9), f (Bi) and
∑

k�=i f (Bk) represent excitatory and
inhibitory recurrent inputs, respectively. The self-excitation term
f (Bi) can be considered as a form of post-synaptic input if one
makes an assumption that the cell does not have a physical
synaptic connection with itself. We set αMST = 0.01 (s−1) and
βMST = 1.

MODEL FEF
In Dubin and Duffy (2007, 2009) attention was maintained
prior to the optic flow presentation. We modeled the FEF sig-
nal as decaying (Equation 10) after the initial conditions were
set according to Equation (1) at t = 0. The parameters varied
according to the experimental conditions defined above. We set
αFEF = 0.01 (s−1).

dAi

dt
= −αFEFAi. (10)

Modulation of neuronal activity due to attention has been doc-
umented in visual areas fewer synapses away from the retina
than MSTd, such as V1 (Paradiso, 2002). This article is focused
on the response properties of MSTd as described by Dubin
and Duffy, we therefore implemented attentional effects only as
far as MSTd and investigated whether the effects of attentional
signals on the MSTd population may be sufficient to explain
the data.

ATTENTION CASES
Exactly how attention acts in cortex is not clear, but researchers
have proposed that it could either multiplicatively or non-
multiplicatively affect neural signals. We tested several possi-
ble ways an attentional signal could interact with MSTd cells.
First, we considered additive attention on MSTd cells by chang-
ing the excitatory (2nd) term in Equation (9) to (βMST −
Bi)(f (Bi) + Pt

i + Ai), where Ai is defined according to model
FEF (Equation 10). This modification provides an additive (non-
multiplicative) influence on MSTd unit inputs (Womelsdorf et al.,
2008). Second, we considered the effects of multiplicative atten-
tion on MSTd dynamics by modifying the excitatory term in
Equation (9) to (βMST − Bi)(f (Bi) + Pt

i × Ai). In this case, MSTd
activity is enhanced or suppressed but not induced (Martinez-
Trujillo and Treue, 2004). We also examined the effects of mul-
tiplicative gain by scaling the sensory input Pt

i in Equation (9) by
the spatial pattern from FEF, which modulates the gain of model
cell responses: (βMST − Bi)(f (Bi) + Pt

i × (Ai + 1)).

RESULTS
MSTd POPULATION TIMING
In order to assess the model’s ability to fit the basic neuronal
tuning curve and linear trend in the peak population temporal
activity of Dubin and Duffy (2007) and Dubin and Duffy (2009),
we employ the sigmoidal signal function defined by Equation (3)
with n = 3. Figure 3B summarizes the peak timing results as a
function of attention. As noted, we simulated non-multiplicative
(additive), multiplicative, and multiplicative gain attention con-
ditions. All attention simulation results exhibit a linear peak
timing trend similar to that found in the data of Dubin and
Duffy (2009) (Figure 1). Figure 3A shows the mean MSTd pop-
ulation response in the additive attention case. The timing of
the MSTd population activity peaks are at 165, 192, and 219 ms
(R2 = 1) corresponding to when the prime is at 0◦ eccentric-
ity (near condition), the FoE is at 30◦ eccentricity (behaviorally
relevant condition), and the prime is at 60◦ eccentricity (far con-
dition). In this case, the peak latencies exhibit an exact linear
trend. In the multiplicative attention case, we obtained MSTd
population peak latencies of 63, 72, and 81 ms for the near,
behaviorally relevant, and far conditions, respectively. In the mul-
tiplicative gain case, we obtained MSTd population peak latencies
of 147, 156, and 165 ms for the near, behaviorally relevant, and far
conditions, respectively. We obtained linear peak timings (R2 >

0.98 in all conditions) and similar qualitative appearances irre-
spective of the attention condition (Figure 3B). For the remainder
of this article we focus on the additive case.

When we modified the MSTd network signal function
(“Modified Sigmoid”) as specified in Table 1, we were able to
better model the temporal dynamics of the MSTd neurons and
obtain closer correspondence to the Dubin and Duffy (2009) data
(Figure 3B). Changing the sigmoid exponent n from 3 to 6 steep-
ened the slope of the sigmoid. The implications of this change are
that the activity of network units is less likely to enter the linear
range of the sigmoid signal function because it is narrower, and
units whose activity do enter the linear range are more likely to be
“pushed” out to the faster-than-linear or slower-than-linear seg-
ments. Figure 4A depicts the average population behavior over
time with the new signal function. The timing of the MSTd pop-
ulation activity peaks are at 123, 225, and 321 ms corresponding
to when the prime is at 0◦ eccentricity (near condition), the FoE
is at 30◦ eccentricity (behaviorally relevant condition), and the
prime is at 60◦ eccentricity (far condition). Similar to the data
of Dubin and Duffy (2009), the behaviorally irrelevant popula-
tion response (blue) did not yield a dominant peak. The modified
signal function better fits the data of Dubin and Duffy (2009). We
verified the network was making use of the full dynamic range of
the sigmoidal signal function by comparing the network behavior
to when we made f (w) a step function with threshold � = 0.25 to
emulate the shape of the sigmoid without the linear portion. The
step signal function preserved the linear peak timings, but did not
yield the multiple deflections seen in Figure 4A, which indicates
that model MSTd units use the linear region. The modified signal
function gives rise to a number of low frequency deflections in the
population activity that resemble those present in the Dubin and
Duffy data (Figure 1). Our simulations did not contain noise, so
we investigated the source of these deflections.
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FIGURE 3 | (A) The model mean MSTd population activation yields a
linear (R2 = 1) separation between the peak timings in the near
(165 ms), behaviorally relevant (192 ms), and far (219 ms) conditions,
respectively. In these respective conditions, the model simulates the
increasing distance attention traveled between the fixation and FoE
locations. (B) Summary of the population peak timing in the near,

behaviorally relevant, and far conditions as a function of the type of
attention modeled. Additive, multiplicative, and multiplicative gain
attention types all produced a linear peak timing (R2 > 0.98). Modifying
the sigmoidal signal function in model MSTd, as described in the text,
yielded the best timing correspondence to the Dubin and Duffy (2009)
data (gray line).
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FIGURE 4 | (A) Model mean MSTd population activation using a steeper
sigmoidal signal function compared to Figure 3A (see Table 1). The model
produces linear peak timing in near (green), behaviorally relevant (red), and far
(cyan) conditions while qualitatively simulating the low frequency deflections
present in the Dubin and Duffy (2009) data (Figure 1). The behaviorally
irrelevant condition (blue) does not yield a distinct peak, thereby qualitatively
matching the data of Dubin and Duffy (2009). (B) Model mean population
MSTd population activation of cells selective to the FoE position (windowed).

The solid and dashed gray curves show the activation of units not selective to
the FoE in the near and far conditions, respectively. (C) Model mean MSTd
population activation in a network that features distance-dependent
competition and windowing, which better reflect neurophysiological and
experimental conditions. Consistent with the data of Dubin and Duffy (2009)
(Figure 1), the curves for all conditions drop off more steeply after peaking,
the peak in the behaviorally relevant case has higher contrast, and the
behaviorally irrelevant condition response is flatter.

Figure 5 presents snapshots of the spatial activity in the tem-
plate matching layer for the near, behaviorally relevant, and
far conditions. Each subplot shows 120 ms of network activity
within model area MSTd. We used intervals of 120 ms to cap-
ture the dynamics around the low frequency deflections present in
Figure 4. In each set of plots, we identified a group of MSTd units
that respond primarily to the attentional signal (the attentional

subpopulation) and another group primarily driven by the sen-
sory bottom–up input (the sensory subpopulation). Note, the
subpopulations are in the same model MSTd layer and are only
classified as such based on their response to either the sensory
optic flow or attentional signal. The results in Figure 5 indi-
cate that the deflections arise due to competitive interactions
between the attentional (e.g., Figure 5C, right peak) and sensory
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FIGURE 5 | The spatial dynamics of the model MSTd heading

template match layer. (A–C) Show the temporal evolution of MSTd
cells in the near, behaviorally-relevant, and far conditions, respectively.
Each subplot contains snapshots of the network activity at uniformly
sampled times within 120 ms intervals. From left to right, the plots

show snapshots from contiguous 120 ms intervals. The FoE is located
in the center of the visual display (0◦). We call the cells primarily
influenced by the sensory optic flow (left peak) and attentional (right
peak) signals the sensory subpopulation and attentional subpopulation,
respectively.

(e.g., Figure 5C, left peak) subpopulations. Both attentional and
sensory inputs influence model neurons within each subpopula-
tion, so we use the terms attentional and sensory subpopulations
to refer to the primary distributions of activity within the net-
work induced by the respective signals. In the near condition
(Figure 5A), the first deflection, which happens to be the overall
population peak activity, occurs due to the superposition of the
MSTd response driven by the attentional signal (built up prior
to the arrival of the sensory input) and the sensory input due to
the optic flow (activity still ramping up at ∼120 ms) (Figure 5A,
left panel). Due to the competition, the average activity across the
network subsequently reduces for the next ∼50 ms. Finally, the
MSTd response to the sensory input reaches its peak at ∼225 ms
and then reduces due to competition at later times (Figure 5A,
center and right panels). In the behaviorally-relevant condition,
covert attention must travel 30◦ relative to fixation. Unlike the
near condition, the sensory and attentional signal superposition
is weaker when the first deflection occurs at ∼120 ms (Figure 5B,
left panel). However, the superposition is stronger later, result-
ing in the second deflection at 225 ms when attention reinforces
the bottom–up response to the optic flow (Figure 5B, center
panel). In the far condition, the prime is located at 60◦ eccen-
tricity relative to the FoE. The first deflection corresponds to
the high MSTd activity due to the attentional subpopulation

(Figure 5C, left panel). Since the sensory response is still devel-
oping in MSTd and the distance is far from the prime, less
superposition occurs and the network response is more evenly
distributed across MSTd, resulting in a lower average popula-
tion activity than the other experimental conditions. The second
deflection in the far condition arises due to fierce competition
between the sensory and attentional subpopulations (Figure 5C,
center panel). The attentional subpopulation loses the competi-
tion due to the emerging sensory response, which results in a
sudden dip in the average network activity at ∼300 ms. Finally,
the third deflection at 310 ms corresponds to the sensory subpop-
ulation reaching its maximal activity and the rapid decay of the
attentional subpopulation (Figure 5C, right panel). The sensory
subpopulation response takes longer to develop, because of the
strong competition.

WINDOWING
Dubin and Duffy included only neurons that showed signifi-
cant responses to the experimental conditions in their analyses.
We initially included all model cells. In order to better approxi-
mate electrophysiological conditions, we introduced windowing
whereby we only included cells moderately or highly selective to
the FoE of the optic flow display. This way, we do not include cells
that would not elicit a response to the sensory optic flow in our
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averaging. This was the criterion employed by Dubin and Duffy
(2009) to select neurons for analyses. It should be noted that
this affords a better data fit, but does not qualitatively affect our
results. The simulation results are shown in Figure 4B. Figure 4B
shows that peak latencies were 105, 219, and 339 ms for the near,
behaviorally relevant, and far conditions, respectively. The behav-
iorally irrelevant condition (blue) did not yield a clear peak. We
plotted the activations of units excluded from the colored curve
averages in the near and far conditions in solid and dashed gray,
respectively. Similar to the Dubin and Duffy (2009) data, the
gray curves resided below the colored curve conditions, and the
solid gray curve showed higher average activation than that of the
dashed gray curve.

DISTANCE-DEPENDENT COMPETITION
Our model assumes all cells globally compete with one another
with equal weight, despite the fact that they may have very dif-
ferent visuotopic preferred FoE locations. Since MST has a rough
topography (Born and Bradley, 2005), we introduce a distance-
dependent weighting in Equation (9) such that units compete
locally. Each MSTd unit now receives bottom–up input from a
single visuotopic location but receives only local inhibitory input
from neighboring units. The extent of the local competition in
MSTd is determined by the inhibitory kernel GMST. As shown
in Figure 4C, the distance-dependent network results combined
with windowing further improves the qualitative fit with the
Dubin and Duffy (2009) data. The smaller peak in the near con-
dition appears after the second deflection in the far condition,
the contrast between the first two behaviorally relevant peaks is
higher, and the mean MSTd population activity drops off faster
after the peaks occur in all conditions. Peak latencies were 99, 195,
and 291 ms for the near, behaviorally relevant, and far conditions,
respectively.

dBi

dt
= −αMSTBi + (βMST − Bi)(f (Bi) + Pt

i )

−(γMST + Bi)
∑
k�=i

∑
l

GMST(k − l, σ 2)f (Bl). (11)

Equation (11) shows the modified MSTd equation to implement
the distance-dependent interactions via GMST(μMST, σ2

MST), with
cMST = 4, σ = 60◦. Simulation results are shown in Figure 4C.
Compared to the results shown in Figures 4A,B, the attentional
and sensory subpopulations are composed of fewer units due
to the local inhibition, which results in larger drops in average
network activity when the sensory representation wins over the
attentional representation in the competition.

MSTd NEURONAL TUNING CURVES
Figure 6 shows the tuning curves of model neurons selective
to similar optic flow FoE in the near vs. far (Figure 6B) and
behaviorally relevant vs. behaviorally irrelevant (Figure 6A) con-
ditions. When presenting an optic flow display at MSTd units’
preferred FoE location, units exhibited a higher gain in the near
and behaviorally relevant conditions compared to far and behav-
iorally irrelevant conditions, respectively. When the units were
not tuned to the FoE position, units in these respective conditions
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FIGURE 6 | (A) Behaviorally relevant (red) vs. behaviorally irrelevant (blue)
attention tuning curves. Units selective to radial center of motion exhibited
higher grain in the behaviorally relevant condition compared to the
behaviorally irrelevant condition. Optic flow displays with FoE far from the
preferred location elicited a suppressed response in units. (B) Near (green)
vs. far (cyan) attention tuning curves. Units selective to radial center of
motion exhibited higher grain in the near condition compared to the far
condition. Optic flow displays with FoE far from the preferred location
elicited a suppressed response in units. The tuning curves were derived
from 10 model cells.

showed suppression. The tuning curves derived in Figure 6 reflect
the experimental findings of Dubin and Duffy (2007).

DISCUSSION
We have presented a dynamical model of primate MSTd that sim-
ulates the data of Dubin and Duffy (2007, 2009). Our model
produced peaks in the average population activity of MSTd units
with timings spaced linearly as the distance increased between
the center of the spatial attention signal and the FoE. The linear
trend in the peak timings was robust to a range of parameters,
including the steepness of the sigmoidal signal function slope
and signal function type (e.g., faster-than-linear and step func-
tions). Our quantitative fits of the data of Dubin and Duffy (2007,
2009) improved when we excluded units from the population
average that were not strongly selective for the optic flow FoE and
introduced distance-dependent competition into the network.
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Both modifications more accurately simulate the electrophysio-
logical and neurophysiological conditions of Dubin and Duffy
(2007, 2009). Our neuronal tuning curves exhibited increased
gain about the neuron’s preferred FoE when comparing the curves
generated from the aggregate behaviorally relevant vs. behav-
iorally irrelevant conditions and the near vs. far conditions. These
findings also match the data of Dubin and Duffy (2007, 2009).
Finally, we simulated multiplicative and non-multiplicative types
of attention acting on model area MSTd, and our model produced
qualitatively similar results irrespective of the particular type of
attention. Hence, our model is agnostic with respect to, and com-
patible with all of these forms of attention. Our MSTd network
equations feature built-in normalization (Equation 9), and are
also compatible with proposals of attention that incorporate a
normalization property (Reynolds and Heeger, 2009; Carandini
and Heeger, 2011).

The primary focus in selecting our model structure and
parameters (Table 1) was to use the minimal possible mecha-
nisms to fit the linear peak shift latencies. We tested three different
attentional mechanisms by adding as few parameters the model
as possible, while still capturing the expected behavior of each
attention type. Relative curve separations in the data (Figure 1)
and our model (Figure 4) agree well quantitatively at different
temporal milestones. Early in the “Windowed” and “Distance-
dependent” simulations at ∼100 ms, the ratio between the green
curve peak height and the heights of the cyan, purple, and red
curves underneath are close to those in the data. Late in all the
simulations, the ratio between heights of the cyan curve peak and
the green curve is also close to the data. However, in some cases
the ordinal heights of the curves in simulations differed from that
of the data. For example, under the cyan curve peak in the data,
the green curve was the next highest, followed by the red and pur-
ple curves. In the “Distant-dependent simulations,” the secondary
green curve peak that occurs after 200 ms decreases faster than
it does in the data and therefore it is the least active at the time
of the cyan curve peak. Conversely, the behaviorally irrelevant
condition curve decreases more slowly than it does in the data
and therefore is higher than the red curve. There are several rea-
sons why this may occur. First, an exhaustive search through the
model parameter space has not been performed, so parameters
that improve fits to the relative separations between experimental
curves may exist. Second, the model fits the average neural data
from Dubin and Duffy and does not consider the variance. Third,
many known properties of MSTd cells are not modeled, such as
differential receptive field sizes (Duffy and Wurtz, 1991), dynamic
ranges, and speed tunings (Duffy and Wurtz, 1997). Our goal was
identify the simplest core neural mechanisms that are required to
give rise to the data of Dubin and Duffy (2007, 2009).

The exact implementation of attention (additive, multiplica-
tive, and multiplicative gain) in the model did not affect the linear
separation in the peak latencies, but the fact that the model atten-
tional signal was concentrated in particular spatial locations and
assumed a Gaussian-like form is crucial for the model’s ability
to fit the data. In particular, the attentional signal modulated the
recurrent inputs in Equation (9), which resulted in higher firing
rate amplification closer the FoE, despite the attentional signal’s
exact form, and therefore decreased the mean MSTd population

activity peak latency when the attentional signal acted more prox-
imally to the FoE location. Note that if the recurrent competition
is not included in the model, the population peak activity will
always occur at the same time, defined by the temporal, not the
spatial, separation of the attentional and sensory signals. Without
the recurrent competition components, Equation (9) becomes a
leaky integrator and the absolute magnitude of the input signals
is the same in each experimental condition. With windowing, the
effect of additional stimulation from the attentional signal on the
FoE sensitive population varies depending on the spatial position
of the attentional prime, however, unless a subset of MSTd cells
saturate, these differences will have only minimal effects on the
timing of the peak population response. Recurrent competition
prolongs the time that the attentional signal produces a high acti-
vation response across the cell population after the attentional
prime is removed. This latent activation remains until there is
a competing sensory signal. When the latent activation peak is
close to the sensory activation peak the two populations merge
to produce an overall population peak soon after the presenta-
tion of the sensory signal. When the latent activation peak is far
from the sensory activation peak, the two populations compete.
Initially the latent activation is able to suppress the sensory acti-
vation, but as the competition continues the sensory activation
overtakes and suppresses the latent activation. In this case, the
overall population peak occurs when uncertainty as to the win-
ner is at its highest, in other words when the latent activation and
the sensory activation are roughly equal. We predict that atten-
tional signals from FEF act on target MSTd neurons that possess
a FoE preference near the spatially primed location of the visual
field and receive the most modulation. Neurons with distal FoE
preferences are predicted to successively receive less modulation
as a function of visuotopic distance. Our model would require
revision if a future experiment demonstrated that saccade-related
attentional signals from FEF do not mostly target MSTd neurons
with FoE preferences spatially coincident with the primed loca-
tion or if the signal targets MSTd neurons in an erratic rather than
a visuotopic, Gaussian-like fashion. In our model simulations,
we assumed that attention modulates neurons in MSTd prior to
sensory signals. This assumption is based on a recent study of sac-
cadic planning, which reports that saccade-related neural activity
arrives 30 ms earlier in MSTd than would otherwise occur with-
out saccades during fixation (Crowder et al., 2009). Future studies
that probe the difference in latencies between MSTd afferents
from MT and FEF could quantitatively test the prediction made
by the model that attentional signals arrives prior to sensory sig-
nals, perhaps by simultaneously recording from neurons in MSTd
and FEF. Experiments could also investigate the duration of FEF
modulation on MSTd neurons when monkeys are presented with
optic flow to test whether the signal influence decreases over time
as predicted by the model.

As noted, the recurrent inputs to MSTd units in Equation (9)
played an important role in fitting the data. Recurrent excita-
tion and inhibition in model MSTd is modulated by a sigmoidal
signal function (f (w) in Equation (9)). While we were able to
obtain evenly spaced peak separations, akin to those shown in
Figure 3, with a faster-than-linear signal function, such as f (x) =
x2, we obtained the best performance using a sigmoid function.
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Depending on a unit’s activity relative to the spatial pattern of
activity in the network, sigmoid signal functions afford analog
winner-take-all behavior in the network. Units whose activity falls
in the slower-than-linear portion of the sigmoidal signal func-
tion apply pressure on the rest of the population to suppress
lower activity maxima, which in turn further enhances the global
activity maximum. Unlike prior analysis of recurrent competi-
tive fields with sigmoid signal functions (Grossberg, 1973), our
MSTd simulations have dynamic, continuously varying inputs,
which directly impact the recurrent feedback to MSTd units. Due
to the continuously changing inputs and the use of a sigmoid
signal function, strong bottom–up inputs can override stable net-
work patterns, such as in the case when the attention signal is the
main MSTd input, and apply pressure on the MSTd population
to shift the location of the globally most active unit. This interplay
between bottom–up, top–down, and recurrent inputs gives rise to
the activity patterns shown in Figure 5.

Recurrent competition, FoE selective cells in MSTd, and tem-
poral competitive dynamics represent essential characteristics of
the model. We know of no other model that can fit the data
of Dubin and Duffy (2007, 2009). Balancing rising MT unit acti-
vation and decaying attentional signals from FEF in the model
allows competition within MSTd to produce the distinct activ-
ity peaks observed in Figure 5, which correspond to temporal
landmarks that indicate that a particular signal is winning the
competition. The dynamical properties of the MT and FEF signals
represent important aspects of the model that allows the mean
population activity in MSTd to peak at the appropriate times. A
prior version of the model cannot simulate this because it employs
difference equations (Layton et al., 2012). Other models that lack
temporal integration (Royden, 1997; Raudies et al., 2011), that are
filter-based (Perrone, 1992), or that lack continuous-time dynam-
ics (Browning, 2012), lack the necessary mechanisms to balance
bottom–up and top–down signals and are therefore unlikely to
be able to simulate the timing of peaks in the Dubin and Duffy
data. Because our model does not include spiking, synaptic and
conduction delays, temporal dynamics at the neuronal level may
differ compared to those implemented in the model. Further
experiments that show finer grain timing details about how atten-
tional signals interact with MSTd neurons may require the model
to be modified.

Our quantitative fits to each condition in the data of Dubin
and Duffy (2007, 2009) were achieved by the increased dis-
tance between the attentional and sensory signals defined in
the experimental paradigm. All model parameters were fixed,
except where explicitly noted in the text. The differences in peak
timings across the behaviorally relevant, near, and far experi-
mental conditions arise in the simulation due to the competi-
tive interactions between attentional and sensory representations
in MSTd. Although the low frequency deflections in the data
of Dubin and Duffy (2009) may appear to reflect random fluc-
tuations, we simulated these properties of the MSTd population
response without any noise (Figure 4). We therefore predict that
the low frequency deflections present in the neurophysiologi-
cal data may represent dynamic shifts between the sensory and
attentional subpopulations in MSTd. Figure 5 shows how the
increased distance between the attentional and sensory signals

result in fiercer competitive interactions and oscillations between
the MSTd subpopulations. The temporal integration of the recur-
rent competition and sigmoidal signal function were critical to
achieving these results.

If the hypothesis tested by the model that the low frequency
deflections in the neurophysiological data actually represent
important events in the processing of optic flow and attention is
correct, then the number and latency of subpeaks, should remain
the same for each experimental condition. The fact that each
data curve (Figure 1) is the result of averaging a large popula-
tion of neurons over many trials suggests this may be the case.
However, if the undulation properties vary over more trials, as
would be the case if the undulations are just noise, our hypothesis
would be incorrect. In our “Windowed” simulation, we discov-
ered that increasing the window size had the effect of compressing
the temporal spacing of and at times merging the average pop-
ulation peaks together. We therefore predict that characteristics
of the low frequency deflections, such as number of subpeaks,
change when the neuron population size over which one averages
changes, but the deflection properties should remain fixed for a
constant sample size.

Although our model successfully reproduces many results
of Dubin and Duffy (2007), the model cannot simulate one of
the employed paradigms. In Experiment 2 of Dubin and Duffy
(2007), monkeys observed behaviorally relevant and irrelevant
trials much like those described the present paper. However, in
behaviorally irrelevant trials, monkeys were presented with one
of four shapes rather than a strictly spatial prime prior to the
onset of the optic flow. The monkeys were trained to saccade to its
location when a grid of all four shapes appeared. The shape was
flashed at the fixation point prior to optic flow onset and would
reliably appear in a fixed location different from the fixation point
in the grid of four shapes after the optic flow was presented.
Therefore, the monkey could learn a specific shape-to-space map-
ping. In Experiment 3, Dubin and Duffy randomized the location
of the shape in the grid to preclude the monkeys from determin-
ing the saccade location prior to the shape grid appearance and
thereby preventing a space-to-space mapping from forming. In
both cases, the neuronal tuning curves qualitatively match those
shown in Figure 6: behaviorally relevant and near trials elicited
greater average firing in MSTd neurons than in behaviorally irrel-
evant and far trials, respectively, when the optic flow FoE was
nearby the preferred FoE location. Our model cannot simulate
the shape paradigm because it does not implement the learning
factors required by the monkeys to perform the task. Due to the
qualitative similarity between the neuronal tuning curves in the
strictly spatial and shape priming paradigms, however, the under-
lying attentional signal and MSTd dynamics may be similar. If the
model was updated to include a learning mechanism to associate
a shape with a particular spatial location, we believe our model
would simulate the results from Experiments 2 and 3.

As stated previously, we obtained qualitatively similar results
for all types of attention when acting within a realistic parame-
terization of the physiological timing. However, with multiplica-
tive attention, when we employed a different parameterization
and slowed down the growth of each unit’s integration of its
inputs, the relative timing between peaks increased exponentially.
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This result is because multiplicative modulation of the bottom–
up signal gives rise to exponential amplification over time. If
input amplitude were logarithmically transformed, the MSTd
population peak timings would again be linear. A logarithmic
scaling of MSTd inputs is consistent with cortical magnifica-
tion factor (Elder et al., 2009). If attention acts multiplicatively
in cortex and the cortical magnification factor logarithmically
transforms the sensory signal, then our analysis would be
compatible.

Our results suggest that when attention is engaged during
visually-guided navigation, recurrent competition in primate area
MSTd modulates the time the population will take to reach its
highest activity, and individual neurons tuned to the optic flow
FoE, when attended, exhibit higher firing rates. The model pre-
dicts that saccade planning and attention modulate the temporal
behavior of MSTd neurons, which may affect decision making
when primates navigate in the environment. More work needs

to be done to understand how primates engage attention in
more ecologically relevant scenes, and with independently mov-
ing objects. Evidence exists that heading is useful for steering
and as such, our model predicts that under divided attention
the competition in MSTd will take longer and the time required
to make confident steering decisions will also be longer. Recent
neurophysiological evidence exists that steering according to an
independently moving object or by surrounding optic flow alters
the responses of MSTd neurons (Kishore et al., 2011). These
findings are consistent with the model results showing that atten-
tion to different aspects of the environment changes the response
properties of MSTd neurons.
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