
METHODOLOGY ARTICLE Open Access

A statistical measure for the skewness of X
chromosome inactivation based on family
trios
Si-Qi Xu1, Yu Zhang1, Peng Wang1, Wei Liu1, Xian-Bo Wu2* and Ji-Yuan Zhou1*

Abstract

Background: X chromosome inactivation (XCI) is an important gene regulation mechanism in females to equalize
the expression levels of X chromosome between two sexes. Generally, one of two X chromosomes in females is
randomly chosen to be inactivated. Nonrandom XCI (XCI skewing) is also observed in females, which has been
reported to play an important role in many X-linked diseases. However, there is no statistical measure available for
the degree of the XCI skewing based on family data in population genetics.

Results: In this article, we propose a statistical approach to measure the degree of the XCI skewing based on family
trios, which is represented by a ratio of two genotypic relative risks in females. The point estimate of the ratio is
obtained from the maximum likelihood estimates of two genotypic relative risks. When parental genotypes are
missing in some family trios, the expectation-conditional-maximization algorithm is adopted to obtain the corresponding
maximum likelihood estimates. Further, the confidence interval of the ratio is derived based on the likelihood ratio test.
Simulation results show that the likelihood-based confidence interval has an accurate coverage probability under the
situations considered. Also, we apply our proposed method to the rheumatoid arthritis data from USA for its practical use,
and find out that a locus, rs2238907, may undergo the XCI skewing against the at-risk allele. But this needs to be further
confirmed by molecular genetics.

Conclusions: The proposed statistical measure for the skewness of XCI is applicable to complete family trio data or family
trio data with some paternal genotypes missing. The likelihood-based confidence interval has an accurate coverage
probability under the situations considered. Therefore, our proposed statistical measure is generally recommended in
practice for discovering the potential loci which undergo the XCI skewing.
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Background
Many human diseases are associated with genes on X
chromosome, such as asthma, autoimmune diseases, can-
cers, some neurological and psychiatric diseases [1–5].
Most of these X-linked diseases often exhibit sex-specific
patterns of susceptibility due to the difference in the num-
ber of copies of X chromosome between two sexes. Females
have two copies of X chromosome whereas there is only

one copy in males. To equalize the expression levels of X
chromosome between sexes, dosage compensation is
achieved by an important gene regulation mechanism in
mammalian females, X chromosome inactivation (XCI),
which results in expression silencing of one of two X chro-
mosomes in females [6]. Up to 75% genes on X chromo-
some are subject to XCI, while there are about 15%
escaping from inactivation and expressed from both X
chromosomes, and the remaining 10% show variable inacti-
vation patterns in different human cell lines [7].
During the process of XCI, one of two X chromosomes

in females is chosen to be inactivated in a random way.
This means that roughly 50% of cells in females have the
paternal X chromosome expressed, while the others
express the maternal one. Although random XCI occurs
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commonly, the XCI skewing also takes place in females,
which is defined as the phenomenon of nonrandom in-
activation that one of X chromosomes is selected to be
silenced with a probability deviating from 50% [8]. Gener-
ally, the skewness of XCI is caused by a second selection
mechanism. When the mutation on X chromosome
affects the survival and proliferation of cells, the amount
of cells carrying an active mutant X chromosome will be-
come larger or smaller than that of cells with an active
wild-type X chromosome, which thus leads to the skew-
ness of XCI [9, 10]. Negative selection, where the muta-
tion gives a growth disadvantage to cells, frequently
happens in female carriers with X-linked diseases, such as
mental retardation disorders, Wiskott-Aldrich syndrome
and X-linked severe combined immunodeficiency [11–
13]. On the other hand, when the mutation provides a
growth advantage to cells, positive selection occurs and
can result in some diseases, such as adrenoleukodystrophy
and breast cancer [14, 15].
In genetic association studies on X chromosome, Clay-

ton [16] first took XCI into consideration. Due to XCI, the
genotypic effect of homozygous females can be treated the
same as that of hemizygous males. Therefore, the geno-
typic scores are given to be 0, 1 and 2 corresponding to
three genotypes at a diallelic locus on X chromosome in
females, and 0 and 2 corresponding to two genotypes in
males. However, Wang et al. [17] pointed out that such
coding strategy only considers the situation of random
XCI, but ignores the skewness of XCI and escape from
XCI. To account for all possible situations of XCI, Wang
et al. suggested that the genotypic score for the heterozy-
gous females, denoted by γ, can be any possible values
between 0 and 2. Under XCI, the value of γ reflects the
degree of inactivation skewing, with γ/2 representing the
proportion of cells having the mutant allele active. As
such, γ = 1 stands for random XCI, while γ between 1 and
2 indicates the XCI skewing toward the mutant allele and
γ between 0 and 1 denotes the XCI skewing against the
mutant allele. For example, γ = 0.5 means that the skew-
ness of XCI is against the mutant allele with 25% cells
expressing the mutant allele and the other 75% cells
expressing the normal allele. On the other hand, in mo-
lecular genetics, the XCI skewing pattern can be identified
by assays taking advantage of differential methylation be-
tween the active and inactive X chromosomes or mRNA
transcription in cells [18–20]. However, since the XCI pat-
tern always varies among cell lines [21, 22], these assays,
which usually use cells from only a few tissues to investi-
gate the XCI patterns, cannot present the status of the
whole body [10]. Further, there is no statistical measure
available for detecting the XCI skewing pattern in popula-
tion genetics as yet.
Therefore, in this article, we give the expression of γ for

family trios with both parents and one affected daughter in

the presence of association between the disease and geno-
types. In fact, γ is a function of two genotypic relative risks
(GRRs) in females. In addition, we obtain the point estimate
of γ from the maximum likelihood estimates (MLEs) of the
GRRs. When parental genotypes are missing in some family
trios, the expectation-conditional-maximization (ECM)
algorithm [23] is used to obtain the corresponding MLEs.
Further, the confidence interval (CI) of γ is derived based
on a likelihood ratio test (LRT). Finally, simulation study is
conducted to investigate the performance of our proposed
method. The simulation results show that the proposed
likelihood-based CI has an accurate coverage probability
under the situations considered. For practical use, we apply
our proposed method to the rheumatoid arthritis (RA) data
from USA.

Methods
Notations
Consider an X-linked diallelic locus with mutant allele A
and normal allele a. Let pm and qm = 1 − pm denote the
allele frequencies of A and a in males, respectively.
Suppose that pf is the allele frequency of A and ρ is the
inbreeding coefficient in females. Then, the frequencies of
genotypes aa, Aa and AA in females are respectively g0
= (1 − pf)

2 + ρpf(1 − pf), g1 = 2(1 − ρ)pf(1 − pf) and g2 ¼ p2f
þρp f ð1−pf Þ. Note that Hardy-Weinberg equilibrium holds

in the population under study when ρ = 0 and pm = pf. Let
f0, f1 and f2 respectively represent the penetrances in fe-
males with genotypes aa, Aa and AA. The GRRs in females
are defined as λ1 = f1/f0 and λ2 = f2/f0.

Relationship between penetrances and XCI skewing in
females
Let the genotypic scores be 0, γ and 2 corresponding to fe-
males with genotypes aa, Aa and AA, respectively, where
γ ∈ [0, 2] represents the XCI skewing pattern. We assume
that a generalized genetic model holds [24, 25], which is
defined as f0 ≤ f1 ≤ f2 (i.e., 1 ≤ λ1 ≤ λ2) with at least one
inequality being strict, in the presence of association be-
tween the disease and genotypes in females. If f1 is
unknown, then it can be expressed as a function of γ, de-
noted by f1(γ). To derive the expression of f1(γ), let f 01ðγÞ
be the first order derivative of f1(γ) with respect to γ. As
such, f1(γ) can be approximated by a first order Taylor
expansion around γ = 1 as follows,

f 1 γð Þ ≈ f 1 1ð Þ þ f 01 1ð Þ γ−1ð Þ: ð1Þ

On the other hand, when the XCI skewing is com-
pletely against A, we have γ=0 and f1 = f0. So, from Eq.
(1), f 0 ¼ f 1ð0Þ ≈ f 1ð1Þ− f 01ð1Þ . Similarly, when the XCI
skewing is completely toward A, we have γ=2 and f1 = f2.
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Then f 2 ¼ f 1ð2Þ ≈ f 1ð1Þ þ f 01ð1Þ. Hence, f1(1) = (f2 + f0)/
2 and f 01ð1Þ ¼ ð f 2− f 0Þ=2. Therefore, Eq. (1) turns to be

f 1 γð Þ ≈ f 0 þ
γ f 2− f 0ð Þ

2
: ð2Þ

From Eq. (2), we notice that f1 is around the midpoint
between f0 and f2 under random XCI (i.e., γ=1). Actually,
Eq. (2) means that the penetrance for heterozygous fe-
males is approximately linear in the genotypic score γ
around γ=1.
Further, if f1 is known, then we can obtain γ from Eq.

(2) as follows, which is a function of f0, f1 and f2, or λ1
and λ2,

γ ≈
2 f 1− f 0ð Þ
f 2− f 0

¼ 2 λ1−1ð Þ
λ1−1

:

Note that the value of γ attains its maximum (γ = 2)
when λ1 = λ2 ≠ 1, and γ = 0 when λ1 = 1 and λ2 ≠ 1. As-

sume that λ̂1 and λ̂2 are the MLEs of λ1 and λ2, respect-
ively. Then, the point estimate of γ, γ̂ , can be obtained

by 2ðλ̂1−1Þ=ðλ̂2−1Þ.

MLEs of λ1 and λ2 using family trios without missing
genotypes
Here we only include the trios with affected daughters
in the analysis. Male offspring are not investigated be-
cause they are not informative of λ1 and λ2. Firstly, we
consider complete family trios, each with both typed
parents and an affected typed daughter. Let F, M and C
represent the numbers of allele A in father, mother and
daughter, respectively, and D denote that the daughter
is affected. Eight possible types of FMC (i.e., 000, 010,
011, 021, 101, 111, 112 and 122) together with the cor-
responding probabilities P(FM), P(C| FM) and P(FMC|
D) are shown in Table 1. Let Ω be the set of the eight
possible types of FMC listed in Table 1 and then
P(FMC|D) is derived as

P FMC Djð Þ ¼ P FMð ÞP C FMjð ÞP D Cjð ÞP
F 0M0C0∈ΩP F 0M0ð ÞP C0 F 0M0jð ÞP D C0jð Þ :

ð3Þ

Equation (3) holds when the disease status of a daugh-
ter is only related to her own genotype, and P(C| FM) is
determined by Mendelian transmission, which is equal
to 0.5 for heterozygous mother and 1 otherwise. Assume
that P(FM) = P(F)P(M), and divide the numerator and
denominator of Eq. (3) by f0. Then, P(FMC|D) for each trio
type can be written as the last column in Table 1, where R=
qmg0 + 0.5qmg1(1 + λ1) + qmg2λ1 + pmg0λ1 + 0.5pmg1(λ1 + λ2) +
pmg2λ2. The detailed derivation of P(FMC|D) in Table 1 is
given in Additional file 1: Appendix A.

Since we find that it is more convenient to directly es-
timate g0 and g1 rather than ρ and pf, we let θ= (pm, g0,
g1, λ1, λ2)

T be the parameter vector of interest. As such,
the log-likelihood function of the observed data condi-
tional on the daughter being affected is given by

lnL θð Þ ¼
X

FMC∈Ω

nFMC lnP FMC Djð Þ;

where nFMC is the number of the family trios of type
FMC. To obtain the MLE of θ, numerical methods, such
as Newton-Raphson algorithm (by using “maxLik” pack-
age in R software [26]) and the ECM algorithm intro-
duced later, are applied. We choose the initial values of

pm, g0, g1, λ1 and λ2 as follows: p̂
ð0Þ
m ¼ #ðF ¼ 1Þ=#ðF∈f0;

1gÞ; ĝð0Þ0 ¼ #ðM ¼ 0Þ=#ðM∈f0; 1; 2gÞ, ĝð0Þ1 ¼ #ðM ¼ 1Þ=#
ðM∈f0; 1; 2gÞ; λ̂

ð0Þ
1 ¼ n011=n010 and λ̂

ð0Þ
2 ¼ ðn011n112Þ=ð

n010n111Þ , where # denotes the counting measure. The
details about the choice of these initial values are shown
in Additional file 1: Appendix B.

MLEs of λ1 and λ2 using family trios with parental
genotypes missing
It is common that parental genotypes are missing in some
family trios. For trios with paternal or maternal genotype
missing, we call them “mother-daughter pairs” or “father--
daughter pairs”, denoted by MC and FC, respectively.
Thus, MC takes possible genotypes from ΩMC={00, 01, 10,
11, 12, 21, 22}, and FC takes possible genotypes from
ΩFC={00, 01, 11, 12}. As for trios with both parental geno-
types missing, we refer to them as “single daughters”. The
probabilities of the mother-daughter pair MC,
father-daughter pair FC and single daughter C given the
daughter being affected are respectively PðMCjDÞ
¼ P

F∈f0;1gPðFMCjDÞ , PðFCjDÞ ¼ P
M∈f0;1;2gPðFMCjDÞ

and PðCjDÞ ¼ P
F∈f0;1g

P
M∈f0;1;2gPðFMCjDÞ , where

P(FMC|D) are given in Table 1.
Suppose that we collect nFMC family trios of type

FMC, n1m, MC mother-daughter pairs of type MC, n1f, FC

Table 1 Eight types of possible family trios and the
corresponding probabilities

FMC P(FM) P(C| FM) P(FMC| D)

000 qmg0 1 qmg0/R

010 qmg1 0.5 0.5qmg1/R

011 qmg1 0.5 0.5qmg1λ1/R

021 qmg2 1 qmg2λ1/R

101 pmg0 1 pmg0λ1/R

111 pmg1 0.5 0.5pmg1λ1/R

112 pmg1 0.5 0.5pmg1λ2/R

122 pmg2 1 pmg2λ2/R
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father-daughter pairs of type FC and n0, C single daugh-
ters of type C, where the subscripts 1m, 1f and 0 re-
spectively mean that each trio has only a mother, only a
father and no parents. Then, the log-likelihood function
of the observed data is

lnL θð Þ ¼
X

FMC∈Ω

nFMC lnP FMC Djð Þ þ
X

MC∈ΩMC

n1m;MC

lnP MC Djð Þ þ
X

FC∈ΩFC

n1 f ;FC lnP FC Djð Þ þ
X

C∈ 0;1;2f g
n0;C lnP C Djð Þ:

ð4Þ

Let N2, N1m, N1f and N0 respectively be the numbers
of family trios, mother-daughter pairs, father-daughter
pairs and single daughters. Then, N2 ¼

P
FMC∈ΩnFMC ,

N1m ¼ P
MC∈ΩMC

n1m;MC ;N1 f ¼
P

FC∈ΩFC
n1 f ;FC , N0

¼ P
C∈f0;1;2gn0;C and the total sample size N =N2 +N1m

+N1f +N0.
Since it is not so easy to obtain the MLE of θ from the

above observed log-likelihood function (4), the ECM
algorithm will be employed. Assume that n1m;MC

¼ P
F∈f0;1gz1m;FMC , n1 f ;FC ¼ P

M∈f0;1;2gz1 f ;FMC and n0,

C=
P

F∈f0;1g
P

M∈f0;1;2gz0;FMC , where z1m, FMC, z1f, FMC

and z0, FMC are the unobserved numbers of trios FMC
for mother-daughter pairs MC, father-daughter pairs FC
and single daughters C, respectively (see Additional file
1: Tables S1-S3). Then, the log-likelihood function for
the complete data (nFMC, z1m, FMC, z1f, FMC, z0, FMC) can
be written as

lnLCðθÞ ¼
X

FMC∈Ω

ðnFMC þ z1m;FMC þ z1 f ;FMC

þ z0;FMCÞlnPðFMCjDÞ:

The following ECM algorithm contains one E-step and
five CM-steps at each iteration. In the E-step at iteration
(k + 1), we obtain the conditional expectation of lnLC(θ)
with respect to the conditional distributions of z1m, FMC,
z1f, FMC and z0, FMC given n1m, MC, n1f, FC and n0, C, re-
spectively. z1m, FMC ∣ n1m, MC, z1f, FMC ∣ n1f, FC and z0,
FMC ∣ n0, C follow the binomial distributions with re-
spective success probabilities P(F|MC,D), P(M| FC,D)
and P(FM|C,D). Thus, the Q function is given by

Q θjθ̂ kð Þ� �
¼

X
FMC∈Ω

nFMC þ E
θ̂

kð Þ ðz1m;FMC jn1m;MC

h �

þE
θ̂

kð Þ z1 f ;FMC n1 f ;FC
�� �þ E

θ̂
kð Þ z0;FMC jn0;C
� �� i

lnP FMCjDð Þ;
ð5Þ

where θ̂
ðkÞ ¼ ðp̂ðkÞm ; ĝðkÞ0 ; ĝðkÞ1 ; λ̂

ðkÞ
1 ; λ̂

ðkÞ
2 Þ

T
is the MLE of θ

at iteration k,

E
θ̂

kð Þ z1m;FMC jn1m;MC
� � ¼ n1m;MCP F jMC;D; θ̂

kð Þ� �

¼ n1m;MC

P FMCjD; θ̂ kð Þ� �

X
F 0∈ 0;1f g

P F 0MCjD; θ̂ kð Þ� � ;

E
θ̂

kð Þ z1 f ;FMC jn1 f ;FC
� � ¼ n1 f ;FCP MjFC;D; θ̂ kð Þ� �

¼ n1 f ;FC
P FMCjD; θ̂ kð Þ� �

X
M0∈ 0;1;2f g

P FM0CjD; θ̂ kð Þ� �

and

E
θ̂

kð Þ ðz0;FMC n0;C
�� � ¼ n0;CP FMjC;D; θ̂ kð Þ� �

¼ n0;C
P FMCjD; θ̂ kð Þ� �

X
F 0∈ 0;1f g

X
M0∈ 0;1;2f g

P F 0M0CjD; θ̂ kð Þ� � :

In the CM-steps, the Q function is maximized with re-
spect to each of components of θ in turn, with the others
fixed at their previous values. The MLE of θ at iteration
(k + 1) are given in Additional file 1: Appendix B. The ini-
tial value of θ is obtained only based on N2 complete family
trios when N2 ≠ 0 (see Additional file 1: Appendix B). How-
ever, when N2 = 0, we estimate the initial values of λ1 and
λ2 by replacing unknown n010, n011, n111 and n112 values in

λ̂
ð0Þ
1 ¼ n011=n010 and λ̂

ð0Þ
2 ¼ ðn011n112Þ=ðn010n111Þ by their

respective conditional expectations (see Additional file 1:
Tables S1-S3). For example, n011 is replaced by

E z1m;011jn1m;11
� �þ E z1 f ;011jn1 f ;01

� �þ E z0;011jn0;1
� �

¼ n1m;11q̂
0ð Þ
m þ n1 f ;01∙

0:5ĝ 0ð Þ
1

0:5ĝ 0ð Þ
1 þ ĝ 0ð Þ

2

þ n0;1∙
0:5q̂ 0ð Þ

m ĝ 0ð Þ
1

p̂ 0ð Þ
m ĝ 0ð Þ

0 þ 0:5ĝ 0ð Þ
1 þ q̂ 0ð Þ

m ĝ 0ð Þ
2

;

where p̂ð0Þm , q̂ð0Þm ¼ 1−p̂ð0Þm , ĝð0Þ0 , ĝð0Þ1 and ĝð0Þ2 ¼ 1−ĝð0Þ0 −ĝð0Þ1

are the initial values of pm, qm, g0, g1 and g2, respectively.

The details about the choice of these initial values are
shown in Additional file 1: Appendix B. Given the initial
value of θ, the steps mentioned above continue until the
convergence criterion is satisfied. For example, the abso-
lute differences between the estimates of the parameters
at two consecutive iterations are all less than 10−7. In
addition, note that the ECM algorithm still works when
there are no missing genotypes in all the family trios.
However, it contains only the CM steps in this situation
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and can be regarded as a special case of the cyclic coord-
inate ascent method, which is simple and stable [23].

Confidence interval of γ based on likelihood method
To obtain the CI, we first construct a LRT for testing
the null hypothesis H0: γ = γ0 as follows,

LRT ¼ 2 ln
L θ̂
� �

L ~θ0
� � ;

where θ̂ ¼ (p̂m, ĝ0, ĝ1, λ̂1, λ̂2)
T is the MLE of θ under H1.

Let θ0= (pm, g0, g1, λ2)
T be the parameter vector under

H0 with γ0 = 2(λ1 − 1)/(λ2 − 1) (i.e., λ1 = γ0(λ2 − 1)/2 + 1),

and then ~θ0 ¼ (~pm , ~g0 , ~g1 , ~λ2 )
T denotes the MLE of θ0.

The choice of the initial value of θ0 and the solution of
~θ0 using family trios with missing parental genotypes is
given in Additional file 1: Appendix B. The LRT asymp-
totically follows a chi-square distribution with the degree
of freedom being one (i.e., χ21).
At the significance level α, the 100(1 − α)% confidence

interval of γ based on the LRT is

fγ : LRTðγÞ < χ21−α;1g;

and the confidence limits are the values that satisfy

LRTðγÞ ¼ χ21−α;1: ð6Þ

Note that there is no closed-form solution of Eq. (6).
Thus, numerical method is applied, such as functions
from “rootSolve” package in R software [26]. Let γL and
γU be two unequal roots of Eq. (6) with γL < γU. Gener-
ally, the 100(1 − α)% CI of γ would be (γL, γU). However,
since the true value of γ is bounded in [0, 2], the original
estimated CI of γ will be truncated by [0, 2] if necessary.
As such, the ultimate CI of γ is (γL, γU)∩[0, 2], which is
easier to be interpreted than the origin CI.

Discontinuity problem of confidence interval of γ
Note that γ is a ratio, so like other ratio estimates [27],
we find that the proposed CI may consist of two disjoint
intervals, such as [0, 0.03)∪(0.59, 2]. In this article, this
kind of CIs is referred to as “discontinuous CI” for con-
venience. Let’s take a close look at this discontinuity
problem by the following example. Consider the situ-
ation of (n000, n010, n011, n021, n101, n111, n112, n122)=(191,
89, 112, 54, 114, 59, 62, 19). Then, γ̂ is 1.92 and two
roots of Eq. (6) are 0.03 and 0.59, respectively. If the CI
is set to be (0.03, 0.59) normally, to our surprise, γ̂ is lo-
cated outside this CI. When testing the null hypothesis
H0: γ = γ0, we find that γ0 taking values between 0.03
and 0.59 is rejected by the LRT. This means that the
interval (0.03, 0.59) is actually a rejection region of the
corresponding LRT rather than an acceptance region.

Hence, the CI of γ turns to be (−∞, 0.03)∪(0.59,+∞), and
[0, 0.03)∪(0.59, 2] after being truncated. The discontinu-
ous CI may occur when the denominator of the ratio is
close to zero (i.e., λ2 is close to 1 in this article) [28]. In
fact, when λ2 = 1, we assume that we cannot obtain in-
formation on the XCI skewing pattern according to the
CI of γ. This is because our proposed method measures
XCI skewness in the presence of association between the
disease and genotypes (i.e., λ2 ≠ 1). On the other hand,
although these discontinuous CIs are considered to be
uninformative and are difficult to be interpreted, there is
no satisfactory “objective” method for dealing with this
problem well [27].

Simulation settings
To assess the performance of the proposed method, we con-
duct the following simulation study. The sample size N is
taken to be 700, which is close to that of RA data (757 pedi-
grees) [29]. We consider six different combinations of (N2,
N1m, N1f, N0), which are referred to as six “missing patterns”
(MP1–MP6) for convenience and are shown in Table 2.
When the missing pattern changes from MP1 to MP4, the
number of case-parents trios N2 decreases and the number
of single daughters N0 increases with N1m=N1f. For MP5
and MP6, the number of mother-daughter pairs N1m is dif-
ferent from that of father-daughter pairs N1f with N2 =N0.
In addition, (pm, pf) is set to be (0.30, 0.30), (0.25, 0.30),
(0.30, 0.25), (0.20, 0.20), (0.15, 0.20) and (0.20, 0.15), and we
assume that ρ=0 and 0.05, and λ2=1.5 and 2. λ1 is calculated
from λ1 = γ(λ2− 1)/2 + 1, where γ varies from 0 to 2 in
increments of 0.5. Given pm, pf, ρ, λ2 and γ, N2 case-parents
trios are randomly generated from a multinomial distribu-
tion with probabilities P(FMC|D) shown in Table 1.
Similarly, N1m mother-daughter pairs, N1f father-daughter
pairs and N0 single daughters are randomly drawn from the
multinomial distributions with probabilities PðMCjDÞ
¼ P

F∈f0;1gPðFMCjDÞ , PðFCjDÞ ¼ P
M∈f0;1;2gPðFMCjDÞ

and PðCjDÞ ¼ P
F∈f0;1g

P
M∈f0;1;2gPðFMCjDÞ , respect-

ively. The simulations are based on k=10,000 replicates and
5% significance level.

Table 2 Six simulation settings for different combinations of
(N2, N1m, N1f, N0) with total sample size N being fixed at 700

MP N2 N1m N1f N0

1 700 0 0 0

2 350 100 100 150

3 0 200 200 300

4 0 100 100 500

5 100 400 100 100

6 100 100 400 100
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We assess the statistical properties of the CI by the
following indexes. Let the coverage probability (CP) be
the proportion that the CI contains the true value of γ
among k replicates. Note that under H0: γ = γ0, the esti-
mated type І error rate of the LRT is 1−CP. ML and MR
denote the left tail error and the right tail error (missing
the true value of γ), respectively, with ML ¼ #½ðγ < γLÞ∩
ðγL≤ γ̂≤γUÞ�=k and MR ¼ #½ðγ > γUÞ∩ðγL≤ γ̂≤γUÞ�=k .
Further, we use ML/(ML +MR) to measure the balance
of ML and MR, which will be close to 0.5 when the bal-
ance is achieved. Notice that we do not consider those
discontinuous CIs when calculating ML and MR, since
we cannot distinguish between the left side and the right
side of the discontinuous CIs. As such, we use DP¼ 1−#
ðγL≤ γ̂≤γUÞ=k to represent the proportion of the discon-
tinuous CIs among k replicates. In addition, note that
the distribution of a ratio is not necessarily symmetric
[30, 31], and the median can be always used to estimate
the central tendency of a skewed distribution better than
the mean [32]. So, we give the median of the point esti-
mates of γ over k replicates under each simulation sce-
nario. Further, for simulating the power of the LRT, we
fix γ0 at 0, 1 and 2. Finally, we also compare the simula-
tion results under MP1 (consisting of only 700 family
trios with both parents) based on the ECM algorithm
with those based on the Newton-Raphson algorithm. It
is found that the results of the two algorithms are almost
consistent with each other (data not shown for brevity).
Therefore, we only give the simulation results on the
basis of the ECM algorithm in the following section.

Results
Simulation results
Table 3 lists the estimated CP, ML/(ML +MR) and DP
of the likelihood-based CI of γ against MP and γ with
ρ=0, λ2=1.5, and (pm, pf ) being (0.30, 0.30), (0.25, 0.30)
and (0.30, 0.25). It is shown in the table that the CP is
around 95% under the situations considered. On the
other hand, we find that ML/(ML +MR) and DP appear
not to be greatly affected by (pm, pf ). However, the
value of γ has strong effect on ML/(ML +MR) and DP.
When γ takes values on the boundary (i.e., 0 and 2),
ML/(ML +MR) always stays close to 1 and 0, respect-
ively, which indicates extreme imbalance of two tail er-
rors. DP increases as γ gets close to the boundary. Also,
the missing pattern has great influence on both ML/
(ML +MR) and DP. When the missing pattern varies
from MP1 to MP4, where the number of case-parents
trios decreases and that of single daughters increases,
ML/(ML +MR) becomes more and more far away from
0.5 and DP sharply increases. We also find that under
MP5, where the number of mother-daughter pairs is
larger than that of father-daughter pairs, ML/(ML +

MR) is a little closer to 0.5 and DP becomes smaller
compared to those under MP6.
Table 4 shows the corresponding statistical properties

of the CI of γ with ρ=0, λ2=2, and (pm, pf ) being (0.30,
0.30), (0.25, 0.30) and (0.30, 0.25). As expected, the CP
is still controlled well, the ML/(ML +MR) is closer to
0.5 and DP is lower with larger λ2. We also investigate
the effect of ρ=0.05, and the corresponding results are
similar to those of ρ=0 (see Additional file 1: Tables S4
and S5). On the other hand, when (pm, pf ) is set to be
(0.20, 0.20), (0.15, 0.20) and (0.20, 0.15), the results are
similar to those when (pm, pf ) being taken as (0.30,
0.30), (0.25, 0.30) and (0.30, 0.25) (see Additional file 1:
Tables S6–S9). In addition, the median of the point es-
timates of γ among k replicates under each simulation
scenario is shown in Additional file 1: Figures S1 and
S2. From Additional file 1: Figure S1, we can see that
the median of γ̂ gets more far away from the true value
of γ as the missing pattern varies from MP1 to MP4,
and it is always slightly closer to γ under MP5 than that
under MP6. The increase of the value of λ2 also im-
proves the accuracy of the median of γ̂ , while the values
of ρ, pm and pf seem to have no great influence on the
median of γ̂ .
The simulated powers of the LRT for testing H0 : γ = γ0

with (pm, pf) = (0.30, 0.30), (0.25, 0.30) and (0.30, 0.25) are
given in Figs. 1, 2, 3, 4. Fig. 1 shows the simulated powers
of the LRT against γ under MP1–MP4 with ρ= 0 and
λ2=1.5. From the first row to the third row of the panels
in Fig. 1, (pm, pf) is set to be (0.30, 0.30), (0.25, 0.30) and
(0.30, 0.25), respectively. From the first column to the
third column, γ0 is fixed at 0, 1 and 2, respectively. It is
found that the power increases as the value of ∣γ − γ0∣
gets larger. For example, in Fig. 1(a), when testing for H0:
γ = γ0 with γ0= 0 (XCI skewing completely against mutant
allele), the power under γ=1.5 (75% cells express mutant
allele) is greater than that under γ= 0.5 (25% cells express
mutant allele). On the other hand, when the missing pat-
tern changes from MP1 to MP4, the loss in power is al-
ways substantial. Also, we compare the corresponding
powers under MP5 and MP6 in Fig. 2. The power under
MP5 is always higher than that under MP6 when γ ≠ γ0,
which implies that the mother-daughter pairs contain
more information on the skewness of XCI than the
father-daughter pairs. This is not surprising because when
the father’s genotype is missing in a trio, it can be inferred
according to the available mother’s and daughter’s geno-
types, except for the mother-daughter pair of type MC =
11, whereas we cannot infer the missing mother’s geno-
types from any father-daughter pairs. In addition, Figs. 3
and 4 give the simulated powers of the LRT under ρ=0
and λ2=2 for MP1–MP4 and MP5–MP6, respectively. It is
shown that the increase of λ2 leads to the growth in power
(Fig. 3 vs. Fig. 1, Fig. 4 vs. Fig. 2). We also simulate the
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powers under ρ=0.05 and (pm, pf) = (0.30, 0.30), (0.25,
0.30) and (0.30, 0.25), which are similar to those under
ρ=0 (see Additional file 1: Figures S3–S6). Finally, the sim-
ulated powers under (pm, pf ) = (0.20, 0.20), (0.15, 0.20)
and (0.20, 0.15) are given in Additional file 1: Figures S7–
S14, which are always lower than those under (pm, pf ) =
(0.30, 0.30), (0.25, 0.30) and (0.30, 0.25), respectively.

Application to RA data
Rheumatoid arthritis (RA) is an autoimmune disease, which
has been reported to be associated with the skewness of
XCI [33]. To investigate the XCI skewing patterns at the
X-linked loci associated with RA, we apply our proposed

method to the data from North American Rheumatoid
Arthritis Consortium [29], which is made available from
Genetic Analysis Workshop 15 [34]. The dataset includes
757 pedigrees and 293 single nucleotide polymorphism
(SNP) markers on X chromosome. In this application, one
nuclear family with a typed affected daughter is selected
randomly from each pedigree. As such, a total of 703 nu-
clear families are included, which contains 64 case-parents
trios, 179 mother-daughter pairs, 37 father-daughter pairs
and 423 single daughters.
Since our proposed method is applicable in the presence

of association, we ultimately measure the degree of XCI
skewing at five SNPs which have been found to be associated

Table 3 Statistical properties of likelihood-based confidence interval of γ against missing pattern (MP) and γ with ρ=0, λ2=1.5, and
(pm, pf) being (0.30, 0.30), (0.25, 0.30) and (0.30, 0.25)a

(pm, pf) = (0.30, 0.30) (pm, pf) = (0.25, 0.30) (pm, pf) = (0.30, 0.25)

MP γ CP (%) ML/(ML + MR) DP CP (%) ML/(ML +MR) DP CP (%) ML/(ML +MR) DP

1 0 94.37 1 0.098 94.46 1 0.099 94.74 1 0.100

0.5 94.70 0.51 0.034 94.59 0.51 0.030 94.79 0.56 0.035

1 95.01 0.33 0.018 94.94 0.34 0.022 94.96 0.34 0.023

1.5 95.10 0.26 0.052 95.08 0.30 0.048 95.08 0.25 0.058

2 95.13 0 0.061 94.84 0 0.060 94.97 0 0.072

2 0 95.17 1 0.162 94.69 1 0.161 94.78 1 0.160

0.5 94.98 0.59 0.064 94.87 0.53 0.055 95.21 0.59 0.061

1 94.96 0.21 0.036 95.05 0.20 0.038 95.21 0.17 0.037

1.5 94.65 0.16 0.104 95.01 0.12 0.105 94.67 0.09 0.110

2 94.58 0 0.130 94.98 0 0.120 94.87 0 0.140

3 0 94.79 1 0.373 95.28 1 0.347 94.99 1 0.372

0.5 95.57 0.75 0.140 95.58 0.62 0.119 95.58 0.75 0.138

1 95.49 0.01 0.071 95.72 0.02 0.069 95.56 0.03 0.063

1.5 94.84 0 0.232 94.93 0 0.227 94.96 0 0.210

2 94.87 0 0.413 94.75 0 0.385 95.13 0 0.393

4 0 94.72 1 0.500 94.59 1 0.472 94.76 1 0.488

0.5 95.14 0.87 0.183 95.31 0.81 0.162 95.32 0.89 0.174

1 94.99 0.05 0.067 95.13 0.03 0.073 94.85 0.04 0.070

1.5 94.79 0 0.229 94.86 0 0.238 94.65 0 0.194

2 94.65 0 0.457 94.39 0 0.460 94.81 0 0.402

5 0 94.77 1 0.211 95.12 1 0.204 95.08 1 0.209

0.5 95.56 0.67 0.077 95.61 0.56 0.066 95.60 0.66 0.078

1 95.04 0.12 0.050 95.06 0.13 0.052 95.49 0.11 0.047

1.5 94.72 0.04 0.155 94.83 0.07 0.150 94.69 0.05 0.150

2 94.74 0 0.220 94.66 0 0.199 94.81 0 0.231

6 0 95.08 1 0.295 95.25 1 0.275 95.05 1 0.291

0.5 95.28 0.72 0.108 95.43 0.62 0.094 95.68 0.77 0.106

1 95.20 0.06 0.059 95.30 0.05 0.063 95.03 0.03 0.059

1.5 94.57 0.01 0.190 95.09 0.03 0.183 94.64 0.01 0.186

2 94.87 0 0.294 94.69 0 0.267 94.64 0 0.297
aThe simulations are conducted under 10,000 replicates and 5% significance level
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with RA by the XMCPDT method at the significance level of
1% [35]. Notice that the XMCPDT method is conducted
based on 246 pedigrees from the RA dataset. We identify the

at-risk allele by the value of λ̂2 , and denote the estimates of
the frequencies of the at-risk allele in males and females ob-
tained from the ECM algorithm by p̂m and p̂ f , respectively.
Table 5 lists the p-value of XMCPDT, the values of (p̂m, p̂ f ),

λ̂2 and γ̂, and 95% CI of γ based on the proposed likelihood
method for each of five SNPs. From Table 5, we find that
there are three SNPs (rs916685, rs1043034 and rs2005463)
with the 95% CIs containing the value of γ=1, which indi-
cates the random XCI. On the other hand, the XCI skewing

at rs2238907 is found with γ̂ ¼0.35 and the 95% CI
being [0, 0.79), which suggests that the skewness of
XCI is against the at-risk allele with 17.5% (0.35/2)
cells in heterozygous females having the at-risk allele
active, while the other 82.5% cells keeping the nor-
mal allele active. However, the 95% CI of γ at
rs1264064 is [0, 2], providing no information on the
XCI skewing pattern. In addition, we evaluate γ̂ ’s
and the 95% CIs of γ at the rest 288 SNPs in the
RA dataset, and find that there are 21 SNPs with
nonrandom XCI pattern. But note that, if we assume
that all of 293 SNPs except for rs2238907 are under

Table 4 Statistical properties of likelihood-based confidence interval of γ against missing pattern (MP) and γ with ρ=0, λ2=2, and
(pm, pf) being (0.30, 0.30), (0.25, 0.30) and (0.30, 0.25)a

(pm, pf) = (0.30, 0.30) (pm, pf) = (0.25, 0.30) (pm, pf) = (0.30, 0.25)

MP γ CP (%) ML/(ML + MR) DP CP (%) ML/(ML +MR) DP CP (%) ML/(ML +MR) DP

1 0 94.67 0.88 0.025 94.73 0.90 0.030 94.80 0.93 0.029

0.5 94.71 0.40 0.005 94.95 0.42 0.006 94.65 0.41 0.008

1 94.86 0.41 0.004 94.97 0.40 0.004 95.09 0.41 0.006

1.5 94.96 0.41 0.006 95.25 0.43 0.005 95.11 0.41 0.008

2 95.14 0.02 0.022 94.99 0.01 0.024 95.08 0.01 0.024

2 0 95.17 1 0.032 94.71 0.99 0.040 94.64 1 0.038

0.5 95.16 0.40 0.025 95.13 0.35 0.022 95.00 0.38 0.027

1 94.60 0.36 0.019 95.24 0.38 0.019 95.01 0.33 0.020

1.5 94.62 0.39 0.026 95.32 0.43 0.020 94.93 0.40 0.034

2 94.71 0 0.028 94.81 0 0.026 95.13 0 0.029

3 0 94.91 1 0.168 95.10 1 0.189 95.09 1 0.172

0.5 95.24 0.29 0.159 95.61 0.27 0.135 95.56 0.31 0.164

1 95.58 0.02 0.097 95.51 0.02 0.101 95.25 0 0.091

1.5 95.21 0.03 0.280 95.06 0.04 0.250 94.92 0 0.296

2 95.16 0 0.176 95.07 0 0.142 95.10 0 0.219

4 0 94.74 1 0.387 94.68 1 0.406 94.57 1 0.393

0.5 94.80 0.43 0.263 94.61 0.32 0.227 94.51 0.46 0.275

1 95.19 0.01 0.127 95.37 0 0.155 95.20 0.01 0.110

1.5 94.67 0 0.449 94.54 0 0.455 94.69 0 0.405

2 94.65 0 0.433 94.71 0 0.399 94.61 0 0.462

5 0 94.75 1 0.050 94.94 1 0.063 94.93 1 0.054

0.5 95.18 0.36 0.050 95.73 0.37 0.046 95.31 0.39 0.058

1 94.98 0.25 0.037 94.85 0.26 0.042 95.21 0.22 0.037

1.5 94.97 0.23 0.084 94.71 0.31 0.065 94.85 0.25 0.093

2 95.24 0 0.037 94.42 0 0.035 94.63 0 0.051

6 0 95.34 1 0.083 95.10 1 0.095 95.20 1 0.101

0.5 95.72 0.36 0.092 95.24 0.36 0.081 95.48 0.33 0.094

1 94.93 0.09 0.059 94.91 0.12 0.062 94.83 0.10 0.063

1.5 94.96 0.14 0.133 94.57 0.18 0.119 95.07 0.13 0.146

2 94.81 0 0.055 94.71 0 0.054 94.95 0 0.075
aThe simulations are conducted under 10,000 replicates and 5% significance level
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H0: γ = 1, then the corresponding false positive rate
would be 0.0719 (21/292), which is still below the

upper bound 0:05þ 1:96 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 � ð1−0:05Þ=292p

¼ 0:0750: Besides, association between these 21 SNPs and
RA has not been found by XMCPDT at the 1% significance
level, so we should draw conclusions with this caution.

Discussion
In this article, we propose a statistical measure γ of the de-
gree of the XCI skewing for family trio data, which can be
represented as a ratio of two GRRs in females in the

presence of association between the disease and genotypes.
Further, we obtain the point estimate of γ, which is con-
structed by the MLEs of two GRRs in females. When there
are missing parental genotypes in some family trios, the
ECM algorithm is used to estimate the two GRRs. The CI of
γ is derived from the likelihood method by inverting the
LRT. We conduct the simulation study under various simu-
lation settings, including six missing patterns of families, six
groups of allele frequencies, two different values of inbreed-
ing coefficient in females, two different values of λ2 and five
different values of γ. The simulation results show that the
proposed likelihood-based CI of γ has an accurate CP under
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Fig. 1 Estimated powers of LRT against γ under MP1–MP4 with ρ=0 and λ2= 1.5. The results are based on 10,000 replicates and 5% significance level.
a (pm, pf) = (0.30, 0.30) and γ0=0; b (pm, pf) = (0.30, 0.30) and γ0=1; c (pm, pf) = (0.30, 0.30) and γ0=2; d (pm, pf) = (0.25, 0.30) and γ0=0; e (pm, pf) = (0.25,
0.30) and γ0=1; f (pm, pf) = (0.25, 0.30) and γ0=2; g (pm, pf) = (0.30, 0.25) and γ0=0; h (pm, pf) = (0.30, 0.25) and γ0=1; i (pm, pf) = (0.30, 0.25) and γ0=2. Note
that γ0=0, 1 and 2 represent XCI skewing completely against mutant allele, random XCI and XCI skewing completely toward mutant allele, respectively
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the situations considered, while ML/(ML+MR) and DP of
the CI of γ and the median of estimates of γ are influenced
by the values of γ, λ2 and the missing pattern. Similarly, the
simulated power of LRT is affected by the values of ∣γ
− γ0∣, λ2, (pm, pf) and the missing pattern. Finally, we apply
our proposed method to the RA data from USA and find
out a locus, rs2238907, which may undergo the XCI skewing
against the at-risk allele.
Many X-linked diseases are always associated with XCI

skewing in females. Our proposed statistical measure γ pro-
vides information on the potential loci subject to XCI

skewing, thus it is helpful to uncover the pathogenesis of
X-linked diseases. However, most of the statistical studies
on X chromosome today focus mainly on the association
tests [17, 24, 25, 36–38], so there are no other statistical
methods available to measure the skewness of XCI. On the
other hand, although the XCI skewing pattern can also be
detected by differential methylation between the active and
inactive X chromosomes or mRNA transcription in cells,
our proposed statistical method takes use of population
data to measure the skewness of XCI. Thus, it can reflect
the average level of the XCI skewing in female population.
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Fig. 2 Estimated powers of LRT against γ under MP5 and MP6 with ρ=0 and λ2= 1.5. The results are based on 10,000 replicates and 5%
significance level. a (pm, pf) = (0.30, 0.30) and γ0=0; b (pm, pf) = (0.30, 0.30) and γ0=1; c (pm, pf) = (0.30, 0.30) and γ0=2; d (pm, pf) = (0.25, 0.30) and
γ0=0; e (pm, pf) = (0.25, 0.30) and γ0=1; f (pm, pf) = (0.25, 0.30) and γ0=2; g (pm, pf) = (0.30, 0.25) and γ0=0; h (pm, pf) = (0.30, 0.25) and γ0=1; i (pm, pf)
= (0.30, 0.25) and γ0=2. Note that γ0=0, 1 and 2 represent XCI skewing completely against mutant allele, random XCI and XCI skewing completely
toward mutant allele, respectively
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There are some issues in our proposed method. First of
all, the original CI is truncated by [0, 2] to enhance the in-
terpretability of the CI. However, when the whole original
CI lies outside [0, 2], the CI ultimately obtained after trun-
cation would be empty. Although it is hard to interpret this
kind of CI containing no values, the simulation results
show that when γ takes values on the boundary (i.e., 0 and
2), these empty CIs seldom occur. For example, when γ =
0, two tail errors (ML and MR) are extremely imbalance
with ML/(ML +MR) being 1 or close to 1. This means that

there are no or very few original CIs whose upper limit is
below 0. Likewise, ML/(ML +MR) is 0 or close to 0 when
γ = 2, which implies that there are no or very few original
CIs whose lower limit is beyond 2. On the other hand, the
proposed likelihood method has its own drawback in de-
riving the CI of a ratio like any other ratio estimation
methods. We find that the likelihood-based CI of γ may
consist of two disjoint intervals, such as [0, 0.03) ∪ (0.59, 2],
and it is also difficult for us to interpret. For example, if γ̂
¼ 1:92 and the CI of γ is [0, 0.03) ∪ (0.59, 2], then the
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Fig. 3 Estimated powers of LRT against γ under MP1–MP4 with ρ=0 and λ2=2. The results are based on 10,000 replicates and 5% significance
level. a (pm, pf) = (0.30, 0.30) and γ0=0; b (pm, pf) = (0.30, 0.30) and γ0=1; c (pm, pf) = (0.30, 0.30) and γ0=2; d (pm, pf) = (0.25, 0.30) and γ0=0; e (pm,
pf) = (0.25, 0.30) and γ0=1; f (pm, pf) = (0.25, 0.30) and γ0=2; g (pm, pf) = (0.30, 0.25) and γ0=0; h (pm, pf) = (0.30, 0.25) and γ0=1; i (pm, pf) = (0.30, 0.25)
and γ0=2. Note that γ0=0, 1 and 2 represent XCI skewing completely against mutant allele, random XCI and XCI skewing completely toward
mutant allele, respectively
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corresponding LRT would reject the null hypothesis of γ0
= 0.5, and accept that of γ0 = 0.01. It is hard to explain that
the LRT rejects a γ0 being close to γ̂ , while accepts one
being far away from γ̂ . Although this kind of CI is undesir-
able, it is also inevitable and can be regarded as a hint of λ2
being close to 1 [39]. In addition, it should be noted that
the ECM algorithm is not applicable when all the family
trios are “single daughters”, since the MLE of θ may not be
uniquely specified under this situation (the details see
Additional file 1: Appendix C). However, if the other family
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Fig. 4 Estimated powers of LRT against γ under MP5 and MP6 with ρ=0 and λ2=2. The results are based on 10,000 replicates and 5% significance
level. a (pm, pf) = (0.30, 0.30) and γ0=0; b (pm, pf) = (0.30, 0.30) and γ0=1; c (pm, pf) = (0.30, 0.30) and γ0=2; d (pm, pf) = (0.25, 0.30) and γ0=0; e (pm,
pf) = (0.25, 0.30) and γ0=1; f (pm, pf) = (0.25, 0.30) and γ0=2; g (pm, pf) = (0.30, 0.25) and γ0=0; h (pm, pf) = (0.30, 0.25) and γ0=1; i (pm, pf) = (0.30, 0.25)
and γ0=2. Note that γ0=0, 1 and 2 represent XCI skewing completely against mutant allele, random XCI and XCI skewing completely toward
mutant allele, respectively

Table 5 Application of proposed method to RA dataset with p-
values of XMCPDT less than 1% significance level

SNP name p-valuea (p̂m , p̂ f ) λ̂2 γ̂ 95% CI of γ

rs2238907 0.004 (0.20, 0.24) 2.18 0.35 [0, 0.79)

rs916685 0.003 (0.17, 0.20) 2.55 0.53 [0, 1.33)

rs1264064 0.001 (0.42, 0.45) 1.96 0.71 [0, 2]

rs1043034 0.007 (0.19, 0.24) 3.73 0.81 (0.51, 1.69)

rs2005463 0.007 (0.18, 0.23) 4.59 0.61 (0.40, 1.06)
aP-value of XMCPDT for testing association between SNP and RA [35]
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trios were collected, then the single daughters can make
contribution to the MLE of θ in the ECM algorithm to-
gether with these trio data (the details see Additional file 1:
Appendix D). Finally, we assume that the genotypes’ fre-
quencies in males and females (pm, g0 and g1) are unknown
and estimate them together with λ1 and λ2 in our
simulation study and real data application. Alterna-
tively, if we can obtain information on the allele fre-
quencies from the online databases, such as the Allele
Frequency Net Database [40] and the UCSC Genome
Browser Database [41], then it is unnecessary to
re-estimate pm, g0 and g1, which will reduce the num-
ber of parameters so that the ECM algorithm runs
faster.
Note that the ECM algorithm can converge to a local

maximum of the log-likelihood function instead of a glo-
bal maximum [23]. To investigate this, we randomly
choose 1000 initial values of θ (θ0) from the parameter
space and regard the MLE of θ (θ0) with the maximum

log-likelihood among 1000 lnLðθ̂Þ 's ( lnLð~θ0Þ 's) as the
global MLE of θ (θ0). We conduct a simulation study
under the simulation settings with ρ=0, λ2= 1.5 and (pm,
pf ) = (0.30, 0.30), and the details see Additional file 1:
Appendix E. The simulation results (see Additional file

1: Tables S10 and S11) show that the values of θ̂ and ln

Lðθ̂Þ (~θ0 and lnLð~θ0Þ ) based on one initial value esti-
mated by the method described in Additional file 1: Ap-
pendix B are very close to those based on 1000 initial
values under all the simulated situations when N2 (the
number of complete family trios) is not too small, such
as MP1 and MP2, which may indicate that the ECM
algorithm based on the estimated initial value converges
towards the global maximum. As for MP3-MP6, except

that ~θ0 with (γ0, γ) = (1, 2) under MP5 and MP6, ~θ0 with

(γ0, γ) = (1, 1) and (1, 2) under MP3, and ~θ0 with (γ0, γ)
= (1, 1), (1, 1.5) and (1, 2) under MP4 may converge to a

local maximum, all the other θ̂ and ~θ0 results converge
to the global maximum. Further, for these seven cases,
we try and randomly select ten groups of initial values of

θ0 from the parameter space and regard ~θ0 with the

maximum log-likelihood among ten lnLð~θ0Þ 's as the

final MLE of θ0. We find that ~θ0 ’s based on ten and
1000 initial values are very close to each other under all
the seven simulated situations (see Additional file 1:
Table S11). So, if N2 is zero or too small, we recommend
using multiple initial values (such as ten) for obtaining
the global MLE of θ0. On the other hand, family trios
with both parents are always fortunately collected in the
family-based studies in practice.
In future studies, we will extend our proposed method

to incorporate covariates by using nuclear families with af-
fected and unaffected offspring. Furthermore, to facilitate
the interpretability of the CI of γ, we will utilize the prior

information, such as the order of the GRRs in females and
the information of the presence of association.

Conclusions
The proposed statistical measure for the skewness of
XCI is applicable for complete family trio data or family
trio data with some paternal genotypes missing. The
likelihood-based CI has an accurate CP under the situa-
tions considered. Therefore, our proposed statistical
measure is generally recommended in practice for
discovering the potential loci which undergo the XCI
skewing.
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Additional file 1: Appendix A. Derivation of P(FMC| D) in Table 1.
Appendix B. Choice of initial value of θ (θ0) and MLE of θ (θ0) using
family trios with missing parental genotypes. Appendix C. Inapplicability
of ECM algorithm when using only single daughters. Appendix D.
Contribution of single daughters to estimate of θ in ECM algorithm.
Appendix E. Effect of different initial values of θ (θ0) on ECM algorithm.
Tables S1–S3. The conditional probabilities and conditional expectations
for seven types of possible mother-daughter pairs, four types of possible
father-daughter pairs and three types of possible single daughters,
respectively. Tables S4–S5. Statistical properties of likelihood-based
confidence interval of γ against missing pattern (MP) and γ with ρ=0.05,
(pm, pf) = (0.30, 0.30), (0.25, 0.30) and (0.30, 0.25), and λ2=1.5 and 2,
respectively. Tables S6–S9. Statistical properties of likelihood-based
confidence interval of γ against missing pattern (MP) and γ with (pm, pf)=
(0.20, 0.20), (0.15, 0.20) and (0.20, 0.15), ρ=0 and 0.05, and λ2=1.5 and 2,
respectively. Table S10. Averages of absolute differences of each element
of θ̂ and lnLðθ̂Þ between ECM1 and ECM1000 with ρ=0, λ2= 1.5 and
(pm, pf) = (0.30, 0.30) under MP1-MP6. Table S11. Averages of absolute
differences of each element of ~θ0 and lnLð~θ0Þ between ECM1/ECM10

and ECM1000 with ρ=0, λ2= 1.5 and (pm, pf) = (0.30, 0.30) under MP1-MP6.
Figures S1–S2. Medians of point estimates of γ against MP for different
pm, pf and λ2 values with ρ=0 and 0.05, respectively. Figures S3–S6.
Estimated powers of LRT against γ with ρ=0.05 and (pm, pf) being (0.30,
0.30), (0.25, 0.30) and (0.30, 0.25) under MP1–MP4 and MP5–MP6, and
λ2=1.5 and 2, respectively. Figures S7–S14. Estimated powers of LRT
against γ with (pm, pf) being (0.20, 0.20), (0.15, 0.20) and (0.20, 0.15) under
MP1–MP4 and MP5–MP6, ρ=0 and 0.05, and λ2=1.5 and 2, respectively.
(PDF 2328 kb)
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