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Abstract: Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion
mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also
known as Lou Gehrig’s disease) and frontotemporal dementia (FTD), progress in understanding the
signaling pathways related to this mutation can only be described as intriguing. Two major theories
have been suggested—(i) loss of function or haploinsufficiency and (ii) toxic gain of function from
either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated
non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially
participate in the disease progression. Dysregulation of the immune system, particularly glial cell
dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and
gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of
glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence
of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding
protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding
of these pathways can provide new insights into the development of therapies targeting glial cell
abnormalities in C9orf72 ALS/FTD.

Keywords: C9orf72 gene; C9orf72 repeat expansion mutation; amyotrophic lateral sclerosis (ALS);
frontotemporal dementia (FTD); astrocytes; microglia; glial cells

1. Introduction

Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) and fron-
totemporal dementia (FTD) are two devastating neurodegenerative diseases with a high
burden on society. It is currently believed that ALS and FTD are parts of a disease spec-
trum that share clinical, genetic, and pathological findings. Clinically, 30–50% of ALS
patients have cognitive deficits, and ~15% of patients with FTD exhibit symptoms/signs
of ALS [1,2]. Histopathological studies have also shown that >97% of ALS and ~50% of
FTD patients aggregate inclusions of the TAR DNA-binding protein 43 (TDP-43) in both
affected neurons and glial cells [3–7]. In 2011, a trio of teams [8–10] discovered a GGGGCC
(G4C2) nucleotide repeat expansion mutation in the first intron of the chromosome 9 open
reading frame 72 (C9orf72) gene as the most frequent genetic cause in up to 35–45% of
familial ALS, 5–20% of sporadic ALS, 15–25% of familial FTD, and 6–7% of sporadic FTD
patients [11]. Although the number of hexanucleotide repeats varies considerably among
these patients, overall, repeat numbers of <30 are considered to be non-pathogenic [12].
The relationship between repeat expansion size and phenotype is still equivocal, which
could be due to somatic variability in expansion size [2]. C9orf72 ALS patients have a mean
onset age of 57 years old and a median survival rate of 30–37 months [13]. Although more
frequent bulbar onset has been reported in C9orf72 ALS patients compared to ALS patients
without a C9orf72 repeat expansion mutation [14–16], this is still debatable, because a
recent multi-center prospective natural history study on C9orf72 ALS cases reported a
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higher rate of limb (54%) than bulbar (39%) onset [13]. What is undebatable, however, is
that the prevalence of FTD is significantly higher in C9orf72 ALS cases, accompanied by
higher rates of disease progression and prominent cognitive/behavioral changes [14,17]
(Figure 1). Co-morbid dementia is present in 50% of C9orf72 ALS patients [14]. C9orf72
FTD patients have also more common psychotic features and irrational behavior compared
to non-C9orf72 FTD cases [18,19].
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Although much more research is needed to understand the normal function of C9orf72
in humans, the discovery of C9orf72 repeat expansion mutations as the most common
genetic etiology in ALS/FTD has opened a new avenue of research for elucidating dis-
ease mechanisms and, ultimately, therapeutic approaches for this fatal disease. Initial
observations identified decreased levels of C9orf72 protein in several brain/spinal cord re-
gions [8,10,20–25], suggesting a loss of function or haploinsufficiency as a main pathogenic
mechanism. Using a variety of C9orf72 knock out/down animal models, several mech-
anisms related to this theory were suggested, including aberrant autophagy, disrupted
endosomal/lysosomal or endoplasmic reticulum (ER)-Golgi transport systems, and excito-
toxicity [2,26]. Although this hypothesis still explains several aspects of C9orf72 ALS/FTD
pathogenesis, other investigators have proposed a gain of toxic function, through the
generation of toxic RNA repeats and dipeptide repeat proteins (DPRs) [2]. In recent years,
compelling evidence indicates a role for immune dysregulation, particularly related to glial
cell abnormalities, as an important mechanism underlying C9orf72 ALS/FTD pathogenesis.
Here, we comprehensively review the current literature on the pathogenic roles of glial cells,
focusing on microglia and astrocytes, in C9orf72 ALS/FTD as evidenced by pre-clinical and
clinical studies.

2. Overview of Pathogenic Mechanisms Underlying C9orf72 Repeat Expansion
Mutation in ALS/FTD
2.1. Loss of Function Mechanisms

The C9orf72 gene consists of 11 exons (including two alternate non-coding first exons—
1a and 1b) [8]. Through alternative splicing, it can be transcribed into three transcript
variants (Figure 2). The (G4C2)n repeat expansion mutation is located in intron 1 of
variants 1 and 3, whereas in variant 2, it is located within the promoter region (Figure 2).
Therefore, the repeat expansions are not incorporated into variant 2 pre-mRNA. Two
protein isoforms are encoded from these transcript variants—(i) a short 222-amino acid
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protein (24 KDa) from variant 1 and (ii) a long 481-amino acid protein (54 KDa) from
variants 2 and 3 [8,9]. Compared to variants 1 and 3, expression of variant 2 is higher
in the central nervous system (CNS) relative to other tissues [27,28], especially in the
fetal brain and adult cerebellum and frontal cortex, and has lower expression in the
hippocampus [8]. Based on immunohistochemical studies, the C9orf72 protein is mainly a
neuronal cytoplasmic protein, localizing largely at the presynaptic terminals [29]. More
investigation using specific antibodies for either short or long C9orf72 protein has also
demonstrated that long C9orf72 protein has a diffuse cytoplasmic presence in neurons
with a large antibody staining in cerebellar Purkinje cells [30]. However, the short C9orf72
protein has a very specific nuclear membrane localization in healthy neurons, with evident
plasma membrane relocalization in the ALS motor neurons [30]. Cellular expression and
localization of C9orf72 protein isoforms also alter throughout the development [31].
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are represented in orange and non-coding exons in blue (not to scale).

Investigations on carriers of C9orf72 expansions have found reduced levels of C9orf72
transcript variants (particularly variants 1 and 2) in the frontal cortex [8,10,20–24], cerebel-
lum [22–25,32], motor cortex [25], cervical spinal cord [25], induced pluripotent stem cell
(iPSC)-derived neurons [25,27,33,34], and blood lymphocytes [8,20,35]. Higher levels of
variant 1 were linked with prolonged survival after disease onset in expansion carriers [24].
This could be an important consideration for the development of new therapeutic ap-
proaches targeting C9orf72. Moreover, C9orf72 protein levels may be reduced in the frontal
cortex in these subjects [23,30]. The above findings led to the initial assumption that the
loss of C9orf72 protein level or function may be involved in the disease pathogenesis.
Accordingly, several mechanisms have been proposed, as we discuss below.

Initial investigations revealed that C9orf72 protein shows structural homology to
the differentially expressed in normal and neoplastic cells (DENN) guanine nucleotide
exchange factor (GEF) proteins [36]. Functioning as a GEF, the DENN domain of C9orf72
protein is predicted to interact with Rab GTPases [36–39], which play crucial roles in both
vesicular trafficking and autophagy. Immunohistochemistry of C9orf72 ALS patient motor
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neurons shows enhanced colocalization between C9orf72, Rab7, and Rab11 (involved in late
endosome maturation or endosome recycling, respectively) compared with controls [40].
Additionally, decreased expression of C9orf72 was shown to potentiate the aggregation
and noxiousness of Ataxin-2 with intermediate-length polyglutamine expansions (Ataxin-2
Q30x) but not of Ataxin-2 with normal polyQ length (Ataxin-2 Q22x). Notably, Ataxin-2
Q30x is a genetic modifier of ALS/FTD [41–44]. Sellier et al. (2016) showed that depletion of
C9orf72 partially deteriorated neuronal survival and synergized with Ataxin-2 Q30x toxicity
to cause motor neuron degeneration, proposing a double-hit pathological contribution
to ALS/FTD [45]. Consistent with the above findings, autophagy initiation was found to
be disrupted in C9orf72-knockdown human cell lines or primary neurons [38,45], causing
aggregation of cytoplasmic p62 and TDP-43 [38,45], both of which are histopathological
characteristics of ALS/FTD. Ultimately, these findings indicate a potential disruption in
autophagy as a loss-of-function mechanism for C9orf72 ALS/FTD disease pathogenesis
(Figure 3).
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Figure 3. Pathogenic mechanisms implicated in C9orf72 ALS/FTD. Both loss and gain of function mechanisms contribute to
the disease process in C9orf72 ALS/FTD. Abbreviations: ADA, adenosine deaminase; C1qb, complement component 1,
Q subcomponent, β polypeptide; C3ar1, complement component 3a receptor 1; DENN, differentially expressed in normal
and neoplastic cells; EAAT, excitatory amino-acid transporter; GEF, GEF, guanine nucleotide exchange factor; GluN1
R, glutamate ionotropic receptor NMDA type subunit 1; GluR1, glutamate ionotropic receptor AMPA type subunit 1;
GS, glutamine synthetase; LCD, low complexity domain; LLPS, liquid–liquid phase separation; miRNA, microRNA; PC,
pyruvate carboxylase; rRNA, ribosomal RNA; TREM2, triggering receptor expressed on myeloid Cells 2; TYROBP, tyrosine
kinase binding protein; and VGCC, voltage-gated calcium channel.

Another potential loss-of-function mechanism is that of disrupted lysosomal degra-
dation. Reduced endocytosis and impaired endosomal/lysosomal trafficking have been
demonstrated in C9orf72 knockdown cell lines [40], bone marrow-derived macrophage
and microglia from C9orf72−/− mice [46], and C9orf72 ALS patient-derived fibroblasts and
neurons [47]. C9orf72 protein has been shown to be localized primarily to early endosomes
in iPSC-derived motor neurons [34,48]. Accordingly, fewer lysosomes and reduced vesicu-
lar trafficking are observed in iPSC-derived motor neurons from C9orf72 ALS patients [34].
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Mannose-6-phosphate receptors (M6PRs) are a group of transmembrane glycoproteins that
target lysosomal enzymes to lysosomes. It has been shown that these receptors are affected
by C9orf72 mutations [34] because they cause clustering of these receptors, slowing their
movement [34], and their intracytoplasmic mislocalization (rather than normal perinuclear
localization) in C9orf72 ALS/FTD fibroblasts [47]. Therefore, these changes related to
C9orf72 mutation disrupt lysosomal degradation. Accumulating evidence also indicates
that C9orf72 repeat expansion mutation may negatively affect the ER-Golgi transport sys-
tem [49,50]. C9orf72 knockdown impairs endocytic trafficking from the plasma membrane
to the Golgi [40,47] (Figure 3).

Neuronal hyperexcitability and related excitotoxicity secondary to aberrant gluta-
matergic transmission have been suggested as the underlying mechanisms for ALS/FTD
pathogenesis [51]. Regulated glutamatergic transmission is a complex process, depending
on extracellular glutamate levels, reuptake, and re-synthesis, in addition to activation
of postsynaptic glutamate receptors (including N-methyl-D-aspartate (NMDA) and non-
NMDA such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors)
and related intracellular calcium overload. Accumulating evidence has suggested that
this system is involved in the pathogenesis of ALS. However, the only modest effect of
the glutamate release inhibitor, riluzole, on the survival of ALS patients indicates that this
pathway is not the sole mechanism for ALS pathogenesis. Nevertheless, in recent years,
investigators have tried to elaborate a link between ALS/FTD gene mutations, including
C9orf72 repeat expansions, and neuronal hyperexcitability/excitotoxicity mechanisms. The
expression of kainate receptors and voltage-gated Ca2+ channels in iPSC-derived motor
neurons, cell surface levels of the NMDA receptor GluN1 and the AMPA receptor GluR1
on neurites, and dendritic spines of iMNs from C9orf72 ALS/FTD patients are found to be
markedly elevated compared to controls [34,52,53]. Glutamate receptors also accumulate at
postsynaptic densities in these neurons [34]. Additionally, the post-mortem anterior horn
of cervical spinal cord sections from C9orf72 ALS patients have increased GluR1 expres-
sion [53]. High levels of glutamate receptors can lead to hyperexcitability and cell death as a
result of glutamate hyperactivation. Accordingly, activation of Kv7 potassium channels was
found to improve the survival of C9orf72 patient-derived and C9orf72-deficient iMNs [34].
More recent studies demonstrated that iPSC-derived motor neurons with C9orf72 mutation
had elevated Ca2+-permeable AMPAR expression and selective motor neuron susceptibility
to excitotoxicity [53], which was eliminated by CRISPR/Cas9-mediated correction of the
C9orf72 mutation in these neurons [53]. Other investigators [25] also found that the C9orf72
repeat expansion mutation causes nuclear RNA foci sequestering of the enzyme adenosine
deaminase acting on RNA 2 (ADAR2), which catalyzes GluR2 editing, linking the C9orf72
mutation to excitotoxicity. Given the important role of ADAR2 in double-stranded RNA
editing, mislocalization of ADAR2, as shown in a recent study on transgenic (G4C2)149 mice,
can have detrimental effects on RNA editing [54]. Consistently, ADAR2 knockdown in
mice motor neurons slows the rate of degeneration and reduces the loss of neuromuscular
synapses in these cells [55]. Agents such as an anticoagulation-deficient form of activated
protein C (3K3A-APC), which can lower glutamate receptor levels, are able to decrease
excitotoxicity and rescue proteostasis in vivo in both C9orf72 gain- and loss-of-function
mouse models [56].

2.2. Challenges in Loss-of-Function Theory

Although based on the above-mentioned studies it was originally proposed that loss
of function is the main mechanism underlying the pathology of C9orf72 repeat expansion
mutation in ALS/FTD [34], subsequent studies have challenged this hypothesis. An
important initial observation was that neural-specific ablation of C9orf72 in conditional
C9orf72−/− mice did not induce motor neuron degeneration, defects in motor function,
or alter survival [57]. Moreover, several studies have shown that ubiquitous [46,58–62]
or CRISPR/Cas9-mediated [61,63] C9orf72 knockouts throughout development resulted
in dysregulation of the immune system in homozygous mice. These mice exhibited a
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variety of manifestations, including significant changes in myeloid and/or lymphoid
cell populations in lymph nodes and spleen, higher levels of inflammatory cytokines,
cervical/systemic lymphadenopathy, splenomegaly, glumerulonephropathy, decreased
body weight, malignancies, and elevated titers of autoimmune antibodies. This severe
phenotype, however, was not observed in haploinsufficiency models of C9orf72 [64]. Next,
studies surveyed the C9orf72 locus using cap analysis of gene expression sequence data
(CAGEseq) and found high gene expression in CD14+ monocytes, important cells in innate
and adaptive immunity [28]. Taken the above challenges together with the role of C9orf72 in
signaling pathways previously implicated in ALS/FTD [64,65], C9orf72 haploinsufficiency
combined with gain-of-function mechanisms and/or mutations in other modifier genes
(for instance, Ataxin-2 Q30x, as discussed above) are possible mechanisms underlying the
ALS/FTD pathogenesis.

2.3. Gain-of-Function Mechanisms

The dominant inheritance pattern of C9orf72 ALS/FTD, the nonappearance of ALS or
FTD patients with missense mutations or null alleles in the C9orf72 gene, and the absence
of a neurodegeneration phenotype in most of C9orf72−/− mice (as discussed above) have
argued against the loss of C9orf72 function theory as the single mechanism of the disease.
In fact, more recent evidence points to the gain of toxic functions as the major mechanism
underlying neurodegeneration in C9orf72 ALS/FTD (Figure 3). Accordingly, the adeno-
associated virus (AAV)-mediated delivery of a construct that expresses G4C2 repeats can
cause neurodegeneration in mice brain [66]. Several mechanisms have been proposed to
explain the toxic gain of function in C9orf72 ALS/FTD.

When the C9orf72 repeat expansion mutation was initially identified in C9orf72
ALS/FTD patients, it was also found that widespread intranuclear RNA foci containing the
G4C2 repeats accumulate in both the brain and spinal cord of these patients [8]. This obser-
vation provided a second possible disease mechanism involving a toxic gain of function by
repeat-containing RNA. It was also shown that C9orf72 could be bidirectionally transcribed
to the sense G4C2 or antisense C4G2 RNA transcript, which can sequester as RNA foci in
the affected cells [67–69]. These RNA foci were identified in fibroblasts [25,33,70] and motor
neurons derived from fibroblast-derived iPSCs from C9orf72 ALS patients [25,33,70,71]. A
similar mechanism was previously suggested in other neuromuscular disorders, including
myotonic dystrophy type I, myotonic dystrophy type II, fragile X-associated tremor and
ataxia syndrome, and some types of spinocerebellar ataxia, all of which are due to the ex-
pansion of nucleotide repeats in non-coding regions [72]. The exact mechanisms by which
intranuclear RNA foci cause neurotoxicity/degeneration in ASL/FTD is not completely
understood; however, the following mechanisms have been suggested:

• Binding of RNA foci to RNA-binding proteins (RBPs), forming neurotoxic aggregates [26];
• Formation of G-quadruplex and R-loop structures [73–80], causing nucleolar stress [77],

genomic instability, and an increased DNA double-stranded break [81,82];
• Formation of other secondary structures such as hairpins [76,77], RNA duplexes, and

i-motifs and DNA-RNA heteroduplexes [83–85], which may be toxic for neuronal cells.

One of the most intriguing pathologic models that has been recently proposed as
the primary pathology for C9orf72 ALS/FTD is the formation of dipeptide repeat pro-
teins (DPRs). It was shown that the repeat-containing C9orf72 transcripts can escape the
nucleus and be attached by ribosomal complexes, thereby boosting repeat-associated non-
ATG-dependent (RAN) translation that leads to toxic aggregation of polydipeptides or
DPRs [77] (Figure 3). The expanded domains in C9orf72 can undergo RAN translation
in all six possible reading frames and across both sense and anti-sense RNA; this results
in the generation of five different DPRs (Figure 3) [86]. Overexpression of each DPRs in
various cell models [69,87–93], zebrafish [94–96], Drosophila [87,97,98], and mice [99,100]
have resulted in neurotoxicity and revealed the involvement of several downstream
pathways. Among the DPRs, poly-glycine-arginine (poly-GR) and poly-proline-arginine
(poly-PR) were the most neurotoxic, and poly-glycine-alanine (poly-GA) exerted less
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toxicity [20,87–89,92,101–103]. Other DPRs, such as poly-proline-alanine (poly-PA) and
poly-glycine-proline (poly-GP), had less or no toxicity [87,98,102]. Administration of
synthetic poly-PR and poly-GR into cultured human astrocytes [104] and poly-GA and
poly-GR into primary neurons [105] also caused cellular toxicity. It was further shown
that poly-(GA)15 fibrillates rapidly and eventually forms toxic flat, ribbon-type fibrils, as
demonstrated by transmission electron microscopy and atomic force microscopy [93].

Given the toxic nature of DPRs, these polydipeptides probably affect a variety of
downstream pathways that eventually lead to neuronal cell death, which include the
following (Figure 3):

• Impairment of liquid–liquid phase separation (LLPS) through interaction with low
complexity domain (LCD) proteins in nucleoli and stress granules [97,106–108]. LLPS
of key protein and nucleic acid scaffolds play an important role in the biogenesis of
diverse membrane-less organelles (e.g., P granules and stress granules in the cyto-
plasm and nucleoli and paraspeckles in the nucleus) that are essential organizers of
subcellular biochemistry, controlling the information processing from genotype to
phenotype [109];

• Binding with and thereby inhibiting translation initiation and elongation factors,
causing neurotoxicity [89,110–114];

• Impairment of ribosomal RNA maturation and abnormal splicing. A pioneering study
by Kwon et al. (2014) indicated that exogenous administration of synthetic poly-(GR)20
and poly-(PR)20 to human astrocytes led to their accumulation in the nucleus and
binding to the LCD of hnRNPA2, causing aberrant pre-mRNA splicing and impaired
rRNA biogenesis [104];

• Mitochondrial dysfunction [115,116];
• Binding with nuclear pore complex proteins, causing a defect in nucleocytoplasmic

trafficking [25,30,104,117–119], and thereby neurotoxicity.

3. Neuroinflammation in C9orf72 ALS/FTD: Glial Cells Dysfunction

As previously described, the C9orf72 gene can be expressed in different cell types
other than motor neurons and most significantly in the immune system [28,61]. Neuroin-
flammation is an extremely complex process involving glial cells. Despite its complexity, it
is a well-orchestrated symphony of cross talks between different cell types via cytokines
and other molecules. Disturbance of this highly evolved function may lead to detrimental
effects on the nervous system function [120]. Here, we will discuss the role of glial cells,
focusing on microglia and astrocytes and chronic neuroinflammation in the C9orf72-related
ALS/FTD.

3.1. Glial Cells in the Central Nervous System

Although the CNS is traditionally considered an “immunologically privileged site”
due to the blood-brain barrier, immunological reactions are still occurring within the CNS
by different mechanisms despite the absence of leukocytes and antibodies. CNS homeosta-
sis mainly is regulated by innate immunity [121]. The key mediators of immune reactions
within the CNS are glial cells, which are the most abundant cell type in the CNS. Glial
cells consist of microglia, astrocytes, and oligodendrocytes [121]. Here, we mainly focus on
microglia and astrocytes. Microglia are the resident mono-phagocytic cells in the CNS [122].
During embryogenesis will spread in the brain after being derived from myeloid precursor
cells and later would make up to 12% of adult CNS cells [123]. Microglia are generally the
first cell type to get activated in response to insults and they are the most motile cell types
in CNS [120]. Activated microglia have various physiologic functions including cellular
maintenance, innate immunity, the release of trophic and anti-inflammatory factors, and
expediting stem cell migration to the site of injury or inflammation [124–126]. Microglia
morphology alters in response to certain stimuli (e.g., brain injury or immunological stim-
uli) from resting ramified microglia to an amoeboid form that presents an upregulated
series of surface molecules, receptors, and new intracellular proteins/enzymes such as
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inducible nitric oxide synthase (NOS) and cyclo-oxygenase 2 [121,125]. Astrocytes, on the
other hand, are the most abundant glial cells in the CNS. They play variable vital roles,
including but not limited to balancing key elements in ionic homeostasis, buffering the
action of neurotransmitters (particularly excitatory ones), and secreting growth factors and
nutrients [127]. They also contribute to regulating blood-brain barrier function, synaptic
plasticity, and neuroprotection [128,129]. Astrocytes generally produce multiple extensions
from their cell body and make endfeet at their extended end. Astrocyte’s extensions in-
teract with other cells, including blood vessel’s endothelial cells and pericytes, helping to
build the blood-brain barrier [128,130]. Activated astrocytes release trophic factors to help
neuronal survival in response to injury. Reactive astrocytes can be divided into A1 and
A2 type phenotypically, parallel to what is known for reactive macrophages categorized
as M1 and M2. Gene transcriptome analyses demonstrated that A1 astrocytes express
inflammatory cytokines and trigger cascades that are harmful and destructive to synapses,
while A2 astrocytes express neurotrophic factors and help synapse repair [131]. It seems
that different types of injuries may determine which kind of reactive astrocytes would
dominate the response. For example, ischemic injuries to CNS provoke an A2 response, but
inflammatory insults will trigger A1 reactive astrocytes [131,132]. Generally, under chronic
stress conditions such as progressive neurodegeneration, both microglia and astrocytes
remain activated, which leads to detrimental outcomes on neuronal cell function due to
excess production of different neurotoxic cytokines (e.g., interleukin [IL]-1β and tumor
necrosis factor [TNF]-α) and noxious molecules (e.g., excess NO and superoxide anions)
(Figure 4) [121].
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Figure 4. Pathogenic mechanisms underlying glial cell toxicity in neurodegeneration. Microglia and astrocytes become
overactivated and lead to neurotoxicity through several mechanisms. Activated microglia and astrocytes produce excess
noxious pro-inflammatory factors, such as nitric oxide (NO), reactive oxygen species (ROS, e.g., H2O2 and ONOO−), several
cytokines (e.g., interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α), and glutamate. AMPAR, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor; GR, glutamate receptor; MHC, major histocompatibility complex;
and NMDAR, N-methyl-D-aspartate (NMDA) receptor.

3.2. A Role for Glial Cells in C9orf72 ALS/FTD

Although several studies investigating ubiquitous [46,58–62] or CRISPR/Cas9-
mediated [61,63] C9orf72 knockout in homozygous mice throughout development have
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inconsistently reported on motor neurons’ involvement in these animals, one unequivocal
and yet crucial result has been found—a dysregulation of the immune system exists in
homozygous mice (Table 1). This is evidenced by altered myeloid/lymphoid cell popula-
tions in lymph nodes/spleen, elevated inflammatory cytokines/autoimmune antibodies,
cervical/systemic lymphadenopathy, splenomegaly, and malignancies. High C9orf72 gene
expression was also found in CD14+ monocytes [28]. These observations support that (i)
complete loss of C9orf72 results in a systemic pro-inflammatory state possibly driven by
myeloid cells in the spleen and lymph nodes and (ii) haploinsufficiency may be enough to
affect myeloid cell function and systemic immunity in mice [133]. Additionally, C9orf72−/−

mice exhibit age-related neuroinflammation [67].

Table 1. Immune system dysregulation phenotypes in homozygotes in mouse models of C9orf72 loss of function.

C9orf72 Knockout Method Immune System Motor Cognition/Behavior Ref

Non-conditional exons 2–6 Splenomegaly and
cervical lymphadenopathy

Mild motor deficits only on a
rotarod assay at 12 months

Mild social interaction and
social recognition deficits [58]

Non-conditional full gene

Splenomegaly, systemic
lymphadenopathy,

glumerulonephropathy, and ↑ serum
IL-12, IL-17a, IL-10, TNF-α, plasma

cells, and activated T cells.

Mild motor deficits, tremor,
and rigidity at 40 weeks NR [59]

Non-conditional exons 2–6 or
zinc finger deletion

Splenomegaly and
cervical lymphadenopathy Normal function NR [60]

NR, all tissues full knockout
Splenomegaly, cervical
lymphadenopathy, and

B-cell lymphomas
Normal function NR [46]

Non-conditional exons 2–6
knockouts in a C57BL/6

background or CRISPR/Cas9

Splenomegaly, cervical
lymphadenopathy, hepatomegaly,

and ↑ serum IL-22, IL-28, IL-23, IL-6,
MCP-1, IL-31, IL-5, IL-10, IL-1β,

IL-15/IL-15R, IFNγ, IL-3, GM-CSF,
IL-17A, IFNα, MIP-1B, LIF, GROα

NR NR [61]

Non-conditional
CRISPR/Cas9

Splenomegaly and
systemic lymphadenopathy NR NR [63]

Non-conditional exons 2–6 Splenomegaly NR Lethargy [62]

Non-conditional exons 2–6 Splenomegaly, systemic
lymphadenopathy, and ↑ serum IL-6 NR NR [134]

Non-conditional exons 2–6 Splenomegaly Normal function at 3 months NR [135]

GM-CSF, granulocyte-macrophage colony-stimulating factor; GROα, growth-regulated oncogene α; IL, interleukin; LIF, leukemia inhibitory
factor; MIP, macrophage inflammatory protein; NR, not reported; TNF, tumor necrosis factor; and ↑, increased.

Given the fact that neuroinflammation (e.g., glial activation) has been indicated in the
pathophysiology of a variety of neurodegenerative diseases [121], and even though there
is still debate whether it is a cause or a consequence of these diseases, the above findings
have raised an important question: does immune system dysregulation, and in particular
glial cells dysfunction, contribute to the C9orf72 ALS/FTD pathogenesis?

3.2.1. Evidence for Gliosis in C9orf72 ALS/FTD

To address the involvement of glial cells in the C9orf72 ALS/FTD pathogenesis, a
wide range of studies with different methodology and outcome measurements has been
conducted (Table 2). For instance, RNA expression analyses have found that signaling
pathways related to interferon (IFN)-γ, IL-1β, complements, and antigen presentation
system are markedly upregulated in the brains of C9orf72 ALS patients compared to
sporadic ALS cases [60,136]. Increased glial fibrillary acidic protein (GFAP) expression,
an indicator of astrogliosis, has been detected in the frontal cortex and cerebrospinal
fluid (CSF) of FTD patients [137,138] and C9orf72 (G4C2)500 BAC transgenic mice [139].
Moreover, astrocytes exert higher glucose metabolism in C9orf72 ALS patients compared
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to other ALS cases [140]. However, C9orf72−/− mice do not exert any elevated GFAP
immunoreactivity [57], suggesting that absent C9orf72 does not lead to astrogliosis.

Table 2. Evidence of gliosis in C9orf72 ALS/FTD.

Species Region Results Ref

C9orf72−/− mice
Brain ↑ LysoTracker- and Lamp1-positive structures

in microglia [60]
Isolated spinal cord microglia ↑ IL-6 and IL-1b levels

C9orf72−/− mice Brain and spinal cord No change in GFAP and Iba1 staining at 18 months [57]

(G4C2)500 BAC transgenic mice
Hippocampus ↑ Iba1 staining in acute end-stage (20–40 weeks) mice

[139]Motor cortex (layers I–III & layer V)
and hippocampus ↑ GFAP staining in acute end-stage (20–40 weeks) mice

Transgenic mice expressing
poly-(GA)149

Spinal cord

↑ CD68 and Iba1 immunostaining and mRNA
expression at six months, but little at one month; No

change in GFAP immunostaining and
mRNA expression

[100]

Transgenic mice expressing
poly-(GA)50

Brain ↑ GFAP mRNA expression, but No change in Iba1
mRNA expression at six months [99]

Cortex, motor cortex, and hippocampus ↑ GFAP immunostaining and immunohistochemistry

Transgenic mice expressing
poly-(GR)100

Brain ↑ GFAP and Iba1 mRNA expression and
immunostaining at 1.5 > 3 > 6 months [114]

C9orf72 ALS patients Postmortem motor cortex and
spinal cord ↑ Iba1 and Lamp1 immunostaining [60]

C9orf72 ALS patients

Postmortem pyramidal tract at all levels
(white matter underlying motor cortex,
mid-crus cerebri, medullary pyramids,

and lateral and anterior
corticospinal tracts)

↑ CD68 immunohistochemistry [4]

C9orf72 ALS patients Postmortem white matter of the medulla
and the motor cortex ↑ CD68 and Iba1 immunostaining [141]

C9orf72 ALS patients Postmortem corpus callosum ↑ CD68 immunohistochemistry in the body more than
genu or splenium of the callosum [142]

C9orf72 FTD patients Plasma No change in GFAP concentration between pre- and
symptomatic cases and non-carriers [143]

C9orf72 ALS patients [18F]FDG PET in C9orf72 ALS vs.
sporadic ALS

↓Metabolism in the anterior and posterior cingulate
cortex, insula, caudate and thalamus, the left frontal

and superior temporal cortex,
↑Metabolism in the midbrain, bilateral occipital cortex,

globus pallidus, and left inferior temporal cortex

[140]

ALS, amyotrophic lateral sclerosis; FTD, frontotempoal dementia; GFAP, glial fibrillary acidic protein; Iba1, Ionized calcium-binding
adaptor molecule 1; IL, interleukin; ↑, increased; and ↓, decreased.

Microglial hyperactivation is also found in C9orf72 ALS/FTD post-mortem brain
regions, as evidenced by altered cell morphology and increased markers of gliosis (ion-
ized calcium-binding adaptor molecule 1 (Iba1) and cluster of differentiation 68 (CD68)
immunoreactivity), compared to sporadic ALS/FTD cases [4,141,142] (Table 2). CD68
is a lysosomal membrane glycoprotein in mononuclear phagocyte lineage cells, such as
macrophages, microglia, osteoclasts, and myeloid dendritic cells [144]. It is widely used as
an indicator of phagocytic activity of microglia [145,146], although it can also be expressed
on resting microglia [147]. Iba1 is a 17kDa protein that is expressed in all subtypes of
microglia, contributing to microglia motility and phagocytosis, and it is associated with
microglial activity [148–151].

Activated microglia were also found to have enlarged lysosomes compared to sporadic
ALS cases [60]; the pathologic aspects of this finding are yet to be identified. Further
studies are still needed to delineate the relation of gliosis to different stages of the disease
process, given the fact that either astro- or micro-gliosis could act as both pro- and anti-
inflammatory. Accordingly, an interesting study [100] showed that both elevated CD68 and
Iba1 expression are detected at six months of age in the spinal cord of transgenic mice that
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express poly-(GA)149 specifically in neurons [100]. Notably, glial hyperactivation was not
present in other brain regions where the neurons did not have poly-GA pathology, and at
the time, there was no significant detectable neuronal loss [100]. Notably, at this point, these
mice exhibited an enhanced TDP-43 phosphorylation without translocation/inclusions
or mild behavioral deficits [100]. When mice were evaluated at one month of age, on
the other hand, they did not have the elevation of Iba1 but already had an elevated
CD68 expression [100]. These findings indicated two important points—(i) microglial
activation might precede severe neuronal dysfunction and (ii) enhanced microglial CD68
expression may precede increased Iba1 expression. Another study showed that six-month-
old poly-(GA)50 mice did not have elevated Iba1 levels or TDP-43 pathology, but they had
behavioral impairments and neurodegeneration [99]. A more recent study also showed that
1.5-month-old poly-(GR)100 mice had elevated cortical/hippocampal Iba1 expression, brain
atrophy, and neuronal loss, without TDP-43 pathology [114]. The results of these studies
may indicate that, firstly, neuron-glia communication might participate in the activation
of microglia and, secondly, length or type of DPR and additional factors (e.g., TDP-43
phosphorylation) might differentially control microglial activation in the C9orf72 pathology.

3.2.2. C9orf72 Pathologic Hallmarks in Glial Cells

Another important issue in the study of glial cells in C9orf72 pathology is to answer
whether these cells also exhibit characteristic C9orf72 pathology (i.e., RNA foci or DPRs)
similar to the affected neurons. Notably, studies investigating the presence of RNA foci or
DPRs in glial cells of C9orf72 ALS/FTD cases or in animal models have consistently demon-
strated either no or low levels of RNA foci [67,70,71,152,153] and DPRs [67,86,154,155] in
different CNS regions compared to neurons. Moreover, in contrast to neurons that exhibit
both intranuclear and intracytoplasmic RNA foci, glial cells show only intranuclear RNA
foci [70,152]. AAV-mediated DPR expression in mice results in the accumulation of DPRs
in neurons but not glial cells [66]. Further studies are needed to explain why the levels
of RNA foci and DPRs are lower in glial cells. For instance, this might be due to less
expression of the C9orf72 repeated expansion mutation, less expression of RNA binding
proteins involved in RNA aggregates, better C9orf72 repeated expansion containing RNA,
less RAN clearance of C9orf72 repeated expansion containing RNA [156], less cytosolic
translocation of translation, or finally, enhanced degradation of DPRs prior to their ac-
cumulation. Another possibility is that DPRs are not produced within glial cells but are
instead secreted by neurons and then transferred to glial cells through possible cell-to-cell
communication between neurons and glia [157]. Given the fact that glial cells undergo
extensive proliferation and gliosis [158,159], this may prevent/decrease generation or di-
lute the level of already present RNA foci or DPRs in these cells and may provide another
explanation for why levels of RNA foci or DPRs are less in glial cells compared to C9orf72
neurons. In contrast to RNA foci and DPRs, other pathologic features of C9orf72 repeat
expansion, including TDP-43 and p62 aggregates, are present in glial cells [3–6] and even
in oligodendrocytes [160–162] of C9orf72 ALS/FTD cases.

3.2.3. Toxic Effects of C9orf72 Glial Cells

Recent investigations have indicated that glial cells themselves may mediate neuro-
toxicity in C9orf72 ALS/FTD [163]. In a study using murine embryonic stem cell-derived
motor neurons, neuronal death was observed within four days of co-culture with fibroblast-
derived astrocytes from C9orf72 ALS cases [163]. Additionally, when the culture medium
was partially replaced with the control astrocyte conditioned medium (ACM), the ongo-
ing neuronal cell death was not inhibited [163]. Another study also revealed increased
neuronal cell death in iPSC-derived motor neurons from either control or C9orf72 ALS pa-
tients five days after culturing in C9orf72 ALS ACM [164]. Moreover, it was demonstrated
that induced astrocytes from C9orf72 ALS cases can release extracellular vesicles promot-
ing motor neuron toxicity [165]. The microRNA (miRNA) profile of extracellular vesicles
secreted by C9orf72 ALS astrocytes was found to have a unique set of 13 dysregulated
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miRNAs involved in axonal guidance and maintenance [165]. Among these, miR-494-3p
was identified as the most dysregulated miRNA, and its reduced levels in the C9orf72
astrocytes-secreted extracellular vesicles were correlated with dramatic consequences on
axonal/neurite length and motor neuron survival in vitro and in the postmortem ALS cor-
ticospinal tract [165]. Accordingly, treatment with a miR-494-3p mimic completely rescued
neurite length and the number of nodes per cell, accompanied by a significant 20–25%
increase in motor neuron survival [165]. The addition of the ACM from the same C9orf72
astrocytes also slightly affected neuronal cell survival [165]. Altogether, these studies pin-
point three important things—(i) a possible underlying gain-of-toxic-function mechanism
by the C9orf72 astrocytes in ALS/FTD pathogenesis, (ii) a level of toxicity related to possi-
ble direct physical communication between C9orf72 astrocytes and neurons or secretion
of possible neurotoxic agents from C9orf72 astrocytes, and (iii) an impaired capacity of
C9orf72 astrocytes to support neurons. In agreement with the latter, impaired biogenesis of
extracellular vesicles [47,165] or abnormal autophagy initiation [164] in C9orf72 ALS/FTD
motor neurons are linked to C9orf72 astrocytes.

Defective adenosine triphosphate (ATP) metabolism and bioenergetic deficits are also
found in the CNS of C9orf72 ALS/FTD patients [166–168]. Deamination of adenosine by
adenosine deaminase (ADA) generates inosine and the established pathways for nicoti-
namide adenine dinucleotide (NADH)-based energy production from both inosine and
adenosine is through metabolism to ribose-phosphate and finally glycolysis [166,167]. A
recent study found a significantly decreased ADA protein level and mRNA expression
in C9orf72 fibroblasts, induced astrocytes, and induced neurons from C9orf72 ALS/FTD
cases [166]. Notably, C9orf72 ALS-induced astrocytes were more susceptible to adenosine-
induced cell loss than control induced astrocytes, whereas inosine supplementation pro-
duced very little cell loss in any lines [166]. Additionally, it was found that defective ATP
and purine metabolism due to ADA deficiency led to glial overactivation and neuroinflam-
mation and diminished nutritional support for neurons by C9orf72 astrocytes [166]. Loss of
metabolic flexibility, involving defects in adenosine, fructose, and glycogen metabolism,
and disturbances in the membrane transport of mitochondrial energy substrates are present
in C9orf72-induced astrocytes, contributing to increased starvation-induced toxicity in these
cells [167].

In addition to the above-mentioned gain-of-function mechanisms, other investigators
have proposed haploinsufficiency as a possible loss-of-function mechanism underlying the
glial cell-mediated toxicity in C9orf72 ALS/FTD. One of the important actions of astrocytes
is buffering the excitatory neurotransmitter glutamate in the synaptic cleft, preventing
excess glutamate neurotoxicity. Notably, siRNA-mediated knockdown of both C9orf72
protein isoforms in U87 glioblastoma cells and normal human astrocytes is shown to reduce
expression of excitatory amino-acid transporter (EAAT)-1 and -2, pyruvate carboxylase,
and glutamine synthetase in astrocytes, and intracellular glutamate accumulation [169],
providing evidence for knockdown astrocyte-related disturbed glutamate synthesis, up-
take, and conversion into glutamine, which ultimately can cause glutamate excitotoxicity.
These cells also exerted accumulation of p62 inclusions [169]. It was also shown that the
expression of endothelin 1, a negative regulator of EAAT2, was increased secondary to
an increased expression of nuclear factor kappa-light-chain-enhancer of activated B cells
(NFκBs) due to knockdown of C9orf72 [169]. Elevated endothelin 1 levels secreted by
activated astrocytes can initiate inflammatory cascades (such as upregulation of inducible
NOS and excess NO production), which cause toxicity in motor neurons [170]. Studies
on C9orf72 knockdown microglia also indicate several essential mechanisms underlying
related motor neuron toxicity, including (i) elevated expression of complement component
3a receptor 1 (C3ar1) and complement component 1, Q subcomponent, β polypeptide (C1qb)
in the activated C9orf72 knockdown microglia, enhancing synaptic pruning and related
demand for endosomal/lysosomal integrity [70,171], (ii) elevated expression of tyrosine
kinase binding protein (TYROBP) and triggering receptor expressed on myeloid cells 2
(TREM2) in the activated C9orf72 knockdown microglia, increasing microglial phagocytic
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activity [70], and (iii) a disturbed autophagy system in these microglia, causing p62 accu-
mulation and enlarged lysosomes [70,171]. Altogether, these studies support the concept
that C9orf72 haploinsufficiency may affect glial cell function through different mechanisms
that ultimately lead to motor neuron toxicity (Figure 3).

4. Biomarkers in C9orf72 ALS/FTD

C9orf72 ALS/FTD is a complex disorder linked to numerous pathologic mechanisms.
Current diagnostic measures are mainly based on clinical presentation and electrodiag-
nostic studies [172,173], which in most cases have limitations in early diagnosis of the
disease where potential treatments could be most efficacious. This signifies the importance
of finding specific biomarkers that could support an early diagnosis of C9orf72 ALS/FTD.
Several studies have been conducted in recent years to identify diagnostic biomarkers for
early diagnosis, disease progression, or to be used as indicators of therapeutic response in
clinical trials in C9orf72 ALS/FTD.

4.1. Non-Inflammatory Biomarkers

One of the specific biomarkers in C9orf72 ALS/FTD that has caught attention in recent
years is monitoring DPRs for tracking ALS in early diagnosis, natural history, and response
to therapeutic intervention. Initial investigations created immunoassays for DPRs in tissue
isolates (i.e., frontal/motor cortex, cerebellum, or hippocampus) from postmortem C9orf72
ALS/FTD cases [174]. Both poly-GP and poly-GA have higher expression in the CNS of
C9orf72 ALS/FTD patients than poly-GR DPRs [175]. However, poly-GP is more likely
to be correctly measured in biospecimens because it is more soluble than poly-GA [174].
Further studies have also detected poly-GP DPRs in the CSF [76,176] and peripheral blood
mononuclear cells [176] from C9orf72 ALS/FTD patients but not in healthy individuals
or ALS patients who do not have the C9orf72 repeat expansion mutation. In a more
recent multi-center prospective natural history study of 116 symptomatic C9orf72 ALS
and 12 non-symptomatic C9orf72 repeat expansion carriers, it was revealed that the CSF
concentrations of poly-GP DPRs remained high and steady over time in C9orf72 ALS
patients [13]. Although there was a significant negative correlation between blood DNA
repeat size and poly-GP CSF levels, no significant correlation was found between poly-GP
CSF levels and ALS history measures (i.e., age at onset, survival, and ALSFRS-R rate of
change) [13]. On the other hand, the stability of poly-GP levels over time may support the
potential use of poly-GP as a pharmacodynamic biomarker. To investigate this, Gendron
et al. (2017) evaluated the effects of a ribonuclease H-active antisense oligonucleotide (ASO)
that targets G4C2 repeat RNA on lymphoblastoid cell lines from C9orf72 ALS cases and in
(G4C2)66 mice, and an ASO that targets intron 1 of C9orf72 on iPSC-derived neurons from
C9orf72 ALS patients, and found that poly-GP levels were significantly decreased over time
with treatment. This was concomitant with an improvement in C9orf72 CNS pathology
in mice, providing evidence that CSF poly-GP may serve as potential pharmacodynamic
markers for treatments that target (G4C2)n RNA [176].

The presence of nuclear RNA foci, which is another characteristic feature of C9orf72
pathology, may be considered as another biomarker in C9orf72 ASL/FTD. These foci, which
are visualized using RNA fluorescence in-situ hybridization (FISH) techniques [8,9], are
detected in both brain cells and peripheral cells, including skin biopsy-derived fibrob-
lasts [25,33,70], lymphoblasts [70], and peripheral blood leukocytes [69], making them a
potential biomarker in disease progression and in clinical trials. The detection of RNA
foci in muscle biopsy tissue using the RNA-FISH technique has been broadly employed
as a diagnostic marker in myotonic dystrophy type 2 [177]. This test has not yet been
investigated in the muscle biopsies of C9orf72 patients; instead, blood leukocytes may be
utilized to determine whether therapies targeting C9orf72 repeat expansion will lower the
number of RNA foci in leukocytes.
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4.2. Inflammatory/Glial Biomarkers

One of the common features of various neurodegenerative diseases including ALS
is glial activation and elevated levels of inflammatory markers [133,178]. Unbiased pro-
teomic analyses have interestingly discovered that complement activation and/or acute
inflammatory responses are among the top pathways changed in the CSF of ALS patients
compared to healthy individuals or other neurologic disorders [179,180]. Although de-
tection of inflammatory mediators has been extensively investigated in ALS patients in
general [181–183], little is known regarding their potential role as a biomarker specifically
in C9orf72 ALS/FTD cases. For instance, reduced amounts of C–X–C motif chemokine
ligand 10 protein (CXCL10), a microglial chemoattractant, are found in the CSF of C9orf72
ALS patients in comparison with other ALS cases [184]. In a recent study on FTD patients,
out of the measured factors (monocyte chemoattractant protein-1 (MCP-1), regulated upon
activation, normal T-cell expressed and secreted protein (RANTES), IL-10, IL-17A, IL-12p,
IFN-γ, IL-8, IL-1β, leukocytes, and C-reactive protein (CRP)), only serum IL-10 was differ-
ent between C9orf72 FTD and non-C9orf72 FTD patients (carriers had higher levels), which
negatively correlated to a more rapid disease progression [185]. Clearly, more investiga-
tions are needed to identify more specific inflammatory mediators as potential biomarkers
in C9orf72 ALS/FTD.

MicroRNAs (miRNAs) are epigenetic modifiers of gene expression that act by binding
argonaute 2 and forming the RNA-induced silencing complex [186]. Over 1000 miRNAs are
present in humans. Alterations in miRNA expression and levels have been demonstrated
in the CSF, serum, and plasma of patients with either sporadic or familial ALS [186–191].
However, there is scarce data regarding miRNAs that are specific for C9orf72 ALS/FTD
pathology compared to healthy individuals or ALS/FTD patients without the C9orf72
repeat expansion mutation. For instance, Bengini et al. (2016) investigated the miRNA
profiles of CSF from 24 ALS patients (including eight C9orf72 ALS cases) and 24 unaf-
fected control subjects and identified eight miRNAs as significantly deregulated in ALS
(especially upregulated miR181a-5p and downregulated miR21-5p and miR15b-5p, all of
which are involved in apoptotic pathways) [187]. However, no significant differences were
found between ALS patients with or without the C9orf72 repeat expansion mutation [187].
Another study also revealed that, while dysregulation of TDP-43 binding miRNAs (i.e.,
miR-143-5p/3p) may be a common feature of ALS pathology, downregulation of other
TDP-43 binding miRNAs (i.e., miR-132-5p/3p and miR-574-5p/3p) was evident in spo-
radic, TARDBP, Fused In Sarcoma (FUS) and C9orf72, but not superoxide dismutase 1
(SOD1) mutant patients [190]. Downregulation of muscle-specific miR-206, involved in
muscle re-innervation, in the SOD1 mutant mouse accelerated the disease progression and
shortened survival [191]. If miRNAs specific for C9orf72 ALS/FTD patients are found and
confirmed to be stable and secreted in the CSF (or even blood), these could be utilized
as an invaluable readout for therapy efficacy. Notably, a recent study on the miRNA
profile of extracellular vesicles secreted by C9orf72 ALS astrocytes identified a unique set
of 13 dysregulated miRNAs that contributed to axonal guidance and maintenance [165].
Among these, miR-494-3p was detected as the most dysregulated miRNA; its downregula-
tion in the C9orf72 astrocytes-secreted extracellular vesicles was correlated with dramatic
consequences on axonal/neurite length and motor neuron survival in vitro and in the
postmortem ALS corticospinal tract [165]. Accordingly, treatment with a miR-494-3p mimic
completely rescued neurite length and the number of nodes per cell, concurrent with a
robust 20–25% increase in motor neuron survival [165]. Overall, it was found that down-
regulated miRNAs (i.e., miR-494-3p, miR-200c-3p, miR-668-3p, and miR-140-3p) target
semaphorins, RhoA, and Rock, thus, predicting an elevation in these proteins, which could
result in growth cone collapse. Upregulated miRNAs (i.e., miR-297, miR-595, miR-339-5p,
miR-758-3P, and miR-449a) target ephrins and WW domain containing E3 ubiquitin protein
ligase 1 (Wwp1), which would cause their downregulation. Wwp1 inactivates NogoA (also
called reticulon 4); thus, this could also result in axonal collapse [165]. Therefore, these



Cells 2021, 10, 249 15 of 25

miRNAs, particularly miR-494-3p, might serve as potential inflammatory markers in future
studies of C9orf72 ALS/FTD.

4.3. Imaging-Based Markers

Given the fact that non-invasive imaging techniques help monitor brain/spinal cord
structures, neural networks, metabolism, and plasma membrane receptor distribution, they
may serve as attractive markers for disease progression or treatment efficacy in ALS/FTD.
Magnetic resonance imaging (MRI) and radionucleotide imaging (i.e., positron emission
tomography (PET), single-photon emission computed tomography (SPECT)) are the two
major techniques that have been recently investigated in this regard [192–194]. Consistent
with previous histopathology studies on postmortem C9orf72 ALS cases [14,195,196], recent
results suggest a strong C9orf72-specific cortical and subcortical involvement reflecting
more cognitive/behavioral deficits observed with this ALS genotype [197]. Several PET
studies have also recently used radiotracers that bind to the 18 kD translocator protein
(TSPO), a protein that is highly expressed on activated microglia and astrocytes, to track
gliosis in ALS patients [198]. Although, in general, these studies have demonstrated
that the areas of increased uptake correlated positively with upper motor neuron burden
scale and negatively with ALS functional rating scale-revised (ALSFRS-R) scores [199–201]
(two patient-reported outcome measures), little is known about whether the degree of
gliosis and such correlations are different between C9orf72 ALS/FTD and other ALS or
healthy individuals. This warrants further detailed investigations.

5. Therapeutic Approaches: Focus on Glial Cells

Although there is still no definite cure for ALS, including C9orf72 ALS/FTD, progress
in understanding the C9orf72 genetic architecture and its pathogenesis in ALS/FTD over the
last decade has been inspiring and motivating. A better understanding of the mechanisms
by which the C9orf72 repeat expansion mutation exerts disease phenotypes has inspired
multiple therapeutic approaches, providing hope for finding efficient therapies for this dev-
astating disease in the near future. With the help of these translational approaches, several
clinical trials for patients with ALS were initiated, including a phase I trial of ASOs targeting
C9orf72 variants 1 and 3 RNA (BIIB078) (clinicaltrials.gov Identifier: NCT03626012) and a
phase I trial of the nucleocytoplasmic transport inhibitor KPT-350 (also called BIIB100) [202]
(clinicaltrials.gov identifier: NCT03945279). Despite accumulating evidence supporting a
connection between C9orf72 ALS/FTD and neuroinflammation/autoimmunity, the fact
that all trials using immunomodulatory or immunosuppressive medications (e.g., corti-
costeroids, cyclophosphamide, azathioprine, intravenous immunoglobulins, and plasma-
pheresis) have failed to show any efficacy in ALS patients [133] makes this area of research
still challenging. Clearly, this issue warrants further study to understand the nature of
the connection between the central inflammatory cells (i.e., glial cells) and motor neurons
in the disease progress because glial cells can play both pro- and anti-inflammatory roles.
Recent pre-clinical studies, for instance, have shown beneficial effects of certain C9orf72
ALS astrocyte-related miRNAs, such as miR-494-3p, on the survival of corticospinal motor
neurons from C9orf72 ALS/FTD cases in vitro [165].

6. Conclusions and Perspectives

Since 2011 when the C9orf72 repeat expansion mutation was discovered as the most
common genetic abnormality in familial ALS and FTD, an impressive number of studies
have markedly improved our understanding of the pathologic mechanisms underlying the
C9orf72 repeat expansion mutation. Although the normal function of C9orf72 in humans is
yet to be fully understood, either loss of function/haploinsufficiency or toxic gain of func-
tion and related downstream pathways have been suggested as underlying mechanisms
involved in the pathogenesis of C9orf72 ALS/FTD. Thus, therapies and biomarkers have
been explored with respect to both mechanisms. One notable finding in recent studies is
that there is an important role for glial cells in both loss- and gain-of-function theories. Here,

clinicaltrials.gov
clinicaltrials.gov
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we discussed the current literature showing pathologic roles of microglia and astrocytes in
C9orf72 ALS/FTD, including accumulating evidence of gliosis in C9orf72 ALS/FTD, patho-
logic hallmarks in glial cells such as TDP-43 and p62 aggregates, and toxicity of C9orf72
glial cells. Despite tremendous efforts on the study of glial cells in C9orf72 ALS/FTD
during the last several years, there are still several challenging issues. One important issue
is that to what extent both loss- and gain-of-function theories play a concomitant role in
glial cells’ involvement in C9orf72 ALS/FTD. Data from immune system dysregulation
have mainly emerged from the studies on C9orf72 deficient animals. Although C9orf72−/−

mice exhibit severe dysregulation of the immune system and autoimmune phenotypes,
more studies are clearly needed to assess a link between peripheral immune cells and CNS
residual cells in disease development or progress. Concomitant modeling of loss- and
gain-of-function pathways can also shed more light on the roles of microglia and astrocytes
in the disease pathogenesis.

Another important issue is the cross talk between glial cells and neurons. Although
limited data indicate that glial activation and neuroinflammation may precede neurodegen-
eration in C9orf72 ASL/FTD, it is still elusive what factors contribute to this phenomenon,
especially given the fact that pathologic C9orf72 hallmarks of DPRs and RNA foci are
less observed in glial cells than neurons, which makes the condition more challenging.
Although there are several hypotheses in this regard (including less expression of the
C9orf72 repeated expansion mutation, less expression of RNA binding proteins involved
in RNA aggregates, better clearance of C9orf72 repeated expansion containing RNA, less
cytosolic translocation of C9orf72 repeated expansion containing RNA, less RAN transla-
tion, enhanced degradation of DPRs prior to their accumulation, or finally, the transference
of DPRs from neurons to glial cells through possible cell-to-cell communication between
neurons and glia), more studies are warranted to clearly understand this issue and test
these hypotheses.

A better understanding of the underlying signaling pathways related to the aberrant
function of glia in C9orf72 ALS/FTD can provide new insights into both appropriate glial
markers for disease monitoring and therapeutic approaches to slow disease progression.
Thus, more studies are needed to further elucidate the roles of microglia and astrocytes in
C9orf72 ALS/FTD pathogenesis.
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