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Background: NF-kB promotes HCC progression; however, therapies targeting NF-kB are not used due to severe adverse
reactions. Pin1 is reported to induce tumour progression in vitro. However, the role of Pin1 in HCC is unclear. Moreover, little is
known about the mechanism of Pin1-mediated NF-kB activation.

Methods: Fresh surgical specimens were collected from 144 HCC patients. Pin1 and NF-kB-p65 expression was evaluated by
immunohistochemistry and western blotting. NF-kB activation was assessed by EMSA.

Results: Pin1 was increased in HCC compared to adjacent liver tissue. The multivariate analysis revealed that high Pin1 expression
was an independent factor for poor prognosis. In HCC with high Pin1 expression, tumour size was larger and portal vein invasion
was increased. Pin1 expression was correlated with phosphorylated (p� ) NF-kB-p65(Thr254) and p-NF-kB-p65(Ser276), and
thereby NF-kB activation. Pin1-induced NF-kB activation accelerated cell cycle progression, induced angiogenesis, and inhibited
apoptosis. Pin1 knockdown in HCC cells inhibited the phosphorylation of NF-kB-p65(Ser276), and reduced NF-kB activation,
which resulted in inhibiting tumour cell progression. When HCC cells were treated with the Pin1 inhibitors, p-NF-kB-p65(Ser276)
expression and NF-kB activation was reduced, and cell proliferation was inhibited.

Conclusions: Pin1 is associated with aggressive tumour progression and poor prognosis in HCC by mediating NF-kB activation.

Hepatocellular carcinoma (HCC) is the common cause of
cancer-related death worldwide (El-Serag, 2011). Despite the fact
that multidisciplinary therapy has improved, the prognosis of
advanced HCC is still poor. Therefore, it is urgent to reveal the
mechanisms of HCC progression, to identify potent prognostic
factors, and to discover new therapeutic targets for HCC. HCC
progression is strongly related to inflammatory responses. Among
the factors regulating inflammatory cascades, nuclear factor kB
(NF-kB) is reported to be essential for promoting HCC pro-
gression (Pikarsky et al, 2004). Previous studies have focused on
regulating NF-kB activation as cancer treatments; however,
therapies targeting NF-kB are not widely used due to severe
adverse reactions, as complete deletion of NF-kB-p65 induces
severe cellular apoptosis in normal tissues (Beg et al, 1995).

Therefore, the development of a new therapeutic target controlling
NF-kB activation is essential to improve the prognosis of HCC.

The phosphorylation of Ser/Thr residues is important for
activating the functions of proteins. The peptidyl-prolyl cis-/trans-
isomerase, Pin1, binds to phosphorylated (p� ) Ser/p-Thr residue
in target proteins and induces conformational changes following
phosphorylation to regulate protein function (Lu et al, 2002). It has
been reported that Pin1 is overexpressed in many cancers,
including breast cancer (Ryo et al, 2003), prostate cancer
(Ayala et al, 2003), glioblastoma (Atkinson et al, 2009), and
HCC (Pang et al, 2004; Pang et al, 2007; Cheng et al, 2013). Pin1
has been shown to mediate NF-kB activation; however, only a
few studies have revealed a direct interaction between Pin1 and
NF-kB-p65. It has been reported that Pin1 specifically binds to the
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p-NF-kB-p65(Thr254), inhibits its binding to IkBa, induces the
translocation of Pin1-NF-kB-p65 complex to the nucleus and
enhances its stability in HeLa cells in vitro (Ryo et al, 2003).
We have previously reported that Pin1 protects hepatocytes from
ischaemic liver injury by increasing NF-kB activation through the
production of Pin1-NF-kB-p65 complex (Kuboki et al, 2007;
Kuboki et al, 2009). In HCC, Pin1 is known to interact with
hepatitis B virus X protein, beta-catenin, or survivin to enhance
carcinogenesis and tumour progression. However, no reports have
revealed an interaction between Pin1 and NF-kB in HCC in any
experimental models. Moreover, there have been no investigations
which focus on the relationship between Pin1 expression and
clinicopathological features or prognosis in patients with HCC.

The aim of this study was to evaluate the expression of Pin1 in
patients with HCC in order to investigate the correlations with
clinicopathological variables, including patient survival, and to
determine whether Pin1-mediated NF-kB activation is a relevant
factor in the regulation of HCC progression.

MATERIALS AND METHODS

Tissue samples. We studied 144 HCC patients who underwent
primary curative surgical resection between 2000 and 2008 at our
institution. None of the patients received preoperative treatments.
Patients with extrahepatic metastasis before operation were
excluded from this study. Fresh surgical specimens were obtained
from these patients during operation. Normal liver tissues were
obtained from 10 patients with liver metastases of colorectal cancer
(controls). Portions of the samples were fixed in formalin,
embedded in paraffin, and stained with hematoxylin–eosin. The
classification proposed by the Liver Cancer Study Group of Japan
was used for evaluating the pathological features of HCC (The liver
cancer study group of Japan, 2011). The degree of liver fibrosis was
assessed by Metavir score, and F2 or more was defined as the
presence of liver fibrosis, and F4 as the presence of liver cirrhosis.
Nuclear extracts and whole tissue lysates were extracted from 32
HCC samples and 10 normal liver samples. Fully informed consent
was obtained from all patients. The study was performed in
accordance with the guidelines of the Helsinki Declaration of 1975,
as amended in 1983, and approved by Chiba University Human
Research Committee.

Immunohistochemical staining. Immunohistochemical staining
was performed with anti-Pin1, anti-p-NF-kB-p65(Thr254), anti-p-
NF-kB-p65(Ser276) (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), anti-CD34, or anti-Ki-67 antibody (Dako, Copenhagen,
Denmark) using the EnVision Kit or Universal LSAB Kit (Dako),
and was counterstained with hematoxylin. Pin1 expression was
evaluated using the Image J based on the staining intensity and
percentage of positive cells. For the intensity, the grading scale
ranged from 0 (no signal), to 1 (very weak signal), 2 (weak signal),
3 (moderate signal), 4 (strong signal), and 5 (the strongest signal).
The intensity grade was evaluated by two independent clinical
pathologists and the total score was recognised as the Pin1
intensity score (0–10). The percentage value for the positive cells
was divided by 10 and determined as the Pin1 percentage score
(0–10). The total of the intensity score and the percentage score
was defined as the Pin1 labelling index (0–20). The cell
proliferation index by Ki-67 and the microvessel density (MVD)
levels by CD34 were determined according to the method
described in previous studies (Mitsuhashi et al, 2003; Aigelsreiter
et al, 2013). Determination of p-NF-kB-p65 labelling index was
evaluated by immunohistochemistry based on the percentage of
positive nuclei, and was expressed as the labelling index of HCC.
TUNEL staining was performed in accordance with the manu-
facture’s instruction using the TUNEL staining kit (Dako).

Western blotting. Western blotting was done using whole tissue
lysates or whole cell lysates, as previously described (Kuboki et al,
2009). Tris-buffered saline with dry milk or PhosphoBLOCKER
(Cell Biolabs Inc., San Diego, CA, USA) were used for
blocking non-specific binding sites. Antibodies against Pin1, IkBa,
NF-kB-p65, p-NF-kB-p65(Thr254), p-NF-kB-p65(Ser276), Cyclin D1,
cyclin-dependent kinases regulatory subunit 1 (Cks1), p27(kip1),
vascular endothelial growth factor (VEGF) or b-actin (Santa Cruz
Biotechnology) were used for primary antibody. Immunoreactive
proteins were detected by enhanced chemiluminescence and
quantified by image analysis.

Electrophoretic mobility shift assay. Nuclear extracts were
analysed by electrophoretic mobility shift assay (EMSA), as previously
described (Kuboki et al, 2009). Briefly, double-stranded consensus
oligonucleotides to NF-kB (Promega Corporation, Madison, WI,
USA) were end-labelled with g[32P] ATP (Perkin Elmer Inc. Boston,
MA, USA). Binding reaction products of NF-kB were separated in a
polyacrylamide gel and analysed by autoradiography.

Cell culture. HepG2 cells and HuH-7 cells, from the Health
Science Research Resources Bank (Osaka, Japan), were distributed
onto 6-well plates (Asahi Techno Glass, Tokyo, Japan) at a
concentration of 1.5� 104 cells per 3 ml per well in Dulbecco’s
modified Eagle medium (Sigma-Aldrich, St. Louis, MO, USA).
After overnight incubation, Pin1-specific small interfering RNA
(siRNA) or negative control siRNA was transfected into HCC cells
using HiPerFect Transfection Reagent (QIAGEN Inc., Valencia,
CA, USA). These cells were further treated with 10 ng ml� 1

tumour necrosis factor-a (TNFa) for 30 min to activate NF-kB. In
some experiments, cells were incubated for 24, 48 or 72 h in
medium containing 0 (vehicle only), 5, 10, 25 or 50 mmol l� 1

juglone or PiB (Sigma-Aldrich). Cell proliferation was evaluated at
48 h after treatment by DNA incorporation of 5-bromo-2’-
deoxyuridine (BrdU) using the Biotrak cell proliferation ELISA
system (GE Healthcare, Buckingham, UK). For cell cycle analysis,
cells were harvested and suspended with PBS containing
100 mg ml� 1 propidium ionide and 10 mg ml� 1 RNase, and
analysed the content of DNA using BD FACS CANTO II
(BD Biosciences, Franklin Lakes, NJ, USA). Cell invasiveness was
evaluated at 48 h after treatment using the Cell Invasion Assay Kit
(Cell Biolabs Inc.). Cell lysates and nuclear extracts were prepared
for western blotting or EMSA.

Statistical analysis. Data are expressed as means±s.e.m.
Statistical comparisons for significance were performed using
Student’s t-test or the Mann–Whitney U-test. Kaplan–Meier
method was used for estimating survival, and statistical differences
were analysed by the log-rank test. Significant prognostic factors
evaluated by univariate logistic regression were included in a
multivariable analysis to determine independent factors for poor
prognosis. Probability (P) values of 0.05 or less were considered to
be statistically significant. Statistical analyses were performed using
the software JMP 11 (SAS Institute Inc., Cary, NC, USA).

RESULTS

Pin1 expression in normal liver tissue, adjacent liver tissue, and
HCC. Immunohistochemical staining showed that Pin1 was
expressed at low levels in normal liver tissue (Figure 1A), and
adjacent liver tissue (Figures 1B and C). Increased expression of
Pin1 was seen in some cases of HCC compared to adjacent liver
tissue (Figure 1B), but not in other cases of HCC (Figure 1C).

Clinical significance of Pin1 expression. A training set with 106
HCC patients from 2003 to 2008 were divided into two groups
based on the Pin1 labelling index in HCC, low Pin1 expression and
high Pin1 expression. Receiver operating characteristic (ROC)
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revealed that the adequate cutoff value of Pin1 labelling index in
accordance with the 5-year survival was 7.5 (Figure 1D). The
accuracy was relatively high, as the area under the curve was 0.702.
When the relationships between Pin1 expression in HCC and
several clinicopathological variables were evaluated, the frequency
of female gender (P¼ 0.023), positive tumour capsule (P¼ 0.021),
larger tumour size (P¼ 0.024), and positive portal vein invasion
(P¼ 0.045) were significantly higher in patients with high Pin1
expression than those with low Pin1 expression (Supplementary
Table S1). Pin1 had no significant correlations with the back-
ground liver diseases such as viral infection, hepatic steatosis, or
liver cirrhosis. An analysis with the Kaplan–Meier method revealed
that overall survival time for patients with high Pin1 expression
was significantly poorer when compared with those with low Pin1
expression (Po0.001, Figure 1E). The univariate and multivariate
analyses revealed that the presence of intrahepatic metastasis
(Po0.001), pathological poorly differentiation (P¼ 0.003), and
high Pin1 expression in HCC (Po0.001) were independent
prognostic factors associated with overall survival (Table 1). In
addition, early recurrence rate within 3 years was significantly
higher in patients with high Pin1 expression in HCC (P¼ 0.004,

Figure 1F). When type of initial recurrence after hepatectomy was
evaluated, the incidence of local (intrahepatic) recurrence was
significantly higher in patients with high Pin1 expression. Patients
with high Pin1 expression seemed to show increased distant
(extrahepatic) metastasis at the time of recurrence; however, not
statistically significant (Supplementary Table S1). Moreover, the
presence of intrahepatic metastasis (P¼ 0.045), the presence of
portal vein invasion (P¼ 0.037), and high Pin1 expression in HCC
(P¼ 0.006) were independent factors associated with early
recurrence in HCC after hepatectomy (Supplementary Table S2).
To confirm the effectiveness of Pin1 labelling index in HCC as a
predictor for poor prognosis, 38 HCC patients from 2000 to 2002
were investigated as a validation set. The cutoff value of Pin1
labelling index, 7.5, was used to divide these patients into high and
low Pin1 groups. Consistent with the results in the training set,
HCC patients with high Pin1 expression showed significant poorer
prognosis than those with low Pin1 expression in the validation set
(P¼ 0.018, Figure 1G).

Pin1 facilitates NF-kB activation in HCC. For further analyses,
106 HCC samples from the training set were evaluated. EMSA
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Figure 1. Immunohistochemical staining for Pin1 in (A) normal liver tissues from patients with liver metastasis (NL), (B) HCC with high Pin1
expression and adjacent non-tumorous liver tissue (NT), and (C) HCC with low Pin1 expression and NT. Results are representative of 10–55
sections. (D) ROC curve analysis of Pin1 labelling index in accordance with the 5-year survival. (E) Overall survival and (F) relapse-free survival of
106 HCC patients in relation to Pin1 expression in HCC analysed by the Kaplan–Meier methods. (G) Overall survival of 38 HCC patients in the
validation set were analysed by the Kaplan–Meier methods to validate the effectiveness of Pin1 labelling index as a predictor for poor prognosis.
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results revealed that no significant differences were seen in NF-kB
activation among normal liver tissue, adjacent liver tissue, and
HCC with low Pin1 expression. However, NF-kB activation was
significantly increased in HCC with high Pin1 expression

(Figure 2A). NF-kB activation was correlated with Pin1 expression
evaluated by western blotting (P¼ 0.038, Figure 2B). As Pin1 has
been reported to recognise the p-Thr254-Pro motif in NF-kB-p65,
the nuclear accumulation of p-NF-kB-p65(Thr254) was evaluated

Table 1. Univariate and multivariate analyses of survival in 106 patients with HCC

Univariate analysis Multivariate analysis

Hazard ratio P-value Hazard ratio P-value
Age (X70, n¼ 47 vso70, n¼ 59) 1.192 (0.636–2.232) 0.583
Gender (female, n¼ 26 vs male, n¼ 80) 1.480 (0.751–2.917) 0.257
Fibrosis (F2-4, n¼ 56 vs F0, n¼50) 1.240 (0.666–2.309) 0.498
Cirrhosis (F4, n¼29 vs F0-3, n¼ 77) 1.060 (0.518–2.170) 0.874
ICG-15 R (X15%, n¼43 vs o15%, n¼63) 1.100 (0.590–2.053) 0.764
Tumour size (X50 mm, n¼ 63 vso50 mm, n¼43) 3.047 (1.605–5.783) o0.001* 1.805 (0.718–4.539) 0.210
Tumour capsule (absent, n¼ 19 vs present, n¼87) 5.310 (1.279–22.047) 0.022* 4.197 (0.817–21.563) 0.086
Capsule infiltration (present, n¼ 66 vs absent, n¼ 40) 2.403 (1.143–5.052) 0.021* 1.296 (0.503–3.338) 0.591
Septum formation (present, n¼82 vs absent, n¼26) 1.183 (0.563–2.487) 0.657
Number of the tumour (multiple, n¼ 21 vs solitary, n¼85) 2.530 (1.280–4.998) 0.008* 1.033 (0.332–3.208) 0.956
Intrahepatic metastasis (present, n¼30 vs absent, n¼ 76) 3.412 (1.818–6.404) o0.001* 6.225 (2.149–18.030) o0.001*
Portal vein invasion (positive, n¼ 40 vs negative, n¼66) 3.443 (1.822–6.508) o0.001* 1.289 (0.564–2.946) 0.547
Venous invasion (positive, n¼5 vs negative, n¼ 101) 2.774 (0.846–9.104) 0.092
Serosal infiltration (present, n¼ 13 vs absent, n¼93) 2.054 (0.905–4.664) 0.085
Differentiation (poorly, n¼ 7 vs moderately and well, n¼99) 3.116 (1.097–8.849) 0.033* 6.324 (1.859–21.514) 0.003*
PIVKA-II (X80 mAU m�1, n¼ 55 vs o80 mAU m�1, n¼ 51) 2.153 (1.110–4.176) 0.023* 1.840 (0.833–4.607) 0.132
AFP (X40 ng ml�1, n¼45 vs o40 ng ml�1, n¼61) 1.125 (0.592–2.139) 0.720
Pin1 expression in HCC (high, n¼ 55 vs low, n¼51) 4.252 (2.028–8.916) o0.001* 5.285 (2.290–12.198) o0.001*

Abbreviations: AFP, a-fetopretein; HCC, hepatocellular carcinoma; PIVKA-II, protein induced by vitamin K absence or antagonist-II. *Po0.05 were considered to be statistically significant.
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by immunohistochemistry (Figure 2C). Interestingly, the p-NF-kB-
p65(Thr254) labelling index was significantly correlated with Pin1
expression (Po0.001, Figure 2D). After binding to the p-Thr254-
Pro motif in NF-kB-p65, Pin1 has been reported to induce the
phosphorylation of the Ser276 motif in NF-kB-p65 to mediate its
DNA binding. As shown in Figure 2E, the nuclear accumulation of
p-NF-kB-p65(Ser276) was seen in some HCC cells. Consistent
with the EMSA results, the p-NF-kB-p65(Ser276) labelling index,
an indicator of Pin1-induced NF-kB activation, was significantly
correlated with Pin1 expression (Po0.001, Figure 2F). Moreover,
the p-NF-kB-p65(Ser276) labelling index correlated with the
p-NF-kB-p65(Thr 254) labelling index (Po0.001, Figure 2G).

Pin1-induced NF-kB activation promotes cell proliferation,
induces angiogenesis, and inhibits apoptosis in HCC. When the
cell proliferation index was determined by Ki-67 immunohisto-
chemistry (Figure 3A), it was positively correlated with the Pin1
labelling index (Po0.001, Figure 3B), the p-NF-kB-p65(Thr254)
labelling index (Po0.001, Figure 3C), and the p-NF-kB-
p65(Ser276) labelling index (Po0.001, Figure 3D). To reveal the
mechanisms of Pin1-mediated cell cycle progression, involvement
of cyclin D1 or Cks1-p27(kip1) pathway was evaluated by western
blotting (Figure 3E). Interestingly, cyclin D1 expression was
significantly higher in HCC with high Pin1 expression. Moreover,

the expression levels of p27(kip1), a potent cell cycle inhibitor, was
lower in HCC with high Pin1 expression. In contrast, the
expression levels of Cks1, which induces the degradation of
p27(kip1), were higher in HCC with high Pin1 expression.
A significant correlation was found between Pin1 expression and
the MVD levels as assessed by CD34 immunohistochemistry
(Po0.001, Figures 3F and G). Number of apoptotic cells assessed
by TUNEL staining was significantly higher in HCC with low Pin1
expression than those with high Pin1 expression (P¼ 0.002,
Figures 3H and I).

Effects of Pin1 knockdown on HCC cells in vitro. Knockdown of
Pin1 by its siRNA significantly inhibited the expression of p-NF-
kB-p65(Thr254) and p-NF-kB-p65(Ser276), thereby reducing the
activity of NF-kB in HepG2 cells (Figure 4A). Activation of NF-kB
after TNFa treatment was significantly inhibited in Pin1 knock-
down cells when compared with negative controls, suggesting the
direct interaction of Pin1 with NF-kB. Pin1 depletion significantly
decreased cyclin D1 expression and increased p27(kip1) expres-
sion. However, Pin1 knockdown had no effects on the expression
of IkBa, p65, or Cks1. Moreover, VEGF expression was decreased
in HepG2 cells with Pin1 knockdown. DNA incorporation of BrdU
was reduced in Pin1 knockdown cells after 48 h of treatment, when
compared with negative controls (Figure 4B). Consistent with these
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results, cell proliferation was inhibited in HepG2 cells with Pin1
knockdown (Figure 4C). Moreover, knockdown of Pin1 reduced
the invasiveness of HepG2 cells after 48 h of treatment (Figure 4D).
To confirm the effects of Pin1 knockdown on HCC cell

proliferation, HuH-7 cells were further employed. In consistent
with the results from HepG2, Pin1 knockdown in HuH-7 cells
inhibited cell proliferation (Figure 4E). The results of cell cycle
analysis showed that Pin1 depletion decreased the population in
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the G1/G2 phase and increased the population in the G2/M phase,
which led HCC cells to cell cycle arrest with delayed mitotic entry
and to eventual apoptosis (Figure 4F).

Effects of the treatment with Pin1 inhibitor on HCC cell
proliferation in vitro. To evaluate whether Pin1 is a potential
therapeutic target for HCC, HepG2 cells were treated with a Pin1
inhibitor, juglone. Juglone reduced the expression of p-NF-kB-
p65(Ser276), thereby inhibiting NF-kB activation (Figure 5A).
Moreover, DNA incorporation of BrdU was reduced in HepG2
cells after 48 h of treatment with 50 mM juglone (Figure 5B).
Consistent with these results, juglone inhibited HepG2 cell
proliferation in a dose-dependent manner (Figure 5C). Inhibitory
effects of juglone on HCC cell proliferation were confirmed using
HuH-7 cells. Similar to the results from HepG2, HuH-7 cell
proliferation was inhibited by juglone in a dose-dependent manner
(Figure 5D). To evaluate whether these inhibitory effects of juglone
were Pin1-specific, HCC cells were treated with another Pin1
inhibitor, PiB. In consistent with juglone, PiB significantly
inhibited tumour cell growth in HepG2 and HuH-7 in a dose-
dependent manner, suggesting that these anti-proliferative effects
were mediated by Pin1 inhibition (Figures 5E and F).

DISCUSSION

In previous studies, Pin1 has been reported to regulate NF-kB
signalling (Ryo et al, 2003; Atkinson et al, 2009) and promote
tumour progression (Kuramochi et al, 2006) in several malig-
nancies. With regard to HCC, a few studies have shown the
mechanism by which Pin1 enhances hepatocarcinogenesis.
However, the role of Pin1 in HCC progression remains unclear.
The present study is the first to precisely examine the function of
Pin1 on tumour progression in clinical cases of HCC.

At present, over 50 proteins have been identified as the target
for Pin1 including the NF-kB-p65 (Lu and Zhou, 2007). We have
previously shown that Pin1 is important for hepatocyte NF-kB
activation during hepatic ischaemia/reperfusion (I/R) (Kuboki
et al, 2007; Kuboki et al, 2009). In I/R model, NF-kB is released
after degradation of IkBa during reperfusion. Pin1 binds to
released NF-kB-p65, protects it from degradation, and induces
NF-kB activation. However, the role of Pin1 in NF-kB activation in
malignancies is quite different, as NF-kB is constitutively activated
even though abundant IkBa exists in HCC (Tai et al, 2000). In the
present study, we proposed a precise model of Pin1 interaction
with NF-kB in HCC (Supplementary Figure S1). Binding of Pin1 is
essential for constitutive phosphorylation of NF-kB-p65(Thr254),
as the p-NF-kB-p65(Thr254) expression was decreased in HCC
cells with Pin1 knockdown. Therefore, in contrast to hepatic I/R,
p-NF-kB-p65(Thr254) was dephosphorylated without Pin1, and
NF-kB bound to IkBa again to increase their stability. The
mechanism of the phosphorylation of NF-kB-p65(Thr254) is still
unclear. As the binding site of IkBa is close to Thr254 in NF-kB-
p65, IkBa might inhibit the phosphorylation of NF-kB-
p65(Thr254). It has been reported that IkB kinase (IKK) is
strongly activated in malignant cells (Nakshatri et al, 2002).
Therefore, separation from IkBa by IKK-induced IkBa degradation
enable NF-kB-p65(Thr254) to be phosphorylated, which mediates
its binding to Pin1. In addition, knockdown of Pin1 in HCC cells
inhibited phosphorylation of NF-kB-p65(Ser276) and decreased
activation of NF-kB. These findings suggest that binding of Pin1 to
p-NF-kB-p65(Thr254) induces phosphorylation of Ser276, thereby
promoting nuclear translocation of NF-kB and mediating its
activation in HCC.

Pin1 is known as a key regulator of mitotic events by mediating
the G1-S transition through regulating cyclins and cyclin-
dependent kineses (Lu et al, 1996; Ryo et al, 2002). Pin1 is

reported to promote HuH-7 cell growth via the upregulation of
cyclin D1 and cyclin E (Farra et al, 2015). Moreover, NF-kB
activation is reported to induce G1-S transition through the
downregulation of p27(kip1) by increasing Cks1 (Frau et al, 2012),
as Cks1 mediates the ubiquitination of p27(kip1) which induces
cell cycle arrest by inhibiting S phase entry (Ganoth et al, 2001).
Knockdown of Pin1 in human kidney cells is reported to increase
the expression of p27(kip1), thereby promoting cell cycle
progression (Brenkman et al, 2008). In contrast, another paper
reported that Pin1 increased the stability of p27(kip1) and induced
G2 arrest in fibroblast cells (Zhou et al, 2009). Therefore,
regulation of Cks1-p27(kip1) pathway by Pin1 was still
controversial. In the present study, we found that Pin1-induced
HCC cell proliferation is mediated by increased expression of
cyclin D1 and decreased expression of p27(kip1). The fact that
cyclin D1 induces the degradation of p27(kip1) by activating E2F,
supports our findings. Pin1 seemed to mediate Cks1 expression;
however, it might be regulated indirectly of Pin1 through the
microenvironment circumstance with cancer stromal tissue. In
addition, we have revealed that Pin1 induces angiogenesis in HCC
by increasing the expression of VEGF. As NF-kB signalling induces
angiogenesis by increasing the production of VEGF (Liu et al,
2010), angiogenesis induced by Pin1 is also mediated by NF-kB
activation in HCC. Previous studies have shown that tumour
invasiveness is remarkably increased in patients with high Pin1
expression in several malignancies (Matsuura et al, 2010); however,
we have found no studies that report the association between Pin1
and tumour invasiveness in HCC in any experimental models. Our
present study is the first to reveal the direct regulation of Pin1 in
HCC cell invasiveness. As Pin1 is reported to induce epithelial–
mesenchymal transition (EMT) in breast cancer (Kim et al, 2009),
induction of EMT may be the key regulator of increased
invasiveness in HCC with high Pin1 expression. Decreased
expression of Pin1 is known to induce neuronal apoptosis and
degradation in Alzheimer’s disease (Lu et al, 1999). In the present
study, we found that Pin1-induced G2/M cell cycle arrest and
increased apoptosis in HCC in vivo and in vitro. As NF-kB
signalling has anti-apoptotic effects and maintains cellular survival,
Pin1-induced NF-kB activation plays a potent role in the inhibition
of apoptosis in HCC.

We have also found that high Pin1 expression in HCC
associates with large tumour size and positive portal vein invasion
in clinical cases of HCC. The effects of Pin1 on cell cycle
progression, angiogenesis, anti-apoptosis, and invasiveness through
NF-kB activation contribute to these findings. Given these results,
we conducted that increased Pin1 expression in HCC is an
independent predictor for poor prognosis and early recurrence
after hepatectomy. Therefore, close follow-up examinations are
needed after operations in HCC patients with high Pin1
expression.

Finally, we sought to reveal whether Pin1 is a potential
therapeutic target for HCC by employing famous Pin1 inhibitors,
juglone and PiB. Juglone is known to have some anti-cancer
activity according to several studies in vitro (Henning et al, 1998).
In HCC, only a study by Lee et al (2009) has demonstrated that
juglone inhibits HCC tumourigenesis in vitro; however, the precise
molecular mechanism is still unclear. Moreover, no studies have
been conducted that show inhibitory effects of juglone on NF-kB-
dependent cell proliferation in any malignant cells. Our present
study shows direct inhibitory effects of juglone on Pin1-dependent
phosphorylation of NF-kB-p65(Ser276) and activation of NF-kB.
However, it is unclear whether these effects are Pin1-specific, as
juglone potently inhibits several proteins and enzymes. Therefore,
we confirm the effects of Pin1 inhibition on tumour suppression by
treatment with PiB, as PiB is a synthesised drug which specifically
inhibits Pin1. As complete knockdown of NF-kB leads to
embryonic lethality in mice, many anti-cancer therapies targeting

Pin1 promotes HCC progression by activating NF-kB BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2015.272 1329

http://www.bjcancer.com


NF-kB failed because of severe adverse reactions. However, in
conditions without Pin1, alternative cascades for NF-kB activation
is slightly stimulated and maintains the minimal NF-kB activation
essential for the survival of normal organs. The fact that Pin1-
knockout mice are able to survive with slight activation of NF-kB,
support these findings (Kuboki et al, 2009). We also need to pay
attention to the side effects of Pin1 inhibitors; however, we believe

that Pin1 is a potential therapeutic molecular target for HCC by
safely inhibiting NF-kB activation. Further investigation and the
development of a new drug-delivery system are needed for clinical
application, by generating a xenograft mouse model of HCC cells
with Pin1 overexpression and depletion.

In conclusion, Pin1 overexpression is associated with aggressive
tumour progression and poor prognosis in patients with HCC by
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mediating NF-kB activation. Therefore, Pin1 is a novel prognostic
predictor and a potential therapeutic target for HCC.
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