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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Despite recent advances in understanding how respiration affects neural signalling to influ-

ence perception, cognition, and behaviour, it is yet unclear to what extent breathing modu-

lates brain oscillations at rest. We acquired respiration and resting state

magnetoencephalography (MEG) data from human participants to investigate if, where, and

how respiration cyclically modulates oscillatory amplitudes (2 to 150 Hz). Using measures of

phase–amplitude coupling, we show respiration-modulated brain oscillations (RMBOs)

across all major frequency bands. Sources of these modulations spanned a widespread net-

work of cortical and subcortical brain areas with distinct spectrotemporal modulation pro-

files. Globally, delta and gamma band modulations varied with distance to the head centre,

with stronger modulations at distal (versus central) cortical sites. Overall, we provide the first

comprehensive mapping of RMBOs across the entire brain, highlighting respiration–brain

coupling as a fundamental mechanism to shape neural processing within canonical resting

state and respiratory control networks (RCNs).

Introduction

We all breathe. Human respiration at rest comes naturally and comprises active (but automatic)

inspiration and passive expiration [1]. The rhythmicity of each breath is initiated and coordi-

nated by coupled oscillators periodically driving respiration, most prominently the preBötzinger

complex located in the medulla [2]. This microcircuit typically controls respiration autono-

mously, making the act of breathing seem effortless. Importantly, however, respiration is also

under top-down control, as evident from adaptive breathing during, e.g., speaking, laughing,

and crying [3]. Hence, there is a bidirectional interplay of the cortex and rhythmic pattern gen-

erators of respiration: Efferent respiratory signals from the preBötzinger complex project to

suprapontine nuclei (via locus coeruleus and olfactory nuclei [4]) as well as to the central medial

thalamus, which is directly connected to limbic and sensorimotor cortical areas [5]. In turn, cor-

tical areas evoke changes in the primary respiratory network, e.g., to initiate specific motor acts

(e.g., swallowing or singing) or transitions between brain states (e.g., during panic attacks).

As neural oscillations have been established as sensitive markers of brain states in general

[6], the question arises to what extent rhythmic brain activity is modulated by the rhythmic act
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of breathing. Indeed, studies of respiration–brain coupling have recently attracted increased

attention, reporting a range of cognitive and motor processes to be influenced by respiration

phase. Human participants were found to spontaneously inhale at onsets of cognitive tasks [7]

and respiration phase modulated neural responses in sensory [8] and face processing [9] tasks

as well as during oculomotor control [10] and isometric contraction [11]. Parallel to this body

of work, animal studies have conclusively shown respiration to entrain brain oscillations not

only in olfactory regions [12], but also in rodent whisker barrel cortex [13] and even hippo-

campus [14]. In other words, brain rhythms previously attributed to cognitive processes such

as memory were demonstrated to at least in part reflect processes closely linked to respiration

[15].

Despite significant advances in the animal literature, these links are still critically under-

studied in humans. Notable exceptions include intracranial EEG (iEEG) work in epilepsy

patients corroborating that oscillations at various frequencies can be locked to the respiration

cycle even in nonolfactory brain regions [9]. Moreover, 2 noninvasive studies recently linked

respiration phase to changes in task-related oscillatory activity [7]. Overall, both animal and

human studies all lead to 3 fundamental questions that recognise respiration as a vital, contin-

uous rhythm persisting during all tasks and activities as well as at rest: (i) to what extent does

breathing modulate rhythmic brain oscillations at rest; (ii) where are these modulatory effects

localised in the brain; and (iii) how does modulation unfold over the course of the respiration

cycle. Therefore, what is needed is a comprehensive account integrating recent findings of res-

piration–brain coupling against the anatomical backdrop of canonical resting state and respi-

ratory control networks (RCNs). A variety of neural networks have extensively been described

to organise the brain’s intrinsic or ongoing activity, among which the default mode network

(DMN), the dorsal attention network (DAN), and the salience network (SN) have received

particular attention [16]. Previous studies have demonstrated intriguing anticorrelated

dynamics of activity between these large-scale networks (i.e., increases in one network lead to

decreases in another [17]). Such fluctuating relationships between cortical networks could

conceivably be modulated by changes in bodily states such as respiration. The full picture is

complemented by 2 distinct pathways responsible for the feedforward generation of the respi-

ratory rhythm and the neural processing of respiration-related signals, respectively: In addi-

tion to pattern generators like the preBötzinger complex in the medulla, deeper sites known to

be involved in respiratory control comprise further subregions within the brain stem [18] and

cerebellar nuclei [19]. On the other hand, nasal respiration evokes feedback signalling in

response to mechanical, thermal, or odour stimulation within olfactory areas in the forebrain,

most prominently the olfactory bulb (OB) and piriform cortex [12]. These (orbito-)frontal

feedback signals are a central contributor for respiration–brain coupling, as animal studies

have demonstrated that respiratory rhythms (i.e., air-driven mechanoreceptor signals within

the OB) are translated into neural oscillations and propagated to upstream areas [13]. Interest-

ingly, the RCN also includes directly connected cortical sites like primary and supplementary

motor areas (SMAs) [20] and even shows anatomical overlap with resting state networks,

namely within medial prefrontal cortex (mPFC) [21], insula [22], and anterior cingulate cortex

(ACC) [23]. We thus aimed to investigate respiration-related modulations of oscillatory brain

activity and its spectrotemporal characteristics at rest, relating their anatomical sources to

canonical networks of both resting state activity and respiratory control.

To this end, we simultaneously recorded spontaneous respiration and eyes-open resting

state magnetoencephalography (MEG) data from healthy human participants. Using the mod-

ulation index (MI) as a measure of cross-frequency phase–amplitude coupling [24], we first

assessed respiration-induced modulation of brain oscillations globally across the entire brain.

We then extracted single-voxel time series to localise the anatomical sources of these global
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modulation effects using beamforming (Fig 1A). We employed nonnegative matrix factorisa-

tion (NMF) for dimensionality reduction, effectively yielding a spatially constrained network

of cortical and subcortical sources of respiration phase–dependent changes in rhythmic brain

activity. Finally, we identified distinct spectrotemporal profiles of network components,

highlighting an intriguing organisational pattern behind respiration-induced modulation of

neural oscillations across the brain.

Results

Respiration phase modulates global field power

To assess the fundamental question of whether respiration modulates oscillatory brain activity

at rest, we first computed the MI in sensor space (using all 268 channels) for whole-brain

Fig 1. Respiration-induced modulation of global field power. (A) Exemplary schematic of our analysis approach

showing the wavelet transform of time series data from each voxel. Global field power was computed on the time

course of all 268 channels for further analyses of the MI and PTA. MI quantifies to what extent the amplitude

envelopes of frequency-specific brain oscillations (top right, red) were modulated by respiration (centre right, blue).

This way, we computed modulation indices for each sensor, frequency, and participant before localising voxelwise

time series in source space (see Fig 2). (B) Mean normalised MI (± SEM) over the entire frequency spectrum (right)

and corresponding t-values from the cluster permutation test (left). Random shifts of respiration phase were employed

to correct for low-frequency bias and to express MI in units of SD of a surrogate distribution (leading to normalised

MI; see Materials and methods). (C) Mean PTAs across the respiratory cycle over the entire frequency spectrum. PTAs

were computed by averaging frequency-specific amplitude envelopes (panel A) time locked to peak inhalation. Note

that PTAs were standardised for illustration purposes. Therefore, they show relative changes over the respiration cycle

within each frequency band and do not directly correspond to absolute MI amplitudes from panel B. Also note that

SNR decreases towards the edges of the panel (i.e., approaching ± π) due to increased variation of underlying single

respiratory cycles that were used for phase-locked analysis. Underlying data are provided in the folder “Fig 1” on the

OSF directory. MAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 4:Pleaseverifythatallentriesarecorrect:I, modulation index; PTA, phase-triggered average; SD, standard deviation; SNR, signal-to-noise

ratio.

https://doi.org/10.1371/journal.pbio.3001457.g001
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global field power ranging from 2 to 150 Hz. This analysis quantifies to what extent the ampli-

tude of global brain oscillations is modulated by the phase of respiration. Our cluster permuta-

tion analysis revealed significant respiration-locked modulation of global field power

indicated by the high normalised MI across the entire frequency spectrum (all p< 0.001, clus-

ter corrected at α = 0.05; see Fig 1B). Local peaks with strongest modulation occurred at about

2, 30, 75, and 130 Hz (with strongest absolute modulation effects in the beta band), indicating

differential modulation of specific brain oscillations (see S1 Fig for range and distribution of

subject-level MI spectra). Next, we computed the phase-triggered average (PTA) to character-

ise these global modulation effects over a respiratory cycle. PTA is computed as the average of

oscillatory amplitude across windows centred on all time points of peak inhalation. We found

respiration phase to differentially modulate oscillations of various frequencies with distinct

time courses. In particular, whereas most frequency bands showed strongest modulation

effects around the inspiration peak, beta oscillations were visibly coupled to a different phase

of respiration around inspiration onset (Fig 1C; see S2 Fig for subject-level PTA

spectrograms).

This first analysis therefore revealed that the amplitude of global oscillatory brain activity

was significantly modulated by respiration in a broad frequency range from 2 to 150 Hz with a

temporal modulation that differs across frequencies. To gain a deeper understanding of how

respiration modulates rhythmic activity across the brain, 2 questions immediately ensued,

namely to localise the anatomical sources of such modulation effects and to explore their spec-

trotemporal profiles in more detail.

Modulatory effects of respiration phase can be traced to cortical and

subcortical networks

To identify the anatomical sources of these global modulations, we quantified how strongly

respiration modulated the amplitude of brain oscillations within each voxel in the brain of

each participant at each frequency between 2 and 150 Hz by computing the MI. Next, we used

sparse NMF to reduce the dimensionality of the three-dimensional data set

(participants × voxels × frequency; see Materials and methods). This resulted in an optimal

low-dimensional representation consisting of 18 components. Each component reflected res-

piration-modulated brain oscillations (RMBOs) across the frequency spectrum, quantified as

NMF weights for each participant, voxel, and frequency. For spatial specificity of NMF compo-

nents, each component’s spatial map was thresholded at the 99th percentile, yielding the

n = 202 voxels with the strongest modulation. For all 18 components, we show the spatial loca-

tion of the network on an inflated brain as well as the full MI spectrum with shading corre-

sponding to frequency bands of significant modulation (all p< 0.002, cluster corrected across

frequencies and components at α = 0.05; see Fig 2). For individual spatial maps for all 18 com-

ponents, see S3 and S4 Figs. Phase-dependent modulations of all 18 components are shown in

S5 Fig. Together, this provides a comprehensive spatiotemporal spectral account of respira-

tion-modulated networks in the resting brain.

Fig 2A shows the network’s cortical sources to be localised along the midline (ACC, SMA,

posterior cingulate cortex (PCC), cuneus, and lingual sulcus) as well as in lateralised frontal

(frontal eye field (FEF) and insula), temporal, and parietal cortices (angular gyrus and intra-

parietal sulcus (IPS)). The network’s deeper, subcortical sites included several lateralised (crus

1, lobules 7b/8) and midline (vermis 9/10) subsections within the cerebellum, left parahippo-

campal cortex, and medial sources in the orbitofrontal cortex (OFC; extending onto the gyrus

rectus) and brain stem (Fig 2B). In order to quantify modulation effects between components,

we compared each component’s MI at a given frequency with the average MI across all other
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components. Components #3 and #14 (both located within the left cerebellum) showed above

average modulation in the high gamma band, whereas components #6 (r. STG/r. temporal

pole) and #11 (brain stem) were more strongly modulated in the delta and alpha band, respec-

tively. Component #10 (bil. SMA) showed above average modulation in the beta and low

gamma range. Finally, component #12 (bil. ACC) was less strongly modulated at low gamma

frequencies than the grand average across components (see S6 Fig).

Fig 2. Anatomical locations and spectral modulation profiles of NMF components whose neural oscillations were significantly modulated by

respiration. (A) Cortical components plotted on an inflated brain surface. Bottom graphs illustrate each component’s normalised average MI

course across frequencies (2 to 150 Hz). Upper graphs show component-specific t-value spectra from the cluster permutation test (with significant

cluster-corrected frequencies shaded). Horizontal red line marks the significance threshold of each component, and vertical lines mark borders

between frequency bands (delta to high gamma). Spatial maps were thresholded at the 99th percentile across all 20,173 voxels of each component,

yielding the n = 202 voxels with the strongest modulation. Colour bar indicates corresponding p-values. (B) Subcortical components plotted on

transverse and sagittal slices of the MNI brain. Same format as A. Underlying data are provided in the folder “Fig 2” on the OSF directory. ACC,

anterior cingulate cortex; FEF, frontal eye field; MI, modulation index; MNI, Montreal Neurological Institute; NMF, nonnegative matrix

factorisation; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PAU : PleasedefinePHCintheabbreviationlistofFig2ifapplicable=appropriate:HC, parahippocampal cortex; SMA, supplementary motor area; STG,

superior temporal gyrus; TPJ, temporoparietal junction.

https://doi.org/10.1371/journal.pbio.3001457.g002
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These results provide several important insights. First, respiration significantly modulates

oscillatory brain activity within a specific, but widely distributed cortical and subcortical brain

network. Second, across these areas, significant RMBOs can be found across almost the entire

frequency range from 2 to 150 Hz. Third, the temporal modulation pattern of RMBOs is by no

means uniform across frequencies and brain areas.

Distinct spectrotemporal profiles of RMBO sites

Having localised the anatomical network underlying RMBOs, we next attempted to map dis-

tinct modulation patterns to anatomical subnetworks, with similarly modulated sites being

grouped together. To this end, we employed hierarchical clustering of all 18 network compo-

nents based on their MI across the frequency spectrum (as shown in Fig 2). This data-driven

approach yielded a total of 7 clusters comprising between 1 and 5 components (Fig 3; see S7

Fig and Materials and methods for details): Cluster A consisted of a single component within

the left insular cortex/OFC and showed significant modulation across all frequency bands

except the delta band. Cluster B showed a clear cortical organisation along the midline, com-

prising bilateral PCC and SMA components with significant modulation from theta up to high

gamma oscillations. Similarly, cluster C comprised 2 components within bilateral ACC and

right FEF with significant modulation from alpha up to high gamma oscillations. Cluster D

was formed by a total of 6 components spanning inferior, medial, and superior temporal gyrus

(ITG, MTG, and STG), parietal cortices (anterior intraparietal sulcus (aIPS)/temporoparietal

junction (TPJ), and angular gyrus) as well as deep cerebellar areas showing RMBOs. Due to its

widespread topography, at least 1 cluster component showed significant modulation across the

entire frequency spectrum. Cluster E again consisted of a single component (spanning bilateral

(pre-)cuneus/lingual sulcus) with significant modulation in the theta, beta, and both gamma

bands. Finally, 2 clusters were formed exclusively by deep sources: Cluster F comprised 2 com-

ponents within the left cerebellum where oscillations across the whole frequency spectrum

were significantly modulated by respiration. Cluster G consisted of 4 components within the

left parahippocampal cortex, brain stem, cerebellum, and gyrus rectus/medial OFC and

showed significant modulation from theta up to the high gamma band.

In order to investigate how MI spectra varied with anatomical location, we conducted a lin-

ear mixed effect model (LMEM) analysis modelling oscillatory modulations as a function of

components’ distance to the head centre (considering x, y, and z planes). This analysis revealed

that the fixed effect of distance to the head centre significantly influenced modulations within

the delta (t(502) = 3.55, p< 0.001) as well as the low (t(502) = 2.49, p = 0.013) and high

gamma bands (t(502) = 3.85, p< 0.001), with stronger modulations for more distal (compared

to central) components. Further, frequency-specific analyses were conducted to characterise to

what extent this overall distance effect was driven by sagittal, frontal, and transversal location,

respectively (see S1 Text and S1 Table for details).

Intriguingly, not only were different frequency bands modulated within a network of corti-

cal and subcortical sites, but the time courses of these modulatory effects were equally fre-

quency specific. Polar plots in Fig 3 show the temporal modulation of RMBOs across the

respiratory cycle for each cluster. Respiration phase was differentially coupled with amplitudes

of low-frequency oscillations (such as delta and theta) compared to high-frequency oscillations

(e.g., within the gamma band). Low frequencies consistently showed higher amplitudes during

the beginning and end of a respiration cycle (with lowest amplitudes around peak inspiration),

whereas the pattern appeared reversed for higher frequencies (see Fig 3). While specific spatio-

temporal interactions of respiration–brain coupling exceeded the conceptual scope of this
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study, our findings are the first to suggest such spatiospectral gradients and thus warrant

detailed examination in future work.

RMBOs within nodes of resting state and RCNs

Extending the distinction of deep versus more superficial components, cortical RMBOs were

predominantly found in brain areas that have previously been established as nodes within the

DMN (PCC, angular gyrus, and precuneus), DAN (FEF and aIPS), or saliency network (SN:

insula and ACC; see [15]). Moreover, all deep and cerebellar modulation sites corresponded to

a mostly subcortical network of brain areas controlling respiratory function, including bilateral

cerebellum, gyrus rectus/OFC, brain stem, and SMA (Fig 4C). Finally, as a potential link for

future studies, Fig 4D appears to suggest that, although RMBOs of different frequencies had

distinct temporal modulation profiles in general, there could also be certain sequential modu-

lation patterns across clusters within a particular frequency. For example, while significant

modulation of beta oscillations showed a general peak around expiration onset (distinct from

Fig 3. Time-frequency characteristics and anatomical distribution of component clusters. Hind view of the glass

brain illustrates the spatial distribution of component clusters A to G (numeration according to Fig 2; see S8 Fig for top

and side views). Spheres mark peak locations of components and are coloured according to cluster affiliation. Top

curve plots depict z-transformed modulation indices of individual components within the cluster (group-level

mean ± SEM, identical to Fig 2) across all frequencies to visualise within-cluster similarities. Vertical bars mark

borders between frequency bands (see Fig 2 and main text). Polar plots show cluster-average RMBOs (colour coded for

frequency; see top left) as a function of respiration phase (where zero corresponds to the peak of the respiration signal).

For clarity, polar plots are restricted to frequencies that were significantly modulated in at least 1 component of the

respective cluster. Underlying data are provided in the folder ‘Fig 3’ on the OSF directory. exp, expiration; insp,

inspiration; RMBO, respiration-modulated brain oscillation.

https://doi.org/10.1371/journal.pbio.3001457.g003
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Fig 4. Mapping clusters of NMF components to canonical neural networks. (A) Top view stylised illustrations of

neural nodes composing the DMN, DAN, and SN as described in the literature. (B) Cortical brain areas showing

significant RMBOs (as in Fig 3) are colour coded according to their correspondence to the resting state networks shown

in A. As the MTG has increasingly been included in the DMN but was not part of its original formulation, NMF

components located within the MTG are marked with a dashed line. (C) Direct mapping of all 16 clustered NMF

components to the resting state neural networks (see a) and the RCN gained from the literature. Colour code for clusters

A to G taken from Fig 3. (D) Waterfall plots show z-transformed amplitude modulation phase locked to the respiration

cycle exemplified for beta (left) and high gamma oscillations (right). Clusters of NMF components are shown in the same

order as in c. Right panel bar graphs show the number of participants whose modulation within the respective component

was strongest for the depicted frequency band (versus all other frequency bands). Coloured bars and circular segments

mark NMF components for which the respective frequency band was significantly modulated by respiration phase. See S9

Fig for waterfall plots of the remaining frequency bands. Underlying data are provided in the folder “Fig 4” on the OSF

directory. aIPS, anterior intraparietal sulcus; DAN, dorsal attention network; DMN, default mode network; dmPFC,

dorsomedial prefrontal cortex; FEF, frontal eye field; MTG, medial temporal gyrus; NMF, nonnegative matrix

factorisation; PCC, posterior cingulate cortex; pIPS, posterior intraparietal sulcus; pAU : PleasedefinepITGintheabbreviationlistofFig4ifapplicable=appropriate:ITG, posterior inferior temporal

gyrus; RCN, respiratory control network; RMBO, respiration-modulated brain oscillation; SMA, supplementary motor

area; SN, salience network; vIPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; TP,

temporoparietal.

https://doi.org/10.1371/journal.pbio.3001457.g004
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e.g., high gamma modulation), this peak appeared to occur earlier and less pronounced in

cluster B (PCC and SMA) than in cluster D (cerebellum and temporoparietal cortex). Future

work could aim to verify such latency effects between nodes of the RMBO network and their

potential functional significance. At present, our results provide a unique perspective on the

general link between respiration phase and changes in oscillatory activity, showing how the

sources of these modulatory effects correspond to nodes of canonical networks in control of

resting state activity and respiratory function.

Discussion

Using noninvasive MEG recordings of human participants at rest, we performed the first spa-

tially and spectrally comprehensive analysis of brain activity that is modulated by respiration.

We identified RMBOs across the entire spectrum between 2 and 150 Hz within a widespread

network of cortical and subcortical brain areas. The voxel-based analysis employed adaptive

beamforming for source localisation. Adaptive beamforming optimally combines MEG

recordings from all sensors to estimate the time series of neural activation at a given voxel

while maximally suppressing interferences from other voxels. Although spatial resolution

decreases with distance from sensors, it is generally suitable for cortical and subcortical areas.

Intriguingly, instead of a uniform modulation pattern across brain areas and frequencies, our

analysis revealed respiratory modulation signatures that differed between brain areas in fre-

quency and the temporal modulation profile. Our results demonstrate that respiration signifi-

cantly modulates oscillatory brain activity in a manner that is precisely orchestrated across

frequency bands and networks of resting state activity and respiratory control. In what follows,

we will integrate our novel results with the existing animal and human literature, characterise

the functionality of neural oscillations within distinct networks, and attempt to provide an

overview of potential multilevel mechanisms behind RMBOs.

Subcortical and cortical sites of respiration–brain coupling

Gamma oscillations within the OB were the first to be described in detail [25] and reflect local

computations within the OB [26]. In a next step, slower (e.g., beta band) oscillations are

thought to organise such local activity across brain areas [27] and appear to be the most coher-

ent within the OB [28]. Similarly, even slower theta oscillations play a crucial role in the tem-

poral organisation of neural activity within the hippocampal network and, consequently, its

coordination with the mPFC [29]. Our findings substantially advance these notions by show-

ing that respiration phase modulates both low and high oscillatory frequencies within a spatial

array comprising OB/OFC, brain stem, and cerebellum. As described earlier, the preBötzinger

complex is widely regarded as the main pattern generator of respiratory rhythms within the

brain stem [4], where ascending catecholaminergic neurons receive projections from the cere-

bellar vermis [30]. In addition to brain stem projections, the vermis regulates autonomic

responses including cardiovascular tone and respiration through connections to the spinal

cord and hypothalamus [31]. These cerebellothalamic pathways affect cortical gamma activity,

in that cerebellar projections to the “motor” ventral anterior lateral (VAL) nucleus of the thala-

mus, the (higher order) posterior thalamic nucleus (VP), and intralaminar nuclei are used to

coordinate and synchronise gamma oscillations within sensorimotor areas [32] and across the

neocortex [33].

The cerebellum itself projects to motor and nonmotor cortical areas, including prefrontal

and posterior parietal cortex [34]. In turn, it receives input from a wide range of higher-order,

nonmotor areas within the extrastriate cortex, posterior parietal cortex, cingulate cortex, and

the parahippocampal gyrus, which is monosynaptically connected to the OB [35]. As the first
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olfactory relay station in the brain, the OB receives direct projections from receptors within

the nasal cavity [36]. These feedback signals not only encode odour information in olfactory

receptor cells [37], but also mechanical stimulation of mechanoreceptors triggered by nasal

airflow [38]. As outlined above, subsequent neural activity patterns are then transmitted to

upstream sites including OFC, hippocampus, and insula, which we fittingly found to be part of

the RMBO network.

In sum, our findings integrate and extend a variety of individual results in 2 ways: First, cor-

tical nodes within the RMBO network precisely reflect bidirectional projection areas of the

deep and subcortical nodes (OB, brain stem, and cerebellum) via medullar and thalamic path-

ways. Second, the cortical nodes markedly resemble “sensorimotor distributions” shown in

multiple functional magnetic resonance imaging (fAU : PleasenotethatfMRIhasbeendefinedasfunctionalmagneticresonanceimaginginthesentenceSecond; thecorticalnodesmarkedly::::Pleasecheckandcorrectifnecessary:MRI) studies of respiratory control [39],

raising the question as to how different cortical areas—motor areas, ACC, and insular cortex

—are involved in the act of breathing. As both premotor and supplementary motor cortices

contain representations of respiratory muscles [40], they have long been implicated in respira-

tory control. Similarly, ACC has been identified in studies of air hunger [23] and CO2-stimu-

lated breathing. Finally, insular cortex activation is a consistent feature of many neuroimaging

studies of dyspnoea [22]. The close mapping of frontal, cingulate, and parietal areas to canoni-

cal resting state networks (see Fig 4) suggests a general involvement of respiration in human

brain processing irrespective of particular task demands. In this context, it is noteworthy that

nodes of resting state networks exhibit amplitude correlations predominantly in the beta fre-

quency band [41]. In our data, this frequency band shows strongest global modulation by res-

piration (Fig 1B) and features prominently in the coupling of specific resting state networks to

respiration (Figs 3 and 4), suggesting that these amplitude correlations within resting state net-

works are at least partially related to respiration.

Active sensing, respiration, and behaviour

The widespread extent and spectral diversity of the RMBO network critically corroborate pre-

vious suggestions of respiration as an overarching “clock” mechanism organising neural excit-

ability throughout the brain [13]. Excitability adapts neural responses to current behavioural

demands, which is why respiratory adaptation to such demands in animals [42] and humans

[43] have accordingly been interpreted as functional body–brain coupling. Indeed, animals as

well as humans appear to actively align their breathing to time points of particular behavioural

relevance for the sake of efficiency through optimised neural processing. Consequently,

human respiration has fittingly been cast as active sensing [44], adopting key premises from

predictive brain processing accounts [45] to explain how respiration synchronises time frames

of increased cortical excitability with the sampling of sensory information. Our results provide

first insights into how established mechanisms like cross-frequency phase–amplitude coupling

(in this case, coupling peripheral to neural rhythms) are implemented on a global scale to

translate respiratory rhythms into neural oscillations of various frequencies and how the

resulting anatomical pattern of RMBOs reflects spectral specificity.

Potential mechanisms behind RMBOs

Cross-frequency coupling is widely regarded as the core mechanism of translating slow

rhythms into faster oscillations and has conclusively been shown to be driven by respiratory

rhythms within the OB in mice [13]: During nasal inspiration, air enters the respiratory tract

and triggers mechanoreceptors connected to the OB, thereby initiating infraslow neural oscil-

lations closely following the respiratory rhythm (pAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:hase–phase coupling). The phase of these

slow oscillations then drives the amplitude of faster oscillations (phase–amplitude coupling)

PLOS BIOLOGY Respiration modulates oscillatory neural network activity at rest

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001457 November 11, 2021 10 / 22

https://doi.org/10.1371/journal.pbio.3001457


and propagates to upstream areas both within and beyond the olfactory system [46]. With ref-

erence to the concept of active sensing introduced above, we argue that a similar case can be

made for the cerebellum: There is broad consensus that the cerebellum is involved in computa-

tions attributed to internal forward models, predominantly in motor control [47]. These for-

ward models are just as crucial for perception and cognition as they are for motor

performance, leading to the suggestion that cerebellar processing may help to align and adap-

tively modify cognitive representations for skilled and error-free cognitive performance [34].

The prominent role of cerebellar sources in our present findings suggests that respiration

modulates these functional connections by means of cross-frequency coupling, linking respira-

tion to motor and cognitive function.

Strong support for this hypothesis comes from a recent study [48] showing that the cortical

readiness potential, originating within premotor areas, fluctuates with respiration. Notably,

the authors suggest cross-frequency coupling to involve neural interactions between premotor

areas and both insular and cingulate cortex as well as the medulla, which is precisely the path-

way we propose to connect deep and cortical nodes within the RMBO network. A simple

graph model of excitatory and inhibitory cells has been shown as proof of principle for cortical

gamma modulation through respiration (modelled as sinusoidal input) [49]. The authors later

concluded that respiration-locked brain activity has 2 driving sources [50]: On the one hand,

respiration entrains OB activity via mechanoreceptors, as seen in local field potentials [25]. On

the other hand, Heck and colleagues propose extrabulbar sources within the brain stem, which

are of critical importance for the generation of the respiratory rhythm itself. Functionally, res-

piration thus appears to modulate higher oscillatory frequencies (e.g., gamma) for the purpose

of integrating locally generated assemblies across the brain [51]. Our data now show that respi-

ration–brain coupling (i) spans an even more extensive network including deep cerebellothala-

mic pathways; and (ii) involves a wider variety of oscillatory modulation than previously

assumed. Importantly, our analyses demonstrate that the spectral specificity of respiration-

related modulations within the RMBO network cannot be explained by mere changes in CO2

alone (see S3 Text).

While the RMBO network presented here provides the most comprehensive account of

human respiration–brain coupling to date, central research questions emerge as objectives for

future work. First, having established the sources of respiration-related changes to neural oscil-

lations, the transition from resting state to task context will illuminate the relevance of RMBOs

for behaviour. Cognitive, perceptive, and motor performance have been shown to be modu-

lated by respiration, warranting a closer assessment of the where (i.e., which site) and when

(i.e., at which phase) of task-related RMBOs. Second, we have outlined functional pathways

connecting the cerebellum to cerebral cortex via medullar and thalamic projections as well as

the close link between OB and parahippocampal as well as prefrontal cortices. These putative

hierarchies should be tested with directional measures of functional connectivity in order to

reveal organisational relations within the RMBO network. Similarly, directed connectivity

analysis can disambiguate bottom-up from top-down signals within the wider RMBO network

and potentially illuminate the notably lateralised effects within it: Although lateralisation is not

uncommon in well-established functional networks (e.g., related to attention; see [52]), it will

be instructive for future work to validate whether RMBOs reliably prove stronger in one hemi-

sphere (as was the case for insula and FEF) or whether there is a separate dynamic underlying

the involvement of individual nodes.

In summary, our comprehensive investigation of respiration–brain coupling emphasises

respiration as a powerful predictor for amplitude modulations of rhythmic brain activity

across diverse brain networks. These modulations are mediated by cross-frequency coupling

(linking respiratory to neural rhythms) and encompass all major frequency bands that are
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thought to differentially support cognitive brain functions. Furthermore, respiration–brain

coupling extends beyond the core RCN to well-known resting-state networks such as default

mode and attention networks. Our findings therefore identify respiration–brain coupling as a

pervasive phenomenon and underline the fact that body and brain functions are intimately

linked and, together, shape cognition.

Materials and methods

Participants

A total of 28 volunteers (14 female, age 24.8 ± 2.87 years [mean ± SD]) participated in the

study. All participants denied having any respiratory or neurological disease and gave written

informed consent prior to all experimental procedures. The study was approved by the local

ethics committee of the University of Muenster (approval ID 2018-068-f-S) and complied with

the Declaration of Helsinki.

Procedure

Participants were seated upright in a magnetically shielded room while we simultaneously

recorded respiration and MEG data. MEG data were acquired using a 275 channel whole-head

system (OMEGA 275, VSM Medtech, Vancouver, Canada) and continuously recorded at a

sampling frequency of 600 Hz. During recording, participants were to keep their eyes on a fix-

ation cross centred on a projector screen placed in front of them. To minimise head move-

ment, the participant’s head was stabilised with cotton pads inside the MEG helmet.

Data were acquired in 2 runs of 5-minute duration with an intermediate self-paced break.

Participants were to breathe automatically through their nose while tidal volume was mea-

sured as thoracic circumference by means of a respiration belt transducer (BIOPAC SystemsAU : PleasenotethatPLOSdoesnotallowtermslikeInc:; Ltd:; etc:; inthemanuscriptexceptasappropriateintheaffiliations:,

Goleta, United States of America) placed around their chest. Continuous monitoring via video

ensured participants were breathing through their nose instead of their mouth. Individual res-

piration time courses were visually inspected for irregular breathing patterns such as breath

holds or unusual breathing frequencies, but no artefacts were detected.

For MEG source localisation, we obtained high-resolution structural magnetic resonance

imaging (MRI) scans in a 3T Magnetom Prisma scanner (Siemens, Erlangen, Germany). Ana-

tomical images were acquired using a standard Siemens 3D T1-weighted whole brain

MPRAGE imaging sequence (1 × 1 × 1 mm voxel size, TR = 2,130 ms, TE = 3.51 ms, 256 × 256

mm field of view, 192 sagittal slices). MRI measurement was conducted in supine position to

reduce head movements, and gadolinium markers were placed at the nasion as well as left and

right distal outer ear canal positions for landmark-based co-registration of MEG and MRI

coordinate systems. Data preprocessing was performed using Fieldtrip [53] running in

MATLAB R2018b (The Mathworks, Natick, USA). Individual raw MEG data were visually

inspected for jump artefacts and bad channels, but neither were detected. Both MEG and res-

piration data were resampled to 300 Hz prior to further analyses.

MRI co-registration

Co-registration of structural MRIs to the MEG coordinate system was done individually by

initial identification of 3 anatomical landmarks (nasion, left and right pre-auricular points) in

the participant’s MRI. Using the implemented segmentation algorithms in Fieldtrip and

SPM12, individual head models were constructed from anatomical MRIs. A solution of the

forward model was computed using the realistically shaped single-shell volume conductor
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model [54] with a 5-mm grid defined in the Montreal Neurological Institute (MNI) template

brain (MNI, Montreal, Canada) after linear transformation to the individual MRI.

Computation of global field power

For the computation of global field power, the time courses of each channel of each participant

were individually subjected to a continuous wavelet transform using a Morlet wavelet for 36

frequencies (from 2 Hz to 20 Hz in steps of 2 Hz and then in steps of 5 Hz up to 150 Hz). Next,

we computed the absolute value of this complex-valued data and averaged these amplitude val-

ues across channels.

Head movement correction

Based on previous respiration-related work from our lab [11], it was reasonable to assume that

there would be respiration-induced changes in head position and/or rotation. Therefore, we

computed individual Spearman correlations between the normalised respiration time course

and head movement traces of translation and rotation (in x, y, and z direction, respectively)

using the accurate online head movement tracking that is performed by our acquisition system

during MEG recordings. Correlation coefficients were Fisher z-transformed and averaged

across runs (for each participant) and across participants to yield group-level average correla-

tion coefficients for all 6 head movement time courses. A series of t tests revealed significant

correlations between the respiration signal and translation in the x plane (ρ [27] = −0.16, t [27]

= −10.31, p< 0.001) as well as rotation in both x plane (ρ [27] = −0.16, t [27] = −10.99,

p< 0.001) and z plane (ρ [27] = 0.16, t [27] = 11.08, p< 0.001; all p-values corrected for multi-

ple comparisons using the Bonferroni–Holm method). S10 Fig shows head movement traces

(translation and rotation) phase locked to respiration.

As some correlation between respiration and head movement was to be expected, it was

critical to rule out that our results were confounded by these head movements. To this end, we

used a correction method established by Stolk and colleagues [55]. This method again used the

head movement tracking information (described above), i.e., 6 continuous signals (temporally

aligned to the MEG signal) that represent the x, y, and z coordinates of the head centre (Hx,

Hy, and Hz) and the 3 rotation angles (Hψ, Hϑ, and Hφ) that together fully describe the head

movement. We constructed a regression model comprising these 6 “raw” signals as well as

their derivatives and, from these 12 signals, the first-, second-, and third-order nonlinear

regressors to compute a total of 36 head movement-related regression weights (using a third-

order polynomial fit to remove slow drifts). This regression analysis was performed on the

power spectra of single-sensor (and single-voxel) time courses for analyses in sensor and

source space, respectively, removing signal components that can be explained by translation or

rotation of the head with respect to the MEG sensors.

In addition to controlling potential artefacts caused by head movement, we report a related

control analysis for high-frequency muscle artefacts in S2 Text.

Computation of MI and PTA

The MI quantifies cross-frequency coupling and specifically phase–amplitude coupling [24].

Here, it was used to study to what extent the amplitude of brain oscillations at different fre-

quencies is modulated by the phase of respiration. To this end, the instantaneous phase of the

respiration time course was computed with the Hilbert transform. Next, the time series at each

sensor location were sequentially subjected to a continuous Morlet wavelet transformation at

frequencies ranging from 2 to 150 Hz (with 2 Hz spacing below 20 Hz and 5 Hz spacing above

20 Hz) using the cwtft function in MATLAB with default settings. This function computes a
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continuous Morlet wavelet transform using a Fourier transform-based algorithm. The Fourier

transform of our wavelet is defined as

C fð Þ ¼ p� 1
4 e�

ðf � f 0Þ2
2 H fð Þ; ð1Þ

where H(f) is the Heaviside function, and f0 is the centre frequency in radians/sample. We

then computed the amplitude envelope and smoothed it with a 300-ms moving average. MI

computation was then based on the average amplitude at 20 different phases of the respiratory

cycle. Any significant modulation (i.e., deviation from a uniform distribution) is quantified by

the entropy of this distribution. To account for frequency-dependent biases, we followed pre-

viously validated approaches [9, 56] and computed 200 surrogate MIs using random shifts of

respiratory phase time series with concatenation across the edges. The normalised MI was

computed by subtracting, for each frequency, the mean of all surrogate MIs and dividing by

their standard deviation leading to MI values in units of standard deviation of the surrogate

distribution (see Fig 1B). Visual inspection confirmed that this removed the frequency bias in

raw MI values (stronger MI for low frequencies compared to high frequencies). The computa-

tion resulted in normalised MI values for each channel, frequency, and participant. Following

the established approach by Maris and colleagues [57], significance of these normalised MI val-

ues on the group level was determined by means of cluster-based permutation testing using

ft_freqstatistics in Fieldtrip. This test controls for multiple testing and involves different steps.

Specifically, we conducted a series of 1-tailed t tests of individual MI values at each frequency

against the 95th percentile of the null distribution from the 200 surrogate MI values. t-Values

were then thresholded at p = 0.05 and spectrally adjacent significant data points were defined

as clusters. For each cluster, we then defined the cluster-level statistics as the sum of the t-val-

ues within every cluster. Each cluster was then tested for significance using Monte Carlo

approximation. For this approximation, single subject MI spectra were randomly interchanged

with the previously used 95th percentile spectra, and the t test was recomputed followed by

clustering and computation of the cluster-level summed t-values. After repeating the randomi-

sation procedure 5,000 times, the original cluster statistics were compared to the histogram of

the randomised null statistics. Clusters in the original data were deemed significant when they

yielded a larger test statistic than 95% of the randomised null data.

To assess oscillatory modulation over time, the PTA was computed from the smoothed,

band-specific amplitude envelopes averaged across all sensors. Time points of peak inhalation

were detected from the respiration phase angle time series using MATLAB’s findpeaks func-

tion. For each time point of peak inhalation, global field power across all 36 frequencies was

averaged within a time window of ± 1,000 samples centred around peak inhalation. The result-

ing 36 frequencies × 2,000 samples matrix was finally normalised across the time dimension,

leading to z-scores of whole-head oscillatory power phase locked to the respiration signal. This

analysis is equivalent to a wavelet-based time-frequency analysis. Computations were done

separately for both MEG runs, normalised across the time domain, and finally averaged across

runs and participants.

Extraction of time series in source space

Source reconstruction was performed using the linearly constrained minimum variance

(LCMV) beamformer approach [58], where the lambda regularisation parameter was set to

0%. This approach estimates a spatial filter for each location of the 5-mm grid along the direc-

tion yielding maximum power. A single broadband (2 to 150 Hz) LCMV beamformer was

used to estimate the voxel-level activities across all frequencies.
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Rank optimisation and NMF

In our efforts to anatomically localise respiration phase–dependent modulation effects, we

employed a spatially sparse variant of NMF to reduce the high (voxelwise) dimensionality in

our data. Sparse NMF allows us to describe modulation indices across the brain as a low-

dimensional combination of locally constrained network components, each of which provides

a spectral profile for each participant. NMF has previously been applied for topological analy-

ses of M/EEG data during tasks [59], at rest [60], and in decoding approaches [61]. As the MI

is inherently nonnegative and the interpretation of NMF output matrices is rather straightfor-

ward, nonnegative factorisation in general was well suited to meet our demands. The sparse

factorisation approach in particular has 2 key advantages over a regular NMF approach: First,

regarding network identification, the sparsity constraints are highly beneficial in obtaining

spatially specific rather than broad topologies, which was central for the next steps of our anal-

yses. Second, these spatially specific topologies greatly enhance the precision with which

time × frequency modulation characteristics can be displayed within one network component

—the more distant voxels are included, the more component-specific modulations are diluted.

In order to balance baseline differences between participants in preparation of the NMF, MI

matrices of all 28 participants (20,173 voxels × 36 frequencies) were first normalised by their

standard deviation [59]. These matrices were then averaged across both runs to yield one aver-

age matrix per participant. Individual matrices were transposed and concatenated to form one

group-level input matrix (1,008 [frequencies × participants] × 20,137 voxels) for the NMF. To

determine the number of main components to be extracted from NMF, we used the choosingR
MATLAB function [62] that chooses the optimal rank based on singular value decomposition.

Specifically, the function extracts the singular values of a data matrix (in our case, participants’

normalised MI matrices; size 36 frequencies × 20,173 voxels) and computes the sum of all non-

zero elements of its diagonal. The optimal rank is then determined as the number of singular

values that accounts for 90% of all diagonal entries. Applying this procedure to participants’

individual normalised MI matrices (36 frequencies × 20,173 voxels) returned a dimensionality

of 18 as the optimal desired number of network components for the subsequent NMF analysis.

Subsequently, we initialised the sparsenmfnnls algorithm from the NMF toolbox for

MATLAB [63]. The algorithm factorises the concatenated input matrix X as

X � AY; ð2Þ

with the nonnegative matrices A and Y aiming to minimise the following quantity:

X � AY2

F þ ZAY
2

F þ l
XN

i¼1
y2

i1; ð3Þ

where η and λ are sparsity parameters. As NMF solutions vary as a function of their random

starting position, we repeated this procedure 100 times and selected the best sparse solution

based on its residuals. Two matrices were generated as the output of this procedure: First, the

basis matrix A (1,008 [frequencies × participants] × 18 components) represents the partici-

pant-specific spectral profile, effectively quantifying each participant’s relative contribution to

the network components separately for each frequency. The basis matrix was reshaped to a

36 × 28 × 18 (frequencies × participants × network components) matrix for all further analy-

ses. As the second NMF output, the coefficient matrix Y (18 components × 20,173 voxels) rep-

resents the spatial profile of the network components, quantifying each voxel’s relative

contribution to the components.
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Component-level statistical analyses

While most components represented a single focal location due to the sparsity constraints

embedded in the NMF algorithm, 4 components comprised distinct subnetworks of 2 or 3

anatomical sites. Spatial maps of all 18 network components are shown in Fig 2. These maps

were generated by thresholding full-brain maps (with a total of n = 20,173 voxels) at the 99th

percentile, yielding spatially specific maps with an extent of n = 202 voxels. To determine the

frequency range(s) for which the MI within a particular component was significant on the

group level, we used the same cluster-based permutation approach described in detail in the

section “Computation of MI and PTA.” Here, this approach was used on all components

together to correct for multiple comparisons across all 36 frequencies and 18 components.

Modulation differences across NMF components

In order to compare modulation spectra across the RMBO network, we conducted a control

analysis that compares frequency-specific effects across the 18 NMF components: For all com-

ponents 1..n and each of the 36 frequencies used in our main analyses, we computed z-scores

by comparing the MI value at frequency i of a given component j to the average MI value

across the remaining 17 components:

zi;j ¼
mMIi;j � mMIi;1::nnj

sMIi;1::nnj
:

This yielded a matrix of 18 components × 36 frequencies quantifying the difference between

each component’s MI spectrum relative to the grand average across all components. S10 Fig

visualises this matrix thresholded at z = ± 2.33 (corresponding to p = 0.01). A component’s MI

values were considered significantly different from the mean of all other components when the

difference exceeded the critical z value. Components #3 and #14 (both located within the left

cerebellum) showed greater than average modulation in the high gamma band, whereas com-

ponents #6 (r. STG/r. temporal pole) and #11 (brain stem) were more strongly modulated in

the delta and alpha band, respectively. Component #10 (bil. SMA) showed above average mod-

ulation in the beta and low gamma range. Finally, component #12 (bil. ACC) was less strongly

modulated at low gamma frequencies than the grand average across components.

LMEMs

We employed LMEM to investigate the relationship between the spatial organisation and spec-

tral characteristics within the network of modulated components. LMEM models a response

variable (in our case, modulation indices within a particular frequency band) as a linear com-

bination of fixed effects shared across the population (i.e., anatomical coordinates of network

components) and participant-specific random effects (i.e., modulatory variation between par-

ticipants). To assess potential links between spatial and spectral component properties, we first

computed each component’s anatomical distance to the head centre as the vector norm of

MNI coordinates in the x, y, and z plane:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2 þ z2

p
: ð4Þ

We then specified an LMEM to predict modulation indices of a particular frequency band

within each component as a function of its distance to the head centre:

MIj ¼ b0 þ ðb1 þ S1jÞ � r þ ej: ð5Þ
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For participant j, the MI is expressed as a combination of the intercept (β0), the fixed effect

of the component’s distance to the head centre (β1), and an error term (ej ~ N(0,σ2)). We

accounted for between-participant variation by specifying a random slope (S1j). An analogous

approach was used to predict modulation indices within each component separately for each

plane (see S1 Text and S1 Table).

Hierarchical clustering

Having localised the sources of global field power modulations within a constrained subset of

anatomical sites, our next aim was to characterise these sources in terms of their spectrotem-

poral fingerprints. This way, we hoped to reveal systematic patterns of phase-locked oscillatory

modulations over time and/or frequencies within the cortical and subcortical network. To this

end, we first computed the group-level average matrix of modulation indices for 20,173 vox-

els × 36 frequencies × 20 time bins. We used the anatomical distribution of each network com-

ponent (thresholded at the 99th percentile) to reduce this matrix to a component-specific

spatial map and aggregated 36 single frequencies into frequency bands as follows: delta (2 to 4

Hz), theta (4 to 8 Hz), alpha (8 to 2 Hz), beta (12 to 30 Hz), low gamma (30 to 70 Hz), and high

gamma (70 to 150 Hz). This yielded one matrix (6 frequency bands × 20 time bins) per net-

work component, all of which were concatenated to construct a distance matrix for the hierar-

chical clustering using the hcluster function within the Icasso toolbox for MATLAB [64]. This

data-driven approach was employed to detect similarities of and differences between network

components with regard to how oscillatory activity was modulated over the course of a respira-

tion cycle. Following the suggested approach [64], we used visual inspection of the dendro-

gram to evaluate the clustering solutions. Based on a local maximum of the resulting silhouette

value distribution, we settled on a total of 7 clusters (see Fig 3). We computed the average

course of modulation indices over frequency bands within each cluster based on z-trans-

formed spectral profiles of the contributing network components (as described above).

SAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutSupportinginformationcaptions:Pleaseverifythatallentriesarecorrect:upporting information

S1 Table. LMEM results for MI values as a function of x, y, and z planes. Frequency bands

were defined as described in the main text. Underlying data are provided in the folder “Supple-

mentary Information” on the OSF directory. LMEM, linear mixed effect model; MI, modula-

tion index.

(XLSX)

S1 Fig. Range and distribution of sensor-level MI values. Violin plot shows the distribution

of individual MI values (depicted as dots) as well as the group-level median (white dot) across

the whole frequency spectrum. Underlying data are provided in the folder “Supplementary

Information” on the OSF directory. MI, modulation index.

(TIF)

S2 Fig. Individual respiration traces and phase–amplitude spectrograms. Left panels show

single respiration traces centred around peak inspiration from each run. Right panel shows the

individual phase–amplitude spectrogram averaged across all sensors. PTA values are shown as

z-values, i.e., normalised within each frequency to reveal phase-related modulations. Underly-

ing data are provided in the folder “Supplementary Information” on the OSF directory. PTA,

phase-triggered average.

(TIF)

S3 Fig. Individual spatial maps of cortical NMF components, projected on an inflated

brain. As in Fig 2, whole-brain NMF components were thresholded at the 99th percentile,
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resulting in anatomical locations with an extent of n = 202 voxels. Underlying data are pro-

vided in the folder “Supplementary Information” on the OSF directory. NMF, nonnegative

matrix factorisation.

(TIF)

S4 Fig. Individual spatial maps of subcortical NMF components, shown in frontal, sagittal,

and transversal planes. As in Fig 2, whole-brain NMF components were thresholded at the

99th percentile, resulting in anatomical locations with an extent of n = 202 voxels. Crosshairs

are positioned at the peak voxel of each location, and atlas labels are provided (corresponding

to the nomenclature in Fig 2B). Underlying data are provided in the folder “Supplementary

Information” on the OSF directory. NMF, nonnegative matrix factorisation.

(TIF)

S5 Fig. Temporal modulation profiles of NMF components whose neural oscillations were

significantly modulated by respiration. (A) Cortical components plotted on an inflated brain

surface. Polar plots show group-level normalised MI time courses averaged within frequency

bands (delta to high gamma) over the entire respiration cycle. (B) Subcortical components

plotted on transverse and sagittal slices of the MNI brain. Same format as A. Underlying data

are provided in the folder “Supplementary Information” on the OSF directory. MI, modula-

tion index; MNI, Montreal Neurological Institute; NMF, nonnegative matrix factorisation.

(TIF)

S6 Fig. Comparison of frequency-specific modulations across components. For each com-

ponent and each frequency, we computed z-scores by comparing frequency-specific MI values

of a particular component to the average across all other components (see main text for

details). Opacity indicates significant differences (i.e., z = ± 2.33). Underlying data are pro-

vided in the folder “Supplementary Information” on the OSF directory. MI, modulation index.

(TIF)

S7 Fig. Dendrogram of the hierarchical clustering performed on all 18 main components

from the NMF analysis. Dashed vertical line illustrates the cutoff criterion, yielding a total of

7 clusters. Cluster colouring is identical to Figs 3 and 4. Underlying data are provided in the

folder “Supplementary Information” on the OSF directory. NMF, nonnegative matrix factori-

sation.

(TIF)

S8 Fig. Top (left) and side view (right) of the RMBO network spanned by the 18 significant

NMF components. Numbering corresponds to Figs 2 and 4C as well as S3 and S4 Figs. Cluster

colouring is identical to Figs 3 and 4 as well as S7 Fig. Underlying data are provided in the

folder “Supplementary Information” on the OSF directory. NMF, nonnegative matrix factori-

sation; RMBO, respiration-modulated brain oscillation.

(TIF)

S9 Fig. Waterfall plots show z-transformed amplitude modulation phase locked to the res-

piration cycle for the remaining frequency bands (from Fig 4D). Clusters of NMF compo-

nents are shown in the same order as in Fig 4C. Right panel bar graphs show the number of

participants whose modulation within the respective component was strongest for the depicted

frequency band (versus all other frequency bands). Coloured bars and circular segments mark

NMF components for which the respective frequency band was significantly modulated by res-

piration phase. Underlying data are provided in the folder “Supplementary Information” on

the OSF directory. NMF, nonnegative matrix factorisation.

(TIF)
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S10 Fig. Head movement across the respiratory cycle. Top panel shows individual (grey

lines) and group-level average time courses of the normalised respiration signal (bold). Bottom

panel shows group-level average head movement signals phase locked to the respiration signal.

Both translation (measured as Euclidean distance, yellow) and rotation (blue) are depicted as

vector norms combining movement traces in x, y, and z directions. Underlying data are pro-

vided in the folder “Supplementary Information” on the OSF directory.

(TIF)

S1 Text. Extended LMEM analysis of spatial patterns across planes. LMEM, linear mixed

effect model.

(DOCX)

S2 Text. Control analysis for high-frequency muscle artefacts.

(DOCX)

S3 Text. Control analyses for spectrally unspecific modulations and movement-related

changes in oscillatory power.

(DOCX)
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